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Let’s talk about OpenGL (a bit)

• History
• 1.0 - 1992

• 1.3 - 2001 – multitexturing

• 1.5 - 2003 – vertex buffer object

• 2.0 - 2004 – GLSL

• 3.0 - 2008 – framebuffer object

• 3.2 - 2009 – geometry shader

• 3.3 - 2010 – sampler object

• 4.1 - 2010 – get_program_binary

• 4.3 - 2012 – compute shaders

• Legacy
• glBegin(); / glEnd();



What is Vulkan?

• Software change

• Closer to the metal - more control done by App

• If OpenGL is JavaScript, Vulkan is C++



Why Vulkan?

• Reduced CPU overhead comparing to OpenGL

• Thin layer API - efficiency and performance

• Improved scalability across multiple threads

• Greater developer control

• Asynchronous Compute 

• Multi GPU*



CPU Overhead – Identifying problems

• What’s wrong with this code?
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

glClearDepth(1.0f);

glEnable(GL_DEPTH_TEST);

glDepthFunc(GL_LEQUAL);

glShadeModel(GL_SMOOTH);

• What’s wrong with this code?
• glMapBuffer( myBufferID, GL_WRITE_ONLY_ARB ); / glUnmapBuffer();

• glFinish();



CPU Overhead – Identifying problems

• State objects do not match HW state

RasterizerState

DepthBias

FillMode

MSEnable

DepthStencilState

DepthEnable

StencilEnable

IHV Rasterizer State

FillMode

MSEnable

IHV Depth State

DepthBias

DepthEnable

IHV Stencil State

StencilEnable



CPU Overhead – Identifying problems

• Drivers resolve state at Draw:
• Hazard

• Resource lifetime

• Residency management (state tracking)

• Get*

• Redundant binding



What is Async Compute?

Draw

Dispatch

Copy

Direct Queue:

Compute Queue:

Copy Queue:



What is Vulkan?

• Views

• Pipelines

• Descriptor Set Layouts / Descriptor Pools / Pipeline Layouts

• Render Passes / Subpasses

• Command Queues and Command Buffers

• Synchronization / Barriers



Pipelines

• Inside:
• Input assembly

• Shaders

• States

• Topology

• Viewport*

• Scissor*

Pipeline

Vertex Shader

Fragment Shader

Geometry Shader

Tess Evaluation

Tess Control

BlendState

RasterizerState

DepthStencilState

InputLayout

RenderPass

PipelineLayout

SampleDesc

• Outside:
• Resource bindings

• Viewport*

• Scissor*

• Blend constants*

• Stencil ref*

• Stencil masks*



Descriptor Sets Binding Layout

• Descriptor <-> View

• Sets

• Pools

• Format
• ImageViewType
• Image

Descriptor

Set

Pool

Set

View



Pipeline Layout

0: DescriptorSetLayout

1: DescriptorSetLayout

2: PushConstants

Sampled Image

Sampled Image

Uniform Buffer

Sampler

1.0f, 0.0f, 0.0f, 0.0f

0.0f, 1.0f, 0.0f, 0.0f

0.0f, 0.0f, 1.0f, 0.0f

0.0f, 0.0f, 0.0f, 1.0f

Sampler

Sampler

Sampler



Some GLSL, please?

• layout(set=0,binding=0) uniform sampler s0;

• layout(set=0,binding=1) uniform samplerBuffer sb0;

• layout(set=0,binding=2) uniform texture2D t0;

• layout(set=0,binding=3) uniform samplerBuffer sb1[4];

• layout(set=0,binding=4) uniform texture2D t1[2];

• layout(push_constant) uniform BlockPushConstants {

• vec4 some_number;

• } PushConstants;



One set design

• Place all Descriptors in one giant Descriptor Set 
• layout (set=0, binding=N) uniform texture2D textures[hugeNumber]

• Leave the one giant Descriptor Set always bound 
• No more binding/updating Descriptor Sets for each draw/dispatch

• Instead use Push Constant

• Constants data: draws which need to source {per-frame, per-pass, and per-draw} 
constants

• Each pass (few passes per frame) gets a separate UNIFORM_BUFFER_DYNAMIC Descriptor

• Buffer contents: [per-frame] [per-pass] [draw0] [draw1] [draw2] . . . [drawN]

• Per-frame data is duplicated for each pass and can be accessed with immediate offsets

• Per-pass data can be accessed with immediate offsets

• Per-draw uses the dynamic base offset supplied in the Push Constant



Renderpasses

• Renderpasses are chunks of back to back GPU work
• Represented by a Vulkan object 

• Contain one or more sub-passes 

• All rendering happens inside a renderpass
• Even if it has only a single subpass

• Dependencies between subpasses are part of the renderpass
• Driver can schedule work based on future knowledge

• Driver generates a DAG from dependency information

• Renderpasses are a time machine for drivers!



Renderpasses in words

• Consider the following:
• Subpass 1 produces resource A… 

• Which is consumed by subpass 2, producing resource B 

• Subpass 3 produces resource C… 

• Which is consumed by subpass 4, producing resource D 

• Finally, subpass 5 consumes resources B and D, producing final output E

• Blah, blah, blah; loads of text 
• But this is what API order calls look like



Renderpass in pictures

• Here’s the DAG:



Renderpass information

• Arrays of attachments, subpasses and dependency information

• Any number of attachments can be used by a renderpass
• They are referenced by subpasses

• Each attachment contains the following: 
• Format and sample count 

• Load operation – where to get the data from (memory, clear, or don’t care)

• Store operation – where to leave the data (memory, or don’t care) 
• There are separate load and store operations for stencil 

• Expected layout at the beginning and end of the renderpass
• Driver will insert layout changes for you



Graph Building

• Driver uses renderpass structures to form a DAG 
• Subpasses produce and consume data 

• Resource barriers inserted automatically by driver 

• Scheduling information generated at renderpass creation time

• A DAG of one node isn’t helpful 
• Need renderpasses to include multiple subpasses to be useful



But wait, there’s more

• Internal driver operations 
• Attachments have initial and final states 

• Clears are part of beginning a subpass, for example 

• Attachments go from being outputs to being inputs 
• Flush color caches, invalidate texture caches, change layouts, insert fences 

• Some surfaces require more attention
• Compressed depth not directly readable by shaders, for example 

• Requires internal driver decompression



Load OPs

• Udated DAG, clears



Flush

• Udated DAG, flushes



Invalidate

• Udated DAG, flushes, invalidation



Predicting the future

• Renderpasses allow drivers to predict the future 
• Not really a prediction 

• you told it what you were going to do 

• Schedule clears, internal blits, cache operations, etc. 
• All done statically 

• When the renderpass is built

• “I can do that in the app, ‘cuase I’m a 1337 haxxorz”
• Well, no, you can’t

• Some of the internal driver operations aren’t exposed in the API

• Some are only needed on some hardware



Let’s get crazy

• Pipelines are built with respect to renderpasses
• Each Pipeline knows which renderpass it will be used with, and in 

which subpass

• Renderpass knows where subpass outputs go 

• Renderpass knows the format of all attachments



Renderpasses - summary

• Renderpasses encapsulate data and execution flow
• Driver can schedule internal work

• Remove surprises at render time

• Determine the fate of data early

• Many opportunities for GPU performance
• Eliminate stalls and pipeline bubbles

• Interleave internal operations with rendering

• Optimize cache utilization

• Choose formats and allocation strategies based on data flow



Synchronization

• We have three synchronization primitives
• Fences

• Semaphores

• Wait events

• Fences allow to synchronize GPU and CPU work
• Frame sync

• Protect frame resources with a fence

• Semaphore is a heavy-weight, cross queue sync

• Wait events are light-weight, in queue sync



Barriers

• Synchronization
• Make sure writes have finished before reads start 

• Timing issues if missed 

• Visibility
• Caches are visible to other units 

• Partial results, flickering, etc.

• Decompression
• Make sure formats match

• Corruption if missed



Barriers

• For any of the barriers 
• Make sure to transition into the union of the read states 

• Or them together – avoid VK_ACCESS_MEMORY_READ_BIT

• Batch as many barriers as you can into one call

• Need to specify source/destination queue

• Place transition close to semaphore



Barriers

• Avoid transitioning everything 
• Barriers have a cost! 

• Cost often scales with resolution 

• Cost changes between GPU generations

• Use render passes when possible

• Think about the required state



Thank you!
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