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Abstract. In this talk I discuss three recent developments in the theoretical understanding of the phase diagram
of the strong interaction. The first topic deals with the comparison of model calculations of the quark-hadron
transition at vanishing quark chemical potential with state-of-the-art lattice QCD results. In the second relates to
the size of a possible ’quarkyonic phase’. The third deals with the occurence of inhomogeneous chiral phases.

1 Introduction

Exploring the chiral and deconfining properties of strong-
interaction matter at high temperatures and large densities
is one of the central themes in nuclear- and astrophysics
[1,2]. The general phase structure and, in particular, the
possible existence of a (chiral) critical endpoint (CEP) for
finite net baryon number density and its consequences for
the phase structure of QCD at lower temperatures are much
under debate. High-energy heavy-ion collision experiments
at RHIC and the SPS have started to look for experimental
evidence of the CEP and experiments at future heavy-ion
facilities (FAIR and NICA), have been designed to probe
the relevant high-density region in the QCD phase dia-
gram.

Gaining insight into the properties of QCD matter at
non-vanishing quark chemical potential (u) is thus of great
interest. However, the relevant region of the phase diagram
is not easy to access directly in QCD. At non-zero values
of u the notorious fermion sign problem prohibits straight-
forward lattice QCD simulations. Thus one currently re-
sorts to models that capture some of the essential features
of QCD, such as the basic symmetries and their break-
ing patterns. Although limited in their predictive power,
such models, nontheless, give valuable insight into various
physical effects governing the phase structure, in particu-
lar the existence of a chiral CEP, a confined but chirally
restored phase at low temperatures (’quarkyonic matter’)
and/or the occurence of inhomogeneous chiral phases.

Model predictions for the equation of state (EoS) of
QCD matter can be compared with lattice simulations at
vanishing p. Due to large lattice sizes, small quark masses
and algorithmic improvements, the latter have become very
accurate recently. Such comparisons will be discussed in
Sect. 2. Based on large N, arguments for the 7- and u-
dependence of the pressure, a ’quarkyonic’ phase has been
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conjectured at low 7' and large u. In this phase, quarks and
gluons are still confined in hadrons (mostly baryons) but
chiral symmetry is restored, leading to parity degeneracy
in the excitation spectrum. There has been much debate
recently about the size and the detailed structure of this
phase. Theoretical arguments and empirical constraints will
be discussed in Sect. 3. An exciting possibility is the oc-
curence of inhomogeneous chiral phases at low 7" and large
M, possibly entangled with inhomogeneous color supercon-
ducting phases. Inhomogeneous phases are predicted in
1 + 1 dimensional models of QCD in the large N limit and
their three dimensional analogue could shed light on the
nature of the quarkyonic phase. Recent results and prelim-
inary conclusions will be discussed in Sect. 4.

2 The Quark-Hadron Transition at small u

I begin with the behavior of strong-interaction matter at
very small u and large T, as it is encountered in the early
universe. Modern models such as the PNJL or the PQM
model incorporate (approximate) chiral symmerty and its
spontaneous breaking in the vacuum, the axial U,(1) ano-
maly and the heavy quark limit in terms of the temporal
Polyakov loop.

2.1 The Polyakov Quark Meson Model

As an example I will discuss the EoS predictions of the
PQM model (the results of the PNJL model are very simi-
lar). The 3-flavor PQM model is basically the linear sigma
model with up, down and strange quarks coupled the flavor
octet of scalar and pseudoscalar meson fields o, and 7,:

A
Loars = (i0- G2 (0 + ivsm0) 1)
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and the mesonic Lagrangian given by

Lyeson = Tr(@@,MT* M) — m®*Te(M™ M) + Tr[H(M + M")]
— 4 [Te(MTM)? = LTe(MTM)? + ¢ (det(M) + det(M"‘))
2

where
S 0, s ing 1= Y
M = 4 E(O'a-l-lﬂa),H— . ?ha. (3)

The term involving the determinant of M and M' incor-
porates the axial anomaly. This is supplemented by the
Polyakov loop expectation value

1 B
t=—TrPexp [zf dt As(x, T)] 4)
Nc 0

and the covariant derivative of the temporal gauge field
A4(x,T) as well as a potential term such that

Lot = =GysAag — UL, D) . (%)
The total PQM Lagrangian then reads
LPQM = Lquark + Lieson + Lpol . (6)

Using the mean-field approximation, the parameters are
adjusted to the vacuum meson masses and their weak de-
cay constants. The Polyakov potential T{(¢, £), on the other
hand, is determined from a fit to the pure gauge lattice EoS.
There are various choices for U in the literature such as a
polynomial in ¢ and £ based on Landau-Ginzburg theory
[3], a logarithmic ansatz motivated by the Haar measure
of the SU(3) color gauge group [4] or a choice derived
from the strong-coupling expansion of QCD, proposed by
K. Fukushima [5].

2.2 Mean-Field Results

At finite T and u one evaluates the mean-field grand poten-
tial as

QT ;01,04 6,0) = U (04, 0)+824 (0',, s, L, Z)+’Ll (5, Z)
(7

where U (0, 0) denotes the effective meson potential in

terms of the light quark condensate o; = (II) and the strange

quark condensate oy = (5§s). The fermionic part Qg, in-

volves both quark condensates and the Polyakov loop ex-

pectation value and is given by

3

d
9@=4MTIQ&HMGmeﬁRwN(&

with

g(T,p) = [1 + 30~ ErIT 4 3P=2E=mIT 4 e—3<E,,—u>/T]
©))

where E, = /p?+ M} denotes the quark quasi-particle

energy with constituent mass M,. Eq. 9 shows that in the
hadronic phase single- diquark contibutions are suppressed,
since in the confined region both £ and £ vanish. Finally the
phase diagram is determined via the stationarity condition:

0Q 90 9 09
do;  doy Ot ot

=0. (10)
In Fig. 1 predictions of a PQM mean field calculation [6]
are compared with recent lattice data of the HOTQCD and
the WB colaborations [7,8]. While the general agreement
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Fig. 1. The normalized quark condensate 4, (upper part) and
the Polyakov loop expectation value (lower part) as a function of
T/T, at vanishing u. Here T, denotes the (pseudo)critical chiral
transition temperature. The lattice data are taken from Ref. [7,8]

is quite good, the quark-hadron transition is predicted to
be sharper than in the lattice simulations (especially for
physical bare quark masses [8]). The same also holds for
the pressure and other bulk thermodynamic quantities. We
will return to this point in the next section.

2.3 Including Fluctuations

The relative sharpness of the quark-hadron transition in
mean-field theory can be understood as an effect of the
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omission of quantum fluctuations. These can be included
most efficiently in the functional renormalization group ap-
proach (FRG). The FRG is based on an infrared regulariza-
tion of the grand potential, which then becomes a momen-
tum scale dependent quantity ©Q; with a scale parameter
k. The full potential, including all quantum fluctuations is
obtained in the limit k — 0, i.e.

T, ) = im QT p) - (11)

The momentum flow equations for the QM model have
been derived in [9] and extended to include the Polaykov
loop effects as a background field in [10]. The resulting
flow equations for Ny = 2 read

4

k 3 1
0= 155 [E_,,(l + 2np(Ey)) + E_g(l +2np(Ey))

NNy

(1= ng(£, D) = ng(t. Z))] . (12)

Here np are the bosonic distribution functions with the pion
and sigma energy

E2=1+2Q, /K% E2=1+2Q,/k* +4¢*Q//k* (13)

where the prime denotes a functional derivative with re-
spect to the chiral condensate ¢ = (o), i.e.

Q, = 09,/0¢ etc ¢={(c) . (14)

The explicit form of the fermionic distribution functions in
the Polyakov loop background field n,(¢, £) and ng(¢, £) are
given in [10] and involve the quark quasi-particle energy

E; =1+G¢* /K (15)

In the absence of the background gluon field they reduce
to the Fermi-Dirac distribution for constituent quarks, i.e.
expression (12) coincides with that in [9]. As can be seen
from Fig. 2 the pure mean-field transition (left part) is sig-
nifically softened when fluctuations are included via the
FRG.
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Fig. 2. A comparison between mean-field results of the Ny = 2
PQM model (left part) and those from the FRG (right part) for
the chiral condensate (red and blue lines) and the Polyakov-loop
expectation value (full lines) [10]. The curves marked in blue dis-
play pure QM results.

This softening can be understood physically by consider-
ing the next-to-leading-order 1/N,-corrections to the mean

field result for Q [11], i.e.
Q=Qur+6Q. (16)

Diagrammatically this amounts to a summation of all ring
diagrams (Fig. 3) and represent mesonic contributions to

Fig. 3. Next-to-leading-order 1/N,-corrections to the thermody-
namic potential in the (P)NJL model. The wiggly lines denote the
four-quark contact interaction of the model. These ring diagrams
can be summed to all orders.

Q in leading order:

6Q = Z Qy . (17)
M

In imaginary time ,, is represented by a Matsubara sum
involving the mesonic polarization function 7,

_ &g T

Oy = | —L =
M Q)3 2

Z In(1 - 2GIy(iw,q)  (18)

which can be Wick-rotated and leads to
d3q

Q== ] Gy

< dw

[ Zaszmeion a9
0 T

where np is the finite temperature bosonic occupation prob-

ability and ¢, can be interpreted as an ’in-medium’ phase

shift in the Beth-Uhlenbeck sense. Explicitly one has

1 1-2GHy(w-in,q)

-1 .
v = M e T i

(20)

The resulting mesonic contributions to the pressure in the
three-flavor PNJL model are displayed in Fig. 4 [12]. As
mentioned above, the thermal quark- and diquark excita-
tions are supressed by the Polyakov loop in the confined
phase and the pressure comes entirely from mesons, as it
should be. Up to temperatures of about 150 MeV it agrees
well with the model-independent results from chiral per-
turbation theory [13]. When quarks and gluons take over
above 200 MeV, the mesonic contributions become sup-
pressed, since the meson masses grow rapidly, reaching
the thermal value of 22T around 300 MeV. Hence they
become strongly Boltzmann-supressed and the *"Hagedorn
singularity’ is avoided.

Now is is easy to see why the chiral quark-hadron tran-
sition is softened when including fluctuations beyond the
mean field. The chiral condensate is given by the derivative
of the pressure (or ) with respect to the bare quark mass:
(gq) = 0L2/0m,. Hence in the confined phase

0092 0Qy oM

(Gg) = — =

= 21
om, m oM dom, D
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Fig. 4. Various contributions to the normalized pressure P/T* in
the three-flavor PNJL model [12]. The dashed-dotted line indi-
cates the mean-field result, while the dashed line displays the
purely mesonic contributions (mostly pions). Up to temperatures
of ~ 150 MeV these agree well with the results from chiral per-
turbation theory [13] (dotted line).

which is non-vanishing. Since the Polyakov loop dynami-
cally couples to the quaks its softening can be understood
by the same token.

3 ’Quarkyonic’ Phase at low 7" and large u?

Based on large-N, QCD it has been argued that there should
exist a phase of strong-interaction matter in which the chi-
ral and the deconfined transition split apart, since the de-
confinement transition temperature becomes independent
of the quark chemical potential [14]. Within a narrow win-
dow in y with a width of the order of ~ 1/N? there should
then be a rapid transition to a dense phase of confined
hadrons (mostly baryons at low T') in which chiral sym-
metry is restored leading to parity doubled color singlet
excitations. Schematically this leads to the following phase
diagram:

De-Confined

Mesonic Quarkyonic

Mp HB

Fig. 5. Sketch of the large-N. QCD phase diagram as it emerges
from the arguments of Ref. [14]. All phase boundaries are of first
order with a ’triple point’ where all first order lines meet. As a
function of up the transition happens at the vacuum baryon mass
M B~ NCAQCD-

Within a PNJL model for N, — oo and a fixed number
of flavors this picture can be reproduced in the mean-field
aproximation [15]. At N, = 3 the situation changes, how-
ever. Fig. 6 showns a PQM calculation of the phase dia-
gram for three colors and three flavors [6]. In the physical
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Fig. 6. Mean-field results for the phase diagram in the Ny = 3
PQM model [6]. The deconfinement boundary is determined by
the inflection point in the Polyakov-loop expectation value €.

word the (pseudo)critical transition lines curve downwards
with increasing u and the triple point evolves into the CEP.
As one can see, there is a large region in which there still is
confinement (in the statistical sence) but chiral symmetry
is restored which thus qualifies as the quarkyonic phase.
The size of this phase, however, crucially depends on the
Polyakov-loop dynamics.

Let us consider the polynomial ansatz for the Polyakov-
loop potential for example

ULD _ by(T)
T 2

0 - % (¢+2)+ ll’—g ()

with
by(T) = ag + a\(To/T) + ax(To/T)* + as(To/T)’ . (23)

Originally the parmeter Ty was adjusted to the first-order
deconfinement transition temperature of 7 = 270 MeV in
’pure gauge’ theory, i.e. without dynamical quarks. This,
however, does not take into account that with dynamical
quarks Ty acquires a Ny- and u dependence. Based on the
one-loop running of the QCD S-function this dependence
has been estimated in Ref. [16] as

To(Np, 1) = Teexp (= 1/aob(Np ) (24)
with
1 16Nf ,uz
bNpp) = (1IN =2Np) = —= 05 (25)

where ayp = a(A) is the running gauge coupling at some
UV-scale and T, = 1.777 GeV is fixed at the scale of the
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T-meson to reproduce Ty = 270 MeV at Ny = 0 with the
corresponding value @y = 0.304.

At ¢ = 0 this leads to the Polyakov-loop Ty given in
Tab. 1. Of importance for the size of the quarkyonic phase
is the u-dependence of Ty. When using the estimate in Eq.

Ny || o | 1| 2 |2+1] 3
Ty [MeV]|| 270 | 240 | 208 | 187 | 178

Table 1. T and u dependence of T\ [16].

(24) one obtains in a PQM calculation instead of Fig. 6 the
result displayed in the upper part of Fig. 7. The region of
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Fig. 7. Upper part: mean-field results for the phase diagram in the
N; = 3 PQM model [6] with T(Ny, u). Lower part: FRG result
for the Ny = 2 PQM model [17] .

the quarkyonic phase has considerably shrunk. This situa-
tion is even more dramatic if, instead of a mean-field calcu-
lation, one includes quantum fluctuations via the FRG [17]
(lower part of Fig. 7). In this case the chiral and the de-
confinement transition essentially coincide and hence the
region of quarkyonic matter has collapsed to nearly zero.
There is a more heuristic argument, why the boundaries
for the chiral- and deconfinement transitions cannot be to
far appart [18]. This is based on the statistical model of a
hadron resonance gas which is extremely successful in de-
scribing the chemical freeze out of hadrons in relativistic

heavy-ion collisions over a very wide range of beam ener-
gies[1]. The thermodynamics of the resonance gas is that
of a free gas and therefore the EoS can be straightforwardly
evaluated. Results for the entropy density s and the baryon
number density n, normalized to the free quark-gluon gas
values are displayed in the upper part of Fig. 8.
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Fig. 8. Upper part: The normalized entropy- and baryon number
density of the hadron resonance gas as a function of 7 and i [18].
The red and blue bands indicate the regions, where both quanti-
ties increase from 0.3-0.8. The chemical freeze-out data are taken
from [19,20]. Lower part: boundaries of the regions in which the
chiral condensate and the Polyakov loop change between 0.4 and
0.6.

The idea is now to take the ¢ dependence of the Ty param-
eter in the Polyakov-loop potential U directly from the u
dependence of the empirical freeze-out line. With

To()/To(0) = 1 = (bTo)(up/To) (26)

and fixing T at 200 MeV this yields bTy = 2.78 x 1072
MeV, in quite good agreement with the estimates of Ref.
[16] which give Ty = 187 MeV and bT = 2.1 x 1072 MeV.
The mean-field PNJL calculation with this parametrization
of Ty(w) reproduces the entropy- and number density val-
ues of the resoncance gas, shown in the upper part of Fig.
8, very well. The T and p dependence of the chiral con-
densate and the Polyakov loop can then be inferred from
the calculation. The results are shown in the lower part of
Fig. 8 and again indicate that the chiral- and deconfinement
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transition line are close in the whole (7', u)-plane, leaving
little room for a quarkyonic phase.

4 Inhomogeneous Phases of QCD Matter

In the conventional picture which emerges from model cal-
culations of the PNJL or PQM type, the chiral transition in
the (T, p)-plane is a smooth cross over at low u and large
T (see Sect. 2). It becomes a first-order phase transition at
large u and small 7" from the chirally broken to the chirally
restored phase. Usually it is assumed that both phases are
homogeneous. From studies of 1+1 dimensional fermionic
theories, such as the Gross-Neuveu, the NJL or the t’Hooft
model it is known analytically that in some regions of the
(T, p)-plane, inhomogeneous phases are preferred in the
N — oo limit [21]. When applying these results in a Ginz-
burg-Landau analysis near the CEP (which is a second-
order phase transition) it is found that the homogeneous
phase in three space dimensions is unstable against one-
dimensional spatial oscillations of the chiral order param-
eter [22].

4.1 Phase diagram in 1+1 dimensional theories

Let us consider the Gross-Neveu (GN) model with N de-
grees of freedom as an example. With strong-interaction
physics it shares some essential features, such as asmp-
totic freedom, dimensional transmutation and spontaneous
chiral symmetry breaking in the vacuum. The GN model is
specified by the following Lagrangian:

N N 2

2
Loy = 0% p-moyy? + % [Z WW} (27)

i=1 i=1

where  is an N-component fermion field, g the coupling
constant of the four-fermion interaction and m the bare
fermion mass. The model posesses a global U(N) symme-
try and a Z, chiral symmerty:

Yo ysy. Uy o =g (28)

As usual, mean field theory becomes exact in the N —
oo, N g2 = const limit and the resulting self-consistent Har-
tree equations for given 7 and u read:

(=750 + Y M@)o = €t

M =my=-Ng* > nothatle - 29)
Here n,(T, pt) denote the Fermi-Dirac occupation probabil-
ities. The mean-field equations can be solved analytically

with the z-dependent (constituent) mass function given by
an elliptic Jakobi-sn function in the chiral limit, my = 0:

M(z) = \vgsn(gzl) . (30)

The elliptic modulus v varies continuously between zero
and one and q is a scale, related to the maximum of M(z).

For v = 1 one has M(z) = gtanh(gx), i.e. a single soli-
ton and for v — 0 the shape becomes more and more si-
nusoidal, albeit the amplitude also goes to zero. Thus the
sn-function interpolates smoothly between soliton-like and
sinusoidal shapes.

The actual values for given 7 and u are determined
from the minimization of the grand potential

A
QT ) = =T Trlog (S7)) + fdz M)? (31)
0

2Ng2a
where S is the fermion propagator in the Hartree approx-
imation and A the period of the spatial modulation. The
resulting phase diagram in the chiral limit is shown in in
the upper part of Fig. 9. Raising T for 4 < 2/ one en-

79,
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Fig. 9. Upper part: phase diagram of the exactly solvable 1 + 1
dimensional Gross-Neveu model in the large-N limit [21]. A spa-
tially ordered phase occurs for small temperatures and u > 2/m.
The phase boundaries deliniate second-order transitions which
meet at a tricritical point, the *Lifschitz’ point. Lower part: evolu-
tion of the spatial modulations of the mass function M(z) as one
moves along a line of constant (small) 7. While at smaller u the
modulation is solitonic it becomes increasingly sinusoidal with
increasing u.

counters a line of second order transitions from the chi-
rally broken, M # 0, to the chirally restored phase, M = 0,
both of them spatially homogeneous. Cutting through the
phase diagram at small constant 7', one enters a region of
inhomogeneous phases through a second-order transition,
where the spatial modulation go from soliton-like to sinu-
soidal as u increases (lower part of Fig. 9). At large enough
u and moderate T one again enters the homogeneous chi-
rally restored phase through a second order transition. All
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lines of second order transitions meet in a tricritical point,
which is commonly referred to as the ’Lifschitz’ point.

4.2 Inhomogeneous phases in the NJL model

As mentioned above, QCD-inspired models of the NJL or
QM type are currently used to asses details of the phase
diagram at large chemical potentials, where ab-initio lat-
tice methods fail. It is therefore interesting to ask whether
spatially inhomogeneous regions also occur in three spatial
dimensions and what their properties are. This question has
been addressed recently for 1D modulations of the chiral
order parameter in 3D space (plates) [23].

The starting point of the analysis is the two-flavor NJL
model with scalar coupling:

Ly =a(i0-my)a + Gy (@ + (@r'ea) ) . 32

Considering phases with a spatially varying expectation
values (Gg(x)) = S(x) and (iy’19g(x)) = Pu(x) and re-
stricitng to the case where the direction of the vector P,(x)
is constant in flavor space such that Pi(x) = P>(x) = 0
and P3(x) = P(x), the following mean-field Lagragian is
obtained:

£3,,%) = g (i - mg +2G, (SX) + iy’ 13P(%)))
-G, (S + Px)?) . (33)
In terms of the (complex) mass function
M(x) = my —2G, (S (x) + iP(x)) (34)

the mean-field grand potential for 1D modulations can be
evaluated straightforwardly and one obtains

AT.p) =
2T d*p. aJ1+p*/a?—u
- — Z ——In|2cosh
\% ~ ,,L(27r)2 2T
IM(x) — my|?
—_— (35)
v 4G,V

where V is the volume of the Wigner-Seitz cell of the peri-
odic condensate. Here it is assumed that the inhomogene-
ity is in the z-direction and the perpendicular (x, y)-plane is
translationally invariant. The discrete parameter « involves
the Eigenvalues of the mean-field Hamiltonian in the z-
direction which can be obtained analytically for the case
in which M(x) is real'. It can be argued that a real order
parameter is thermodynamically preferred, at least in the
vicinity of a second-order transition and in the chiral limit
[22].

As can be seen from Fig. 10 the homogeneous first-
order chiral transition is completely covered by an inhomo-
geneous region, bounded by second-order transition lines.

' A complex mass function M(x) leads to so-called ’chiral spi-
rals’ for sinusoidal modulations [25]

As one goes away from the chiral limit (lower part of Fig.
10) the Lifschitz point moves to higher ¢ and lower T and
the inhomogeneous region shrinks?. The phase diagram in
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Fig. 10. Upper part: phase diagram of the N; = 2 NJL model
in the chiral limit [23]. The shaded area denotes the region of 1D
plates in the z-direction. The (tricritical) CEP of the homogeneous
phases coincides with the Lifschitz point. The dashed lines denote
the spinodal lines of the homogeneous phases. Lower part: same
as the upper part, but now including finite bare quark masses of
my =5 MeV and 10 MeV [23].

the 3+1 dimensional NJL model looks very similar to the
1+1 case of the GN model, except that the inhomogeneous
region does not extent to large u. This may be due to cut-
off effects [24]. While the 1+1 dimensional GN model is
renormalizable, this is not the case for the NJL model in
three dimensions. Here the loop intergrals have to regular-
ized and the ultraviolet cut-off enters as an explicit param-
eter into the calculation.

4.3 Including Vector Interactions

It is well known that extended (P)NJL models which in-
clude vector interactions lead to substantial modifications
of the location of the CEP in the phase diargram. For suffi-
ciently large vector-interaction strength, the CEP even dis-
appears and the chiral transition becomes a cross over in
the whole (7', u) plane. In view of the above discussion is

2 The same conclusions also hold in the QM model [23].
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therefore important to ask, how spatial inhomogeneities of
the chiral order parameter influence these findings.

Including vector interactions the Ny = 2 NJL Lagran-
gian reads

Ly = (ip-my) g+G, ((éq)2 + (i’ T“q)z)—Gv(é)'”q)2 :

(36)
Varying Gy strongly affects the location of the CEP when
only homogeneous phases are considered (upper part of
Fig. 11).
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Fig. 11. Upper part: The homogeneous phase diagram including
vector interactions of increasing strength (left to right). At suffi-

ciently large coupling the CEP disappears. Lower part: same but
allowing for 1D inhomogeneities [29].

One-dimensional spatial inhomogeneities can be treat-
ed in a similar way as for the NJL model with scalar inter-
action only. An additional complication arises, however,
from the fact that the vector interaction couples to the den-
sity which is also spatially modulated, i.e. n = <Z]y0q> =
n(x). Via the renormalized quark chemical potential

A(X) = 1~ 2Gyn(x) (37)

this also induces a spatially varying chemical potential.
This complicates the minimization of the grand potential
considerably. In order to take advantage of the fact that,
for 1D modulations, the partition sum of the NJL model
without vector interaction can be performed analytically
for states in the z-direction, one has to replace density by
its spatial average

n(x) — n = (n(x)) = const. (38)

which is only approximate, but can be justified rigourously
in the vicinity of a second-order boundary to the restored
phase and in particular near the Lifschitz point [29]. As a
consequence i becomes constant as well and the problem
reduces to the case discussed in the previous Sect., albeit
with shifted chemical potential &i. Another interesting con-
sequence of non-vanishing Gy is that the CEP and Lifs-
chitz point no longer coincide. As shown in the lower part
of Fig. 11, increasing Gy leads to two effects: (1) the CEP
moves deeper into the inhomogeneous region and even-
tually dissappears, (2) the inhomogeneous region grows .
The latter is largely a trivial effect of the shifted chemical
potential. Plotting the phase diagram in terms of the aver-
age density, instead of fi, the transition lines do not depend
on Gy at all. It is remarkable that, although the CEP is
strongly effected by the vector interaction, the location of
the Lifschitz point is not (except for a more or less triv-
ial u-dependence). This speaks for the 'robustness’ of the
inhomoneneous region.

The influence of gluonic degrees of freedom on the oc-
curence of spatially modulated phases via the coupling to
the Polyakov loop has also been considered in Ref. [29].
Preliminary results indicate that the general picture remains
unchanged.

It has long been known that 1D long-range order is
thermodynamically unstable [26,27]. In the context of pion-
condensed phases this has been reiterated by Baym et al.
[28]. The occurence of 1D order is a mean-field or large-N
artefact and any finite temperature destroys the long-range
order. There remains however the possibilty of a quasi-
ordered one-dimensional phase, with long-range correla-
tions decaying algebraically in space [28]. In any case,
two- and three-dimensional structures will be stable and
it is worth exploring them [30].

5 Conlusions and Outlook

Much progress has been made in recent years in the theo-
retical exploration of the phase diagram of hadronic mat-
ter. Largely based on calculations in QCD-inspired mod-
els a rich structure has emerged, especially at large chemi-
cal potentials and low temperatures. With the help of FRG
methods is has become possible the include fluctuations
on top of the mean-field results [9,10,17]. These are able
to properly describe the critical exponents at the CEP [9],
lead to a small critical region around the CEP and result in
a softening of chiral and deconfinement transition as com-
pared to mean-field predictions at small y. The latter find-
ing is consistent with state-of-the-art lattice simulations of
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the quark-hadron transition at vanishing u and has a sim-
ple physical interpretation in terms of meson fluctuations
below the pseudo-critical temperature [12].

An interesting question that has caught much attention
recently is the existence of a quarkyonic phase which is
confining but chirally restored. The arguments for such a
phase are based on a large N, analysis of the pressure at
finite 7 and u. For N. = 3 there are substantial modifica-
tions and it is not clear in what form the large-N, picture
survives. Mean-field PNL and PQM calculations indicate
that there is a region in the phase diagram in which quarky-
onic matter could exist. The size of this region crucially
depends of the parameters of the Polyakov-loop potential,
in particular the u-dependence of Tj. Present FRG calcu-
lations indicate that the deconfinement and chiral transi-
tion lines in the (7, ) plane almost coincide [17], leav-
ing little room for a quarkyonic matter state. These find-
ings are corroborated by a heuristic analysis based on the
resonance-gas EoS and the experimental location of the
chemical freeze-out points in the phase diagram [18].

An exciting new possibility is the occurence of spa-
tial modulations of the chiral order parameter, leading to a
ordered density profile. Exact 141 dimensional results for
QCD-like models in the large-N, limit can be taken over to
three space dimensions in the PNJL and the PQM model
[23] and lead to plate-like structures. The inhomogeneous
phases are bounded by second-order transition lines and
lead to a Lifschitz point in the chirial limit. Without vector
interactions, the Lifschitz point coincides with the CEP but
both drift appart with increasing vector coupling [29]. One
can even achieve scenarios in which the CEP dissapears
while the inhomogeneous phase region remains. It is very
robust and its size is unaffected when considering the aver-
age quark-number density rather that y. One-dimensional
phase are thermodynamically unstable although quasi one-
dimensional structures ar still possible. Two- and three di-
mensional spacial ordering is likely to occur and should be
studied [30]. It is well established theoretically that such
phases are posible near the crust-liquid interface in a neu-
tron star and it would be very exciting if they would also
show up in the quark-hadron transition in its inner core.
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