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Abstract. Nonextensive statistical mechanics was proposed in 1988 onthe basis of the nonadditive entropy
Sq = k [1 −

∑

i pq
i ]/(q − 1) (q ∈ R) which generalizes that of Boltzmann-GibbsSBG = S1 = −k

∑

i pi ln pi . This
theory extends the applicability of standard statistical mechanics in order to also cover a wide class of anomalous
systems which violate usual requirements such as ergodicity. Along the last two decades, a variety of applications
have emerged in natural, artificial and social systems, including high energy phenomena. A brief review of the
latter will be presented here, emphasizing some open issues.

1 Introduction

Standard statistical mechanics is based on the Boltzmann-
Gibbs (BG) entropySBG = −k

∑W
i=1 pi ln pi (

∑W
i=1 pi =

1), whereW is the number of microscopic configurations
of the system. This extremely powerful theory — one of
the pillars of contemporary physics — has exhibited very
many successes along 140 years, in particular through its
celebrated distribution for thermal equilibriumpi ∝ e−βEi ,
Ei being the energy of the corresponding microstate. How-
ever, as any other human intellectual construct, it has a re-
stricted domain of validity. For nonlinear dynamical many-
body systems the usual requirement isergodicity, which
is guaranted by strong chaos (i.e., by apositivemaximal
Lyapunov exponent for classical systems). For nonergodic
systems (typically for systems whose maximal Lyapunov
exponentvanishes), which is quite frequently the case of
the so-called complex systems, there is no general reason
for legitimately using the BG theory. For (some of) such
anomalous systems, a generalization of the BG theory has
been proposed in 1988 [1]. It is frequently referred to as
nonextensive statistical mechanics[2–4] because the total
energy of such systems typically isnonextensive, i.e.,not
proportionalto the total number of elements of the system.
This generalized theory is based on the entropy

Sq = k
1−∑i pq

i

q− 1
(q ∈ R; S1 = SBG) (1)

It can be straightforwardly verified that, ifA and B are
two probabilistically independent systems (i.e., ifpA+B

i j =

pA
i pB

j ), then

Sq(A+ B)

k
=

Sq(A)

k
+

Sq(B)

k
+ (1− q)

Sq(A)

k

Sq(B)

k
, (2)
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which exhibits that, in contrast withSBG which is additive,
the entropySq is nonadditive forq , 1. This nonadditivity
will in fact enable it to beextensive(i.e., proportional to
the number of elements of the system) for various classes
of systems (see for instance [5,6]).

2 Connection to Thermodynamics

To generalize BG statistical mechanics for the canonical
ensemble (from [7]), we optimizeSq with the constraints

W
∑

i=1

pi = 1 (3)

and
W
∑

i=1

Pi Ei = Uq , (4)

where

Pi ≡
pq

i
∑W

j=1 pq
i

( W
∑

i=1

Pi = 1
)

(5)

is the so-calledescort distribution[8]. It follows that pi =
P1/q

i
∑W

j=1 P1/q
j

. There are various converging reasons for being

appropriate to impose the energy constraint with the{Pi}
instead of with the original{pi}. The full discussion of this
delicate point is beyond the present scope. However, some
of these intertwined reasons are explored in [2]. By im-
posing Eq. (4), we follow [7], which in turn reformulates
the results presented in [1,9]. The passage from one to the
other of the various existing formulations of the above op-
timization problem are discussed in detail in [7,10].

The entropy optimization yields, for the stationary state,

pi =
e
−βq(Ei−Uq)
q

Z̄q
, (6)
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with

βq ≡
β

∑W
j=1 pq

j

, (7)

and

Z̄q ≡
W
∑

i

e
−βq(Ei−Uq)
q , (8)

β being the Lagrange parameter associated with the con-
straint (4). Eq. (6) makes explicit that the probability dis-
tribution is, for fixedβq, invariant with regard to the arbi-
trary choice of the zero of energies. The stationary state
(or (meta)equilibrium) distribution (6) can be rewritten as
follows:

pi =
e
−β′qEi

q

Z′q
, (9)

with

Z′q ≡
W
∑

j=1

e
−β′qE j

q , (10)

and

β′q ≡
βq

1+ (1− q)βqUq
. (11)

The form (9) is particularly convenient for many appli-
cations where comparison with experimental or computa-
tional data is involved. Also, it makes clear thatpi asymp-
totically decays like 1/E1/(q−1)

i for q > 1, and has a cutoff
for q < 1, instead of the exponential decay withEi for
q = 1.

The connection to thermodynamics is established in
what follows. It can be proved that

1
T
=
∂Sq

∂Uq
, (12)

with T ≡ 1/(kβ). Also we prove, for the free energy,

Fq ≡ Uq − TSq = −
1
β

lnq Zq , (13)

where
lnq Zq = lnq Z̄q − βUq . (14)

This relation takes into account the trivial fact that, in con-
trast with what is usually done in BG statistics, the energies
{Ei} are here referred toUq in (6). It can also be proved

Uq = −
∂

∂β
lnq Zq , (15)

as well as relations such as

Cq ≡ T
∂Sq

∂T
=
∂Uq

∂T
= −T

∂2Fq

∂T2
. (16)

In fact, the entire Legendre transformation structure of ther-
modynamics isq-invariant, which is both remarkable and
welcome.

3 Applications

3.1 In diverse systems

The nonadditive entropySq and its associated nonetensive
statistical mechanics have been applied to a wide variety
of natural, artificial and social systems. Among others we
may mention (i) The velocity distribution of (cells of)Hy-
dra viridissimafollows aq = 3/2 probability distribution
function (PDF) [11]; (ii) The velocity distribution of (cells
of) Dictyostelium discoideumfollows aq = 5/3 PDF in the
vegetative state and aq = 2 PDF in the starved state [12];
(iii) The velocity distribution in defect turbulence [13];(iv)
The velocity distribution of cold atoms in a dissipative op-
tical lattice [14]; (v) The velocity distribution during silo
drainage [15,16]; (vi) The velocity distribution in a driven-
dissipative 2D dusty plasma, withq = 1.08 ± 0.01 and
q = 1.05± 0.01 at temperatures of 30000K and 61000K
respectively [17]; (vii) The spatial (Monte Carlo) distribu-
tions of a trapped136Ba+ ion cooled by various classical
buffer gases at 300K [18]; (viii) The distributions of price
returns and stock volumes at the stock exchange, as well as
the volatility smile [19–22]; (ix) Biological evolution [23];
(x) The distributions of returns in the Ehrenfest’s dog-flea
model [24,25]; (xi) The distributions of returns in the co-
herent noise model [26]; (xii) The distributions of returns
of the avalanche sizes in the self-organized critical Olami-
Feder-Christensen model, as well as in real earthquakes
[27]; (xiii) The distributions of angles in theHMF model
[28]; (xiv) Turbulence in electron plasma [29]; (xv) The
relaxation in various paradigmatic spin-glass substances
through neutron spin echo experiments [30]; (xvi) Various
properties directly related with the time dependence of the
width of the ozone layer around the Earth [31]; (xvii) Var-
ious properties for conservative and dissipative nonlinear
dynamical systems [32–41]; (xviii) The degree distribu-
tion of (asymptotically) scale-free networks [42,43]; (xix)
Tissue radiation response [44]; (xx) Overdamped motion
of interacting particles [45]; (xxi) Rotational population in
molecular spectra in plasmas [46]. The systematic study
of metastable or long-living states in long-range versions
of magnetic models such as the Ising [47] and Heisenberg
[48] ones, or in hydrogen-like atoms [49–51] might pro-
vide further illustrations.

3.2 In high energy physics

Connections of nonextensive statistics with a specific area
of solar physics, astrophysics, high energy physics, and
related areas, were pioneered by Quarati and collabora-
tors (see [52], among others), who advanced the possi-
bility of this theory being useful in the discussion of the
flux of solar neutrinos. A few years later, it was realized
that the transverse momenta distribution of the hadronic
jets resulting from electron-positron annihilation are well
described by distributions associated withq-exponentials
[53,54]: see Figs. 1 and 2. The energy distribution of cos-
mic rays has been satisfactorily fitted in [55,56] with dis-
tributions related toq-exponentials: see Fig. 3. The distri-
butions of returns of magnetic field fluctuations in the solar
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wind plasma as observed in data from Voyager 1 [57] and
from Voyager 2 [58] has provided the values associated
with the so calledq-triplet: see Figs. 4 e 5. Similar results
have been obtained in the study of interstellar turbulence
[59] (see Figs. 6 and 7), in X-ray-emitting binary systems
[60] (see Fig. 8), and in the distribution of stellar rotational
velocities in the Pleiades [61].

It is important to address here the fact that the distri-
bution of transverse momenta in high-energy collisions of
proton-proton, and heavy nuclei (e.g., Pb-Pb and Au-Au)
have received and are receiving great attention [62–68]: see
illustrative examples in Figs. 9-15. Several such data have
been summarized in [69]: see Fig. 16. We realize that for
such collisions the typical values ofq are usually close to
1.10, apparently never above say 1.20-1.25. It remains as
a challenging problem to precisely understand why (Is it a
hadronization of quark matter in a sort of metastable state
before attaining ergodicity?). In any case, it was shown in
[71] that QCD calculations andq-statistical calculations
can be consistent forq ≃ 1.1: see Fig. 17.
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