
Multi everything:
parallelism in all shapes and sizes in
HoloVizio light field display systems

Attila Barsi
Holografika Ltd.

GPU Day 2016 - THE FUTURE OF MANY-CORE
COMPUTING IN SCIENCE
03. 05. 2016. Budapest

The HoloVizio System
• Optical modules

– Project light beams to hit the points of a
screen with multiple beams under various
angles of incidence

– The exit angle depends only on the relative
position of the given screen point and the
relevant modules

• Holographic screen
– Direction selective property with angularly

dependent diffusion characteristics
– The screen diffusion angle d is equal to the

angle g between the neighboring modules

• Emission angle geometry determined
– No optical road-blocks like at Fresnel, or

lenticular lenses

The HoloVizio System
• FOV

– Controlled FOV determined by the module optics and arrangement
– Wider FOV, more complexity; the freedom given to the viewer is the challenge
– No favorable zone in the FOV, viewers can freely move in the whole FOV area

• Angular resolution / FOD
– Large number of light beams can be emitted from the same small screen pixel area
– The angular resolution determine the FOD
– The smallest feature (voxel) the display can reconstruct is the function of the

angular resolution and the distance from the screen (p = po+ s * tan Φ)

– The achievable resolution is decreasing with the distance from the screen

The HoloVizio System
• Light field reconstruction instead of views
• Specific distributed image organization

– A module is not associated to a direction
• The projected module image not a 2D view of

the final 3D image

– Each view of the 3D image comes from more
modules

• The number of contributing modules does not
change over the FOV (no point in the FOV
where only one single module image would be
seen, like at multiview)

– Distributed changes within the 3D image on
different image areas

• Smooth and continuous transition, no single
border occur between views

• Continuous motion parallax

HoloVizio Displays

• Large-scale HoloVizio
Systems
– HoloVizio 722RC

• 72”, 34.5 Mpixel, 16:9
• 50-70° FOV, 0.9° Φ
• Input: Gigabit Ethernet
• PC-based render cluster
• LED based projection engines

– Better colours
– More uniform image
– Less maintenance

HoloVizio Displays
• The full angle HoloVizio monitor

• HoloVizio 80WLT
• 78 Mpixel, 30” (16:10)
• 180 degrees FOV
• Total freedom 3D experience,

no invalid zones,
no repeated views

• 2D equivalent image resolution
1280 x 768 (WXGA)

• LED colors
• Multiple DVI inputs

HoloVizio Displays
• The world first glasses-free

 3D cinema system:
• HoloVizio C80

– 3,5 m dia Holoscreen (140”)
– No glasses, no optical

contradiction
– LED based 3D projection unit
– Exceptional 1500 Cd/m2

brightness
– 40 degrees FOV
– 2D compatible
– Fitting cinema rooms, 3D

simulators

Benefits
• View with naked eye

– No glasses
– No tethers
– No tracking
– No positioning
– No image jumps

• Wide Field Of View
• Virtual object position

– Behind screen
– In front of screen

• Look behind objects
• Multi-user collaboration
• 3D movie is more like a

theatrical performace

In short, none of these!

She’s got the
right idea!

Light field rendering

• Challenges
– Do everything that you would do on a 2D display and more on up to 80 megapixels
– Make everything multiplatform (Windows/Linux)
– Drive up to 80 graphics outputs (DVI, HDMI, DP)
– Synchronize all renderers
– Do a non-linear projection that matches the optics
– Rendering compared to 2D on our worst case cluster:

• Render 5120* 2880 pixels compared to the usual case of 1920*1080 on a single GPU!
• Render 48 times the geometry!
• Do this on three GPUs for a single PC (CPU load!)

– Most post process effects are not working out of the box due to the non-linear
nature of the primary rays

– Using commercial renderers is out of the question (pinhole camera model and
linear screen space is in the heart of every renderer)

Use cases
• Proxy OpenGL library

– For existing applications, without plugin support or
closed rendering methods due to IPR

• Light field video player
– To allow cluster reconfiguration, video is stored to

allow decompression per optical module
– Calibration

• 2D image array to light field conversion
– Allows rendering from existing engines (CAD/CAM)
– Allows rendering from real cameras

• ClusteredRenderer for everything else
– Native applications
– Plugins for existing applications
– Raytracer

Network level parallelism
• All displays have multiple inputs (2-

80!)
• Currently a maximum of 4 outputs can

be driven simultaneously from a single
NVIDIA GPU and 6 from an AMD one

• A single PC can house a maximum of
4 dGPUs (3 if you consider heat
buildup)

• GPU clusters are a must
• Using custom Fedora Linux OS as

server and nodes

We use every type of
network from IB to 40 GbE

Cluster runs on GPUs and
junk food

Process level parallelism
• X screens are per GPU due to acceleration model (no Mosaic SLI on

GeForce). This way all GPUs render at full screen.
• OpenGL context switches between threads are slow

(glXMakeCurrent() calls). Solution: one process for rendering per
GPU. Completely scalable.

• Additional processes are mostly used for conversion tasks from
compressed images (single decompress in a process, shared
memory copy to all renderers).

Decompression
Process

Rendering
process

Camera
capture
process

Rendering
process

Rendering
process

GigE

Multithreaded parallelism
• Video playback

– Multithreaded decompression via FFMPEG
– Each video stream has it’s own decompressor thread
– Rendering on separate thread
– Download to GPU via pixel unpack buffers (See

https://www.opengl.org/wiki/Pixel_Buffer_Object#Downloa
ds)

– Buffered to avoid speed inconsistencies
– Imagine debugging video seek for 40 video streams

• Multi camera MJPEG decode
– TurboJPEG decompressor

Massively multithreaded parallelism
• Real-time rendering

–OpenGL 4.x AZDO forward and deferred renderer
–Two slit projection. Linear approximation of real optical system.
–Needs calibration post effect.
–Uses a combination of viewport arrays and instancing for fast
rendering.

–Materials from bindless textures and shader buffer objects.
–Shadow mapping.
–Order independent transparency.
–Physically based rendering (ongoing research).
–HDR tone mapping (ongoing research).

Two-slit projection
• Reverse perspective in X, normal

perspective in Y
• Projection is not a single 4x4 matrix
• Projection parameters are stored in

UBOs for speed
• Instance ID indexes projection
• Viewport arrays are used to send

pixels to the right image part
• Projection is correct per vertex
• Tessellate or use high res models

to avoid incorrect projection
Reverse perspective, lines

converge towards the viewer

Perspective and reverse perspective

Culling
• Display geometry’s observable area can be

represented with 6 planes
• Cutting becomes generic for 2D and 3D

cases
• Use compute shader to cut geometry for the

display
• After cutting, every mesh is in the same

buffer. Single draw call rendering for the
complete scene.

Materials and shadows
• Bindless textures (best thing ever!)
• Everything is in one SSBO.
• Eye positions are per pixel (read from

texture)
• Materials are evaluated in world space
• Also useful for ray tracing.
• PCF shadows are rendered into 2D texture

arrays (directional and spot lights) and cube
map arrays (point lights).

• Single pass for each texture type with
instancing and texture array layering.

• Cascaded rendering for directional lights is
supported. Light cascades are calculated for
the double frustum of the display.

struct MaterialDescriptor
{
 uint64_t ambientMap;
 uint64_t diffuseMap; //128 bits
 uint64_t specularMap;
 uint64_t shininessMap; //256 bits
 uint64_t normalMap;
 float shininess;
 float roughness; //384 bits
 vec3 ambient;
 float reflectionCoefficient; //512 bits
 vec4 diffuse; //640 bits
 vec3 specular;
 float padding; //768 bits
}
layout(std430,binding = 4) readonly buffer MaterialBuffer
{
 MaterialDescriptor materialDescriptors[];
};

Order independent transparency
• Render fragments into a large fragment buffer with image load/store
• GPU linked list implementation
• Sort fragments in a compute pass
• Render opaque first, disable depth writes, but keep depth test to throw away fragments

masked by opaque
• If OIT is on, the compute shader will separate scene geometry by material transparency

layout(std430,binding = 0) coherent buffer Abuffer
{
 uvec4 imgABuffer[];
}
uniform int aBufferSize;
layout(r32ui,binding=4) uniform coherent uimage2D imgListHead;
layout(offset=0,binding=0) uniform atomic_uint counter;
//Somewhere later in main()…
uint idx = atomicCounterIncrement(counter)+1u;
uvec2 fragment = uvec2(packUnorm4x8(finalColor),floatBitsToUint(gl_FragCoord.z));
if(idx < uint(aBufferSize))
{
 uint prev = imageAtomicExchange(imgListHead,ivec2(gl_FragCoord.xy),idx);
 imgABuffer[idx] = uvec4(fragment,gl_SampleID,prev);
}

Tone mapping
• Converts HDR image to SDR image
• Based on Erik Reinhard’s work.
• Global and local variant
• Uses image atomics to calculate SAT (very fast)

Ray tracing
• GPU Ray tracing

– Ray generation (implemented in OpenGL, OpenCL,
NVIDIA OptiX). Complete optical model. Best solution
for light field rendering.

– Accelerators BVH, KD-Tree.
– Ray tracing (NVIDIA OptiX, OpenGL version in R&D).
– Still needs to be faster

Light field conversion
• Converts from 2D image array to light field
• Size of accelerator table that indexes input

depends on the number of output pixels
• Source can be as large as maximum texture size
• Allows high quality conversion to light field video

Tl;dr on OpenGL rendering
• Use the graphics pipeline for free goodies not available in compute

– Depth & Stencil buffer for cheap comparisons (early Z out is really powerful)
– Blending for min, max, missing multichannel atomics and much more
– Bindless textures and arrays for flexible data structures
– Permanently mapped buffers
– Instancing and viewport arrays when you need to run different algorithms on the same data
– Use indirect rendering and compute to avoid readbacks to CPU

• OpenGL compute
– Does not require interop. No need to go the OpenCL or Cuda route
– Don’t forget restrict
– Don’t forget to specify readonly or writeonly
– Use atomics instead of barrier & friends if you can do it (much cheaper)
– Only caveat, you have to specify the warp size in advance. (Why, Khronos, why???)

• AZDO can boost your performance to very good levels without having to go to Vulkan
levels of complications

• If at all possible, avoid readbacks to CPU at all costs
• Deferred rendering is no longer necessary (finally)

R&D-current & future work
• 3D Telepresence

– Natural communication
– Eye contact, directive gestures

• Towards Gigapixel displays
– 100Mpixel today, high pixel count systems with

parallel distributed approach
• Large-scale 3D visualization

– Scalable
– Glasses-free CAVE-s, no edges, no corners

• 3D Internet connected TV
– End-to-end 3D video systems through direct

Internet connection
– Two-ways communication, dynamic 3D models,

personalized programs with local 3D render
• 3D formats

– Scalable and generic 3DTV representation format
• 3D Light field representation

– Inherent 3D compression technologies

Current research projects and training
networks

• ETN-FPI - European Training
Network on Full Parallax
Imaging

• QoE-Net - Innovative Quality of
Experience Management in
Emerging Multimedia Services

• OptIntegral - Advertisement
displays manufactured by hybrid
in-mould integration

Questions?

Acknowledgements:
The Holografika Team http://www.holografika.com/
All the good people @ NVIDIA, AMD, and Khronos
Computer Graphics Group @ BME,
especially Dr. László Szirmay-Kalos and Dr. László Szécsi; thanks
for teaching me so much about GPUs & rendering

http://www.holografika.com/
http://www.holografika.com/

	Slide 1
	The HoloVizio System
	The HoloVizio System
	The HoloVizio System
	HoloVizio Displays
	HoloVizio Displays
	HoloVizio Displays
	Benefits
	Light field rendering
	Use cases
	Network level parallelism
	Process level parallelism
	Multithreaded parallelism
	Massively multithreaded parallelism
	Two-slit projection
	Culling
	Materials and shadows
	Order independent transparency
	Tone mapping
	Ray tracing
	Light field conversion
	Tl;dr on OpenGL rendering
	R&D-current & future work
	Current research projects and training networks
	Questions?

