
Line Segment Maps:
Fast and Deterministic Line Detection on the GPU

(Dr-Ing. Gernot Ziegler)

May 2016

2 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Business Background

 Algorithmic consulting and training
in general purpose GPU computing.

 Main focus on computer vision and
visual computing, e.g. GPU-based
camera calibration or lightfield
acquisition/rendering.

 Spatial computing in HPC as well,
e.g. volume compression or
tomography reconstruction.

 geofront e.U., privately owned, was founded in January 2016.

June 2016

3 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Open Investigations: Purpose

 Create new algorithms and technologies
as part of geofront's algorithmic portfolio.

 Real-time game graphics techniques
 (on GPU, e.g. shadow mapping, Z buffer, data parallelism)

 Computer vision knowledge on multi-view acq. vision
(Image Based Reconstruction and Rendering)

 Client-Server and Mobile Rendering / Vision
(WebGL, Android, but also Tegra X1)

May 2016

4 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Line Detection in WebGL
https://www.geofront.eu/demos/lines

 Line segments derived from
local edge filter results (line angle bins)

 Data-parallel Segmented Scan
„connects“ local edges

 2D line segment maps, one per line angle bin

 Interactive run times on mobile GPUs

 Novel for WebGL, through
Data Compaction algoritm which produces lists
of line segments above certain length

https://www.geofront.eu/demos/lines

May 2016

5 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Task Setting

 Reliable Real-time Line Detection in images and video
(a basic component for medium-level vision, e.g. in cars)

 Lines can be at any angle. Line start/end is important, too.

 Example input in automotive computer vision:

http://www.gmroadmarkings.co.uk/images/gm-road-markings-header.jpghttp://www.pringlesurfacing.co.uk/wp-content/uploads/road-markings-6.jpg

June 2016

6 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Line Hypotheses
 Line hypotheses are „laid“ at all aftersought angles

 Best to maintain input image resolution (avoid undersampling)

 Also parts of the hypothesis can be true

May 2016

7 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Line Atoms, or: What is a „line“?

 „Line segment hypotheses“ verified by edge detection
(central difference thresholding)

 Condition 1: No edge along line hypothesis (yellow)

 Condition 2: Edge present orthogonal to line hypothesis

 Line atom:
One local verification,
both conditions met.

May 2016

8 of 41

F
a

st
 L

in
e

D
et

ec
ti

o
n

Line Segment Map
 We create a 2D map over all line atom tests (0:s and 1:s)

 Layers represent the angle bins (e.g. Layer 0: Angle 0-22.5
deg) Layer 0: -12.5° to 12.5°

Layer 5: 60° to 80°

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1 1 0

0 0 0 0 0 0
0 0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1 0

....

June 2016

9 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Challenges

 Massive memory bandwidth needed:
Edge detection has to read pixel values repeatedly to evaluate
line hypotheses at all angles.

 Edge detection at non-trivial angles
requires bilinear interpolation of input pixels.

 On GPU: Texture cache and shared memory alleviates this!

 (On CPU: Must often resort to stochastic evaluation – but
makes line detection is non-deterministic)

June 2016

10 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Inference of Line Segments

 Now that we have found line support through edge detection, how to infer
line segments? CPU approaches use Edge Tracking, but that is serial.

 We use segmented scan:

From 2 and 2 connected
elements, we can infer that
all 3 are connected, etc.

 CUDA, OpenGL Compute:
Shared memory

 OpenGL ES 2.0, WebGL:
Repeated shader calls

May 2016

11 of 41

F
a

st
 L

in
e

D
et

ec
ti

o
n

Line Segment Map to Line List
 Inference stores lengths in Line Segment Map

 Create Line list (*) via
„Values above Threshold T, preceded by a Zero“

Layer 0: -12.5° to 12.5° Layer 5: 60° to 80°
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 3 2 1 0

0 0 0 0 0 0
0 0 0 5 4 3 2 1 0
0 0 0 5 4 3 2 1 0

....L0: (4,2), l=3 L5: (3,1), l=5 L5: (3,2), l=5

 (*) OpenGL or CUDA : Atomics
(OpenGL ES, WebGL:
Data Compaction,postponed)

May 2016

12 of 41

F
a

st
 L

in
e

D
et

ec
ti

o
n

Result
 Line List can now be rendered or used in further processing

....L0: (4,2), l=3 L5: (3,1), l=5 L5: (3,2), l=5

 (Line Segment Map is still useful, showing later)

May 2016

13 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Musings on detection guarantuees

 How can we make sure that every line direction angle is detected? (And only falls
into one angle bin?)

 Look at Bresenham algo:
(rasterizes lines based
 on their slope angle):

 Insight:
For short line segments,
close line angles cannot be told apart

 (they have identical Bresenham images).

June 2016

14 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Musings on detection guarantuees
 How many angle bins needed to catch all angle?

(Without proof: Number of required angle bins is outer rim cells of Bresenham window:
here, 16 angle bins (easy to count), or 8 if 180 degrees symmetric.

 Larger Bresenham window : Narrower angle range

 Gerneal:
The longer found
line segments are,
the more we can tell about their angle!

 Optimization : Use multi-stage to catch all angles;
Then you can subdivide angle bins recursively to narrow down.

June 2016

15 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Angle identification in real images

 Reality has smaller image gradients than those from black-on-white
Bresenham lines:



 But: Central difference cross for any pixel pattern
responds highest on „its“ matching angle bin ->
Proper detection threshold can be determined
(unless crosstalking is desired for ambious cases).

May 2016

16 of 41

F
a

st
 L

in
e

D
et

ec
ti

o
n

Imperfection tolerance

 Segmented scan expects line atoms at every sample position of line hypothesis.

 But lines in input image might be imperfect (e.g. withered road marking).

 Fill-in step before seg-scan starts.

 E.g. allow for one missing line atoms: insert 1 iff 1 before and after.

 0 0 1 1 1 0 1 1 0 0 -> 0 0 1 1 1 1 1 1 0 0
 BUT: How long defects do we want to tolerate?

-> We might connect line segments that should not. Use dep. on application.

 (Note: stochastic approach might ignore imperfection -
 but that is not deterministic!)

June 2016

17 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Primitive Detection
 Complex symbols are needed by high level AI

(e.g. traffic signs or road markings)

 Searching through whole image is prohibitively expensive
(esp. considering symbol´s possible rotation angles and scales)

 How can we reduce bandwidth and computation requirements?

May 2016

18 of 41

F
a

st
 L

in
e

D
et

ec
ti

o
n

Primitive Detection

 Look first for components of the higher level primitives: Lines!

 Only „deeper“ investigation where lines have been found:

 Line list -> Massively reduced computation & bandwidth

May 2016

19 of 41

F
a

st
 L

in
e

D
et

ec
ti

o
n

Example: Quadrangle Detection

 We want to look for quadrangles of a side length min. 50 pixels,
made up of (approx.) orthogonal lines (angle 70-110 degrees)

 First, we create a list for all lines at 50 pixel min length in the
image (side result: Line segment map)

 Start a thread for every line

 For every thread: use line origin coordinate to look up in line
segment map if there are other lines originating at same position
(tolerance window,e.g. +/- 3 pixels in x and y).

 Effect: Maintain spatial correlation of lines via line segment map,
but benefit from reduced parallelism of line list to detect quads.

May 2016

20 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Primitives from Line Detection
(OpenGL, coming in WebGL)

 Higher level primitives (e.g. parallel lines, quadrilaterals,
vector symbols, ...) usually too complex to search for in
whole image (scale, rotation, ...)

 Data compaction reduces candidates to line segments of
required length (as parts of above primitives)

 Side results of 2D line segment maps (one per line angle bin)
still provides spatial neighbourhood info

 Correlation only done in relevant spots (with tolerances)

 Augmented Reality Marker Tracking in
WebGL browser, mobile and desktop, without .exe

 Computer Vision tasks on limited OpenGL ES 2.0 hardware
(e.g. automotive, robotics, …)

May 2016

21 of 41

F
a

st
 L

in
e

D
et

ec
ti

o
n

Primitive detection in HPC signal processing

 This can be generalized, detecting complex shapes that are comprised of
subshapes of similar „atoms“. Atom and sub-shape identification limits
complexity of shape search to promising locations. Shapes can be built in
multiple stages that limit complexity every stage.

 Example from astronomy:
Stars as atoms
Constellations as Symbols.

 Multi-stage
Detect atoms (stars),
then two subshapes of
“The Great Bear“, then see if
the candidates comprise final.

 N-dimension as well!

June 2016

22 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Other Projects

May 2016

23 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Projects „WebGL Computer Vision„

 HTML5 enables real-time video input

 WebGL enables GPU access from Javascript

 Limited (only OpenGL ES level), but 2008
algos for data compaction apply!
-> can extract sparse feature lists, build
quadtrees, octrees, geometry shader, etc.

 Line detection, Object tracking, …

 Contact me if you are curious and I give
you a short intro!

May 2016

24 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Bounding Box Tracking in WebGL
https://www.geofront.eu/webgl/bboxpyramid

 Quick tracking of largest pixel group of certain color

 Threshold pixels, assume small bounding boxes

 Data Parallel Reduction:
Merge bounding boxes (if adjacent) OR

 Choose largest one (if competing)

 Interactive run times on mobile GPUs

 Doesn´t have to be color (e.g.group local motion
vectors)

May 2016

25 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Photogrammetry
 Reflective materials and their lighting

are hard to reproduce in 3D rendering

 3D Reproduction with light fields,
i.e. dense view acquisition.
(2D Video Compression for elimination of redundancy –
 later depth maps with proj. texture mapping for compression and view
angle interpolation)

http://www.geofront.eu/demos/360rotate

http://www.geofront.eu/demos/360rotate

May 2016

26 of 41

F
a

st
 L

in
e

D
et

ec
ti

o
n

Other data-parallel research

 HistoPyramids have been extended to create quadtrees and
octrees through bottom-up analysis:
www.geofront.eu/thesis.pdf

 Summed Area Ripmaps fix precision issues of
Summed Area Tables / Integral Images:
http://on-demand.gputechconf.com/gtc/2012/presentations/S0096-Summed-Area-Ripmaps.pdf
(Note for implementation: US patent filed!)

 Connected Components using full GPU parallelism:
http://on-demand.gputechconf.com/gtc/2013/presentations/S3193-Connected-Components-Kepler.pdf

Thank you.
Questions? http://www.geofront.eu

May 2016

28 of 41

F
a

st
 L

in
e

D
et

ec
ti

o
n

Data Compaction
(the „postponed“

algorithm explanation
from Line List generation)

May 2016

29 of 41

F
a

st
 L

in
e

D
et

ec
ti

o
n

Line Segment Map to Line List
 Inference stores lengths in Line Segment Map

 Create Line list (*) via
„Values above Threshold T, preceded by a Zero“

Layer 0: -12.5° to 12.5° Layer 5: 60° to 80°
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 3 2 1 0

0 0 0 0 0 0
0 0 0 5 4 3 2 1 0
0 0 0 5 4 3 2 1 0

....L0: (4,2), l=3 L0: (3,1), l=5 L0: (3,2), l=5

 (*) OpenGL or CUDA : Atomics
(OpenGL ES, WebGL:
Data Compaction,postponed)

30 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Data-Parallel Challenges: Data Compaction

 Our task: Select elements from a larger array, write into a list

 Example from Computer Vision: List of all black pixels in an image

 Step 1: Detect black pixels:

 Step 2: Create a list of detected pixels

31 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Data Compaction: Problem task in 1D

 Keep number of elements from input, based on a
Classifier:

 Implementation is trivial on CPU, single-thread.
 On GPU: Need to parallelize into 10k threads!
 First count number of output elements

using data-parallel reduction!

32 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Data Compaction via HistoPyramid:Buildup
 First, count number of output elements,

e.g. 4:1 data-parallel reduction

 (Note the reduction pyramid, it is retained - HistoPyramid)
 Can now allocate compact output, no spill.
 But how are output elements generated?

Histogram pyramid /
HistoPyramid

33 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Data Compaction via HistoPyramid: Traversal
 Output generate: Start one thread per output element
 Each output thread traverses reduction pyramid (read-only)

 No read/write hazards = Data-parallel output writing!
 As many threads as output elements

34 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

HistoPyramid: 2D Data Compaction

 1D was tutorial, actual implementation is 2D !
 Dataflow diagram:

May 2016

35 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Photogrammetry
 Static objects:

Multi-angle acquisition on rotating table, e.g. with
automatic camera slider or robotic arm (seriously!)

 Dynamic objects:
Create Multi Camera dome as done by Paul Debevec
https://www.youtube.com/watch?v=tKCY1dLYBfw#32
m00
(hint: cell phones are cheap now!
 And they have their own storage and WLAN...)

https://www.youtube.com/watch?v=tKCY1dLYBfw#32m00
https://www.youtube.com/watch?v=tKCY1dLYBfw#32m00

May 2016

36 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

Photogrammetry: Future
 Ultimate goal:

Offer acquisition quality as demo:ed by Realities.io,
but here in Vienna:

https://www.youtube.com/watch?v=B8FPunc_RTE

 Reconstruction of Museums, Castles, Architecture, …
plenty of vision and graphics work

 Then it´s time to buy an HTC Vive –
for the Austrian tourism agencies around the world. ;)

https://www.youtube.com/watch?v=B8FPunc_RTE

May 2016

37 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

GeoCast & GeoScene
https://www.geofront.eu/blog/geoscene-and-geocast-formats.html

 Data Exchange between Computer Vision and Computer
Graphics requires exact viewing ray mapping, also for
depth maps

 GeoCast provides common data format using OpenGL!

 Useful for virtual simulation testing of computer vision
algorithms (e.g. AIT has started using Blender for this)

 Multi-view scene reconstruction requires complete camera
paths as well.

 Generate arbitrary testing scenarios, and ground truth.

May 2016

38 of 41

F
a

st
 L

in
e

D
et

ec
ti

o
n

Other Projects

May 2016

39 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

GeoCast & GeoScene
Top view and more using proxy geometry

 With proxy geometry such as a quad describing the street level, the GPU can reconstruct car viewpoints or help
debug vision and decision making of car AI.

 https://www.geofront.eu/demos/20160318_street_camviews_on_proxy/

May 2016

40 of 41

F
a

st
 L

in
e

Se
g

m
en

t
D

et
ec

ti
o

n

GeoCast & GeoScene
„Depth map projection“

 GeoCast faciliates data exchange with data sources such as depth cameras, laser scanners, 3d modelling

 GPU helps reconstructs novel views
from partial depth surfaces using Z-buffer

May 2016

42 of 41

F
a

st
 L

in
e

D
et

ec
ti

o
n

Comparison to other approaches

 Hough transform

Can in theory detect lines at any angle, but
(a1) massive bandwidth for evaluation of all

 angle hypotheses (similar to FFT convolution), OR
(a2) relies on incomplete hypotheses verification

(undersampled)

(b) requires analysis of transform result,
(c) cannot detect line segment position and length!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Data-Parallel Algorithm Challenges
	Slide 31
	Slide 32
	Slide 33
	HistoPyramid: 2D Data Compaction
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 42

