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Abstract. Nonextensive statistical mechanics was proposed in 198B@hasis of the nonadditive entropy
Sq = k[1 - X pf1/(a - 1) (g € R) which generalizes that of Boltzmann-Gib8ss = S; = -k Y pi In p;. This
theory extends the applicability of standard statisticathanics in order to also cover a wide class of anomalous
systems which violate usual requirements such as ergaditing the last two decades, a variety of applications
have emerged in natural, artificial and social systemsudiclf high energy phenomena. A brief review of the
latter will be presented here, emphasizing some open issues

1 Introduction which exhibits that, in contrast witBgg which is additive,

the entropyS, is nonadditive folg # 1. This nonadditivity
Standard statistical mechanics is based on the Boltzmannwill in fact enable it to beextensivgi.e., proportional to
Gibbs (BG) entropySee = -k, pilnpi (XY, pi = the number of elements of the system) for various classes
1), whereW is the number of microscopic configurations Of systems (see for instance [5, 6]).
of the system. This extremely powerful theory — one of
the pillars of contemporary physics — has exhibited very ] ]
many successes along 140 years, in particular through its2 Connection to Thermodynamics

celebrated distribution for thermal equilibriupn o« €75, . - : .
E; being the energy of the corresponding microstate. How- To generalize BG statistical mechanics for the canonical
' . ensemble (from [7]), we optimiz8q with the constraints

ever, as any other human intellectual construct, it has a re-
stricted domain of validity. For nonlinear dynamical many- w
body systems the usual requiremeneigodicity, which Z pi=1 (3)
is guaranted by strong chaos (i.e., by@sitivemaximal i1

Lyapunov exponent for classical systems). For nonergodic d

systems (typically for systems whose maximal Lyapunov w

exponentanishey which is quite frequently the case of Z P.Ei = Ug, (4)
the so-called complex systems, there is no general reason )

for legitimately using the BG theory. For (some of) such 100

anomalous systems, a generalization of the BG theory has P’ w
been proposed in 1988 [1]. It is frequently referred to as P, = W' 5 (Z P = 1) (5)
nonextensive statistical mechan[@s-4] because the total 2= B M
energy of such systems typicallymonextensivei.e.,not s the so-calleascort distributio{8]. It follows that p; =

proportionalto the total number of elements of the system.  pa . . .
This generalized theory is based on the entropy W - There are various converging reasons for being

af)pré)priate to impose the energy constraint with {fhé
1-%ip! e L instead of with the originglp;}. The full discussion of this
q-1 (@€ R S1 = Sec) @ delicate point is beyond the present scope. However, some
of these intertwined reasons are explored in [2]. By im-

It can be straightforwardly verified that, & and B are posing Eq. (4), we follow [7], which in turn reformulates

Sq=k

two probabilistically independent systems (i.e.p{l}f*B = the results presented in [1,9]. The passage from one to the
pAp?), then other of the various existing formulations of the above op-
! timization problem are discussed in detail in [7, 10].
Se(A+B)  Sq(A)  Sq(B) Sq4(A) Sq(B) The entropy optimization yields, for the stationary state,
K-k Tk T @ o(E-Ua)
eq q\=l q
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with 3 Applications
__B
Bq = Vot 7 3.1 In diverse systems
=1 Fj
and The nonadditive entrop8, and its associated nonetensive
oW statistical mechanics have been applied to a wide variety
Zy = Z eaﬁq(E"Uq), 8) of natural, artificial and social systems. Among others we
i

may mention (i) The velocity distribution of (cells df}y-

. . . dra viridissimafollows aqg = 3/2 probability distribution
B being the Lagrange parameter associated with the cony, o (PDF) [11]; (ii) The velocity distribution of (csl

straint (4). Eq. (6) makes explicit that the probability-dis of) Dictyostelium discoideufiollows aq = 5/3 PDF in the

tribution i§, for fixedsy, invariant With regard to.the arbi- vegetative state anda= 2 PDF in the starved state [12];
trary choice O.f.th? Zero of_energles. The stationary state(m) The velocity distribution in defect turbulence [13]y)
]Sglrléwselta)equmbnum) distribution (6) can be rewrittes a '_rhe velqcity distribution of colc_i ato.ms_in a dissipativelop—
' BiE tical lattice [14]; (v) The velocity distribution duringlei
©) drainage [15, 16]; (vi) The velocity distribution in a drive
dissipative 2D dusty plasma, witlhp = 1.08 + 0.01 and
_ g = 1.05+ 0.01 at temperatures of 30080and 6100K
with respectively [17]; (vii) The spatial (Monte Carlo) distuib
L tions of a trapped®®Ba* ion cooled by various classical
4= Z & (10) buffer gases at 30K [18]; (viii) The distributions of price
returns and stock volumes at the stock exchange, as well as
and the volatility smile [19-22]; (ix) Biological evolution {;
, (x) The distributions of returns in the Ehrenfest’'s dog-flea
By = rq)ﬂqu : (11) model [24,25]; (xi) The distributions of returns in the co-
herent noise model [26]; (xii) The distributions of returns
The form (9) is particularly convenient for many appli- of the avalanche sizes in the self-organized critical Olami
cations where comparison with experimental or computa- Feder-Christensen model, as well as in real earthquakes

tional data is involved. Also, it makes clear th@tasymp- [27]; (xiii) The distributions of angles in thelMF model
totically decays like 1Eil/(q_1) forq > 1, and has a cufd [28]; (xiv) Turbulence in electron plasma [29]; (xv) The
for g < 1, instead of the exponential decay with for relaxation in various paradigmatic spin-glass substances
g=1. through neutron spin echo experiments [30]; (xvi) Various
The connection to thermodynamics is established in properties directly related with the time dependence of the
what follows. It can be proved that width of the ozone layer around the Earth [31]; (xvii) Var-

ious properties for conservative and dissipative nonlinea
dynamical systems [32—-41]; (xviii) The degree distribu-
tion of (asymptotically) scale-free networks [42, 43]XXi
Tissue radiation response [44]; (xx) Overdamped motion
with T = 1/(kB). Also we prove, for the free energy, of interacting particles [45]; (xxi) Rotational populatiin
molecular spectra in plasmas [46]. The systematic study

1 8S,
= 12
T aUg’ (12)

B 1 of metastable or long-living states in long-range versions
Fq=Uq—TSg = B g Zq , (13) of magnetic models such as the Ising [47] and Heisenberg
[48] ones, or in hydrogen-like atoms [49-51] might pro-
where _ vide further illustrations.
INg Zq = INg Zq ~ fUq - (14)

This relation takes into account the trivial fact that, imeo 3.2 In high energy physics

trast with what is usually done in BG statistics, the enexgie ) ] o ] -

of solar physics, astrophysics, high energy physics, and

o related areas, were pioneered by Quarati and collabora-
Ug = 8 IngZq , (15)  tors (see [52], among others), who advanced the possi-
bility of this theory being useful in the discussion of the
as well as relations such as flux of solar neutrinos. A few years later, it was realized
that the transverse momenta distribution of the hadronic
0Sq  0Uyq 8°Fq jets resulting from electron-positron annihilation arellwe
Cq= o9T ~ ar ~ T2 (16) described by distributions associated wigexponentials

[53,54]: see Figs. 1 and 2. The energy distribution of cos-
In fact, the entire Legendre transformation structure efth  mic rays has been satisfactorily fitted in [55,56] with dis-
modynamics igJ-invariant, which is both remarkable and tributions related t@-exponentials: see Fig. 3. The distri-
welcome. butions of returns of magnetic field fluctuations in the solar



Hot and Cold Baryonic Matter — HCBM 2010

wind plasma as observed in data from Voyager 1 [57] and
from Voyager 2 [58] has provided the values associated
with the so calledy-triplet: see Figs. 4 e 5. Similar results
have been obtained in the study of interstellar turbulence
[59] (see Figs. 6 and 7), in X-ray-emitting binary systems
[60] (see Fig. 8), and in the distribution of stellar rotaiib
velocities in the Pleiades [61].

It is important to address here the fact that the distri-
bution of transverse momenta in high-energy collisions of
proton-proton, and heavy nuclei (e.g., Pb-Pb and Au-Au)
have received and are receiving great attention [62—68]: se
illustrative examples in Figs. 9-15. Several such data have
been summarized in [69]: see Fig. 16. We realize that for
such collisions the typical values gfare usually close to
1.10, apparently never above say 1.20-1.25. It remains as
a challenging problem to precisely understand why (Is it a
hadronization of quark matter in a sort of metastable state
before attaining ergodicity?). In any case, it was shown in
[71] that QCD calculations and-statistical calculations
can be consistent far~ 1.1: see Fig. 17.
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