Laser plasma generation and real-time diagnostics at Wigner Research Center

Miklós Á. Kedves

Department of Plasma Physics Wigner Research Center for Physics

Contributors: G.P. Djotyan, B. Ráczkevi, J.S. Bakos, Zs. Sörlei, P.N. Ignácz, J. Szigeti, T. Brigancz, K. Varga-Umbrich, I. Barna, M. Pocsai, A. Czitrovszky, P.Dombi, P. Rácz

Outline

- Introduction
 - Motivation, goals
 - Technique
 - Experimental arrangements
 - Construction of the Rb plasma cell
 - Ti:Sapphire laser
- Measurements
 - Laser ionization of Rb atoms
 - Ion detection
 - Laser plasma generation in Rb vapor
 - The plasma cell
 - Spectroscopic observations
 - Absorption (transmission) measurements with:
 - Fast photodetectors
 - Fast cameras
- Summary and further plans

Introduction

- Motivation, goals
 - Develop diagnostic methods for studying the plasma formation process by the fs laser pulse
 - Time-resolved measurements
 - Spatially resolved measurements
 - Investigate the ionization of Rubidium
 - Study the propagation of the laser through the medium
 - Work out methods for decreasing the intensity requirement : pre-excitation, chirped pulses

Introduction

- Ti:Sapphire laser (courtesy of SZFI-group)
 - Home-made oscillator
 - Coherent Legend Elite amplifier
 - Pulse energy 3.5-4 mJ (max)
 - Pulse length: 35-40 fs
 - Repetition rate: 1 kHz
 - Laser pulse shape

– Courtesy of: A. Czitrovszky, P. Dombi, P. Rácz, I Márton

Laser plasma & real-time diagnostics

Introduction

- Experimental arrangements
 - Ionization studies
 - Source: Rb-dispenser
 - Detection: ions with MCP
 - Extended Rubidium plasma studies
 - Source: Rb vapor cell
 - Detection: optical
- Construction of the Rb plasma cell
 - − Trade-off: spatially resolved observation → sacrificing homogeneity

Laser ionization of Rb atoms

 Source: Rb-dispenser wire
 Chemical compound of Rb

Specification

Activation current	4.5-
Max degassing temperature	500
Standard active lengths	12-1
Minimum bending radius	40 n

4.5-7.5 A 500°C 12-17-25-40 mm 40 mm

SAES

Alkali metal		Content (mg)			Start of evaporation (Amp)*		
		A= 12 mm	A= 17 mm	A= 25 mm	Average	Standard Deviation	
Caesium Potassium Sodium	Cs K Na	5.2 2.9 1.7	7.3 4.1 2.4	3 10.8 I 6.0 4 3.5	4.7 5.3 6.0	0.2 0.2 0.2	Standard Production
Rubidium Lithium	Rb Li	4.5 0.8	6.4 1.1	9.4 1.7	5.3 7.3	0.2 0.2	Only on Request

- Laser ionization of Rb atoms
 - Source: Rb-dispenser wire
 - Advantages:
 - Easy to use
 - Clean (apparently)
 - May be intense enough (emission of about 10^{18} atoms/min/cm)
 - Disadvantages:
 - Emission has a spatial distribution
 - Homogeneity???
 - Emission characteristics:
 - Measured by fluorescence
 - Transverse width about 1.8 mm

Laser ionization of Rb

Measurements

- Laser ionization of Rb atoms
 - Experimental setup

- Laser ionization of Rb atoms
 - Results: ionization dependence on laser intensity

- Laser plasma generation in Rb vapor
 - Experimental setup
 - Source: Rb vapor cell
 - Quartz or glass tube of 25 mm outer diameter
 - Length 25 and 75 cm
 - Temperature controlled oven
 - Longitudinal ionizing beam (Ti:Sapphire laser)
 - Observation in the transverse direction through windows at several longitudinal locations
 - Absorption (transmission) measurements with ECDLs (Toptica DL100, New Focus Velocity TLB-6721)
 - Optical measurements using fast photodetectors, photodetector array (APDCAM), image intensified CCD camera, fast spectrometer

Measurements

- Experimental setup

AWAKE Workshop at Wigner

Laser plasma & real-time diagnostics

08 April 2016

ЕГ

– The plasma cell

- Quartz: 25 cm long, (company-filled), AR-coated
- Glass: 75 cm long (home-filled)

– Oven

- Longitudinal heating wires
- Heat reflector steel tube
- Temperature measurement using PT100 resistance thermometers
- Observation windows

Courtesy A. Bendefy (BME)

AWAKE Workshop at Wigner

Measurements

- Oven temperature distribution

• Calculated by finite element method

Courtesy A. Bendefy (BME)

Temperature inhomogeneity: original design: several 10 degrees Improved construction with extra end heatings: few degrees (max 5-10)

Measurements

- Oven
 - Cell with heating wires

Cell inside the heat reflector tube, placed into the vacuum system

- Spectroscopic observations
 - Detection of the radiation of the plasma by a fast spectrograph (Andor Mechelle 5000)
 - High spectral resolution (0.05 nm accuracy)
 - High temporal resolution with intensified camera (~ ns) (Spectrograph courtesy of L. Kocsányi (BME), and help with the measurements R. Bolla (WRCP))

Picture of the plasma

Laser plasma & real-time diagnostics

- Spectroscopic observations

• Time dependence of the spectral emissions

- Absorption (transmission) measurements
 - Time resolved transmission signal detected with fast photodetectors (New Focus 1591NF): 4.5 GHz
 - Typical transmission signal:

Interpretation of the components of the signal:

- Very fast peak: AC Stark shift
- 10 ns decay: atomic relaxation
- Slow (1-10 microsec) decay: plasma relaxation
 Decrease of transmission is attributed to reflection on the boundaries of the plasma channel.

AWAKE Workshop at Wigner

Laser plasma & real-time diagnostics

 Dependence of the fast peak maxima on the laser frequency

Measurements

 Dependence of slow relaxation component on the laser frequency

Amplitude of the
slow relaxation
component follows
the spectral lines of
the atom:
refractive index is
dependent on the
frequency

 Measurements with an APD camera (Avalanche Photodiode Array) (Courtesy of S. Zoletnik, WRCP)

- 4x8 array of avalanche photodiodes (Hamamatsu S8550)
- Very high sensitivity
- Sampling rate 1 Msamples/sec at each channel

Distribution of the laser transmitted beam on the detector array

Measurements

Measurements with an APD camera
 Result: time-, and spatially dependent transmission signals

- Transmission dependence on the vertical position in the beam
- May indicate the refraction of the beam, correcponding to refractive index changes

Summary

- Optical diagnostic tools have been used for detecting the formation of the laser plasma
- Indirect indications of the plasma channel have been observed
- Dependence of the observed features on the temperature, density, laser intensity are under study

Further plans

 Installation of new Rb cells equipped with electrodes for measuring the changed particles directly

- Comparison of the optical observations with the detection of the plasma electrons
- Improve the temperature homogeneity with efficient additional heating the cell ends, and installing heatreflective windows at the side openings of the reflector tube
- New Ti:Sapphire laser with 25 mJ of pulse energy at 10 Hz

Thank you very much for your attention!

