Multi-particle interactions within UrQMD

Gerhard Burau

HCBM 2010 Budapest - August 19, 2010

Thanks to Gunnar Gräf, Hannah Petersen, Marcus Bleicher

- UrQMD in a nutshell
- Why multi-particle interactions?
- Realization via parton rearrangement concept + criterions + processes + checks
- Consequences for the reaction dynamics (preliminary results)
- Summary & Outlook

UrQMD in a nutshell

Ultrarelativistic Quantum Molecular Dynamics

[H. Petersen et al., arXiv:0805.0567v1 (2008)]

- Non-equilibrium transport approach
- All hadrons & resonances up to 2.2 GeV
- String excitation & fragmentation
- Cross sections fitted to available data, parametrized via AQM or calculated by detailed balance
- Generates full space-time dynamics of hadrons & strings
- Interactions via $2 \rightarrow n$ and $1 \rightarrow n$ processes (!!)

Why multi-particle interactions ?

High particle densities !

Why multi-particle interactions ?

- Three-particle interactions gain importance in the high density region of collisions
- 3 → n processes work towards detailed balance
- Faster thermal & chemical equilibration due to additional interactions ?
- Elliptic flow, anti-hyperon enhancement,

[P. Danielewicz, PRC 42, 1564 (1990)]
[H.W. Barz, B. Kämpfer, NPA 683, 594 (2001)]
[C. Greiner, S. Leupold, JPG 27, L95 (2001)]
[W. Cassing, NPA 700, 618 (2002)]
[Z. Xu, C. Greiner, PRC 71, 064901 (2005)]
[A.B. Larionov et al., PRC 76, 044909 (2007)]

• 3 \rightarrow n processes (n \leq 3) introduced via parton rearrangement

Realization via quark rearrangement

high density

quark rearrangement

low density

Three nearby hadrons can exchange their quarks
Pre-formed hadrons participate in this process

[J. Bleibel, GB, A. Fässler, C. Fuchs, PRC 76, 024912 (2007)] [J. Bleibel, GB, C. Fuchs, PLB 659, 520 (2008)]

Criterion for quark rearrangement

- Rearrangement distance $\Delta x \leq 0.85$ fm
- Momentum criterion via uncertainty principle $\Delta x \Delta p \ge 1$

Rearrangement processes

 All processes conserving the quantum numbers are allowed (electric charge, baryon number,)

One of the allowed quark configurations is randomly chosen

Rearrangement processes

 All processes conserving the quantum numbers are allowed (electric charge, baryon number,)

One of the allowed quark configurations is randomly chosen

ightarrow Additional 3-particle reactions at high density:

 $3 \rightarrow 3$

recombination

 $3 \rightarrow 2$

meson fusion

 $\begin{array}{c} (A) & (C) \\ (A) & (C) \\ (B) \\ (B) \\ (B) \end{array} \end{array} \longrightarrow \begin{array}{c} (A) & (C) \\ (A) & (C) \\ (B) \\ (B) \\ (B) \end{array} \end{array}$

quark annihilation

Rescaling of momenta

 Energy and momentum conservation due to momentum rescaling

 Rescaling with one overall factor for all momenta in the process

$$C_{scale} = \frac{\sqrt{s^2 + \left(m_1^2 + m_2^2\right)^2 - 4m_1^2 m_2^2 - 2s\left(m_1^2 + m_2^2\right)}}{2\sqrt{s} p_{1,2}}$$

(for two outgoing particles)

Check: Energy dependence I

Rearrangement becomes dominant for higher energies

Check: Energy dependence II

Check: Temporal development

Check: Density dependence

Rearrangement happens mostly in regions of high densities

Consequences for

100

Consequences (outlook) for

• Kinetic equilibration faster with rearrangement

[J. Bleibel et al., PRC 76, 024912 (2007)]

Elliptic flow ν₂ (η)
 improved with rearrangement

Summary & Outlook

- Dynamic 3-particle interactions are implemented into UrQMD
- Energy and momentum are conserved
- Rearrangement is dominant in high density regions
- Backward reaction for 2 → 3 now added into UrQMD

"I think you should be more explicit here in step two."

Summary & Outlook

- Dynamic 3-particle interactions are implemented into UrQMD
- Energy and momentum are conserved
- Rearrangement is dominant in high density regions
- Backward reaction for 2 → 3 now added into UrQMD

- Allow only unformed particles to rearrange
- Study detailed balance via box calculation
- Investigation of particle spectra, elliptic flow and thermalization

HGS - HIRefor FAIR

Helmholtz Graduate School for Hadron and Ion Research

Anisotropic flow

Fourier decomposition of particle distribution

$$E \frac{d^{3}N}{d^{3}p} = \frac{d^{2}N}{d^{2}p_{T} dy} \left[1 + 2\sum_{n=1}^{\infty} v_{n} (p_{T}, y) \cos(n_{S}) \right]$$

2nd harmonic coefficient = elliptic flow

$$v_2(p_T,y) \equiv \langle \cos(2 \wp) \rangle = \langle (p_x / p_T)^2 - (p_y / p_T)^2 \rangle$$

Anisotropic flow

$$v_2(p_T,y) = \langle (p_x / p_T)^2 - (p_y / p_T)^2 \rangle$$

