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tragic accident that led to the death of John Nash and his
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possible misunderstandings are thus the sole responsibility
of the interviewers.
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The Prize
Raussen and Skau: Professor Nash, we would like to
congratulate you as the Abel laureate in mathematics for
2015, a prize you share with Louis Nirenberg. What was
your reaction when you first learned that you had won
the Abel Prize?

Professor Nash: I did not learn about it like I did
with the Nobel Prize. I got a telephone call late on
the day before the announcement, which was confusing.
However, I wasn’t entirely surprised. I had been thinking
about the Abel Prize. It is an interesting example of a
newer category of prizes that are quite large and yet not
entirely predictable. I was given sort of a pre-notification.
I was told on the telephone that the Abel Prize would be
announced on the morning the next day. Just so I was
prepared.

Raussen and Skau: But it came unexpected?
Professor Nash: It was unexpected, yes. I didn’t even

know when the Abel Prize decisions were announced.
I had been reading about them in the newspapers but
not following closely. I could see that there were quite
respectable persons being selected.

Youth and Education
Raussen and Skau: When did you realize that you had an
exceptional talent formathematics? Were there people that
encouraged you to pursue mathematics in your formative
years?

Professor Nash: Well, my mother had been a school
teacher, but she taught English and Latin. My father
was an electrical engineer. He was also a schoolteacher
immediately before World War I.

While at the grade school I was attending, I would
typically do arithmetic—addition and multiplication—
with multi-digit numbers instead of what was given at the
school, namely multiplying two-digit numbers. So I got to
work with four- and five-digit numbers. I just got pleasure
in trying those out and finding the correct procedure. But
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the fact that I could figure this out was a sign, of course,
of mathematical talent.

Then there were other signs also. I had the book by E.
T. Bell, “Men of Mathematics”, at an early age. I could read
that. I guess Abel is mentioned in that book?

Raussen and Skau: Yes, he is. In 1948, when you were
twenty years of age, you were admitted as a graduate
student in mathematics at Princeton University, an elite
institution that hand-picked their students. How did you
like the atmosphere at Princeton? Was it very competitive?

Professor Nash: It was stimulating. Of course it was
competitive also—a quiet competition of graduate stu-
dents. They were not competing directly with each other
like tennis players. They were all chasing the possibility
of some special appreciation. Nobody said anything about
that but it was sort of implicitly understood.

Games and Game Theory
Raussen and Skau: You were interested in game theory
from an early stage. In fact, you invented an ingenious
game of a topological nature that was widely played, by
both faculty members and students, in the Common Room
at Fine Hall, the mathematics building at Princeton. The
game was called “Nash” at Princeton but today it is com-
monly known as “Hex”. Actually, a Danish inventor and
designer Piet Hein independently discovered this game.

Why were you interested in games and game theory?
Professor Nash: Well, I studied economics at my pre-

vious institution, the Carnegie Institute of Technology in
Pittsburgh (today Carnegie Mellon University). I observed
people who were studying the linkage between games
and mathematical programming at Princeton. I had some
ideas: some related to economics, some related to games
like you play as speculators at the stock market—which
is really a game. I can’t pin it down exactly but it turned
out that von Neumann [1903–1957] and Morgenstern
[1902–1977] at Princeton had a proof of the solution to
a two-person game that was a special case of a general
theorem for the equilibrium of n-person games, which
is what I found. I associated it with the natural idea of
equilibrium and of the topological idea of the Brouwer
fixed-point theorem, which is good material.

Exactly when and why I started, or when von Neumann
and Morgenstern thought of that, that is something I am
uncertainof. Later on, I foundout about theKakutanifixed-
point theorem, a generalisation of Brouwer’s theorem. I
did not realise that von Neumann had inspired it and that
he had influenced Kakutani [1911–2004]. Kakutani was a
student at Princeton, so von Neumann wasn’t surprised
with the idea that a topological argument could yield
equilibrium in general. I developed a theory to study a
few other aspects of games at this time.

Raussen and Skau: You are a little ahead of us now.
A lot of people outside the mathematical community know
that you won the Nobel Memorial Prize in Economic Sci-
ences in 1994.

Professor Nash: That was much later.
Raussen and Skau: Yes. Due to the film “A Beautiful

Mind”, in which you were played by Russell Crowe, it be-
came known to a very wide audience that you received

the Nobel Prize in economics. But not everyone is aware
that the Nobel Prize idea was contained in your PhD thesis,
which was submitted at Princeton in 1950, when you were
twenty-one-years-old. The title of the thesis was “Noncoop-
erative games.”

Did you have any idea how revolutionary this would
turn out to be? That it was going to have impact, not only
in economics but also in fields as diverse as political science
and evolutionary biology?

Professor Nash: It is hard to say. It is true that it can
be used wherever there is some sort of equilibrium and
there are competing or interacting parties. The idea of
evolutionists is naturally parallel to some of this. I am
getting off on a scientific track here.

Raussen and Skau: But you realized that your thesis
was good?

Professor Nash: Yes. I had a longer version of it but it
was reduced by my thesis advisor. I also had material for
cooperative games but that was published separately.

Raussen and Skau:Did you find the topic yourself when
you wrote your thesis or did your thesis advisor help to find
it?

Professor Nash: Well, I had more or less found the
topic myself and then the thesis advisor was selected by
the nature of my topic.

Raussen and Skau: Albert Tucker [1905–1995] was
your thesis advisor, right?

Professor Nash: Yes. He had been collaborating with
von Neumann and Morgenstern.

Princeton
Raussen and Skau: We would like to ask you about your
study and work habits. You rarely attended lectures at
Princeton. Why?

Professor Nash: It is true. Princeton was quite liberal.
Theyhad introduced, not longbefore I arrived, the concept
of an N-grade. So, for example, a professor giving a course
would give a standard grade of N, which means “no
grade”. But this changed the style of working. I think
that Harvard was not operating on that basis at that
time. I don’t know if they have operated like that since.
Princeton has continued to work with the N-grade, so
that the number of people actually taking the courses
(formally taking courses where grades are given) is less
in Princeton than might be the case at other schools.

Raussen and Skau: Is it true that you took the attitude
that learning too much second-hand would stifle creativity
and originality?

Professor Nash: Well, it seems tomake sense. But what
is second-hand?

Raussen and Skau: Yes, what does second-hand mean?
Professor Nash: Second-handmeans, for example, that

you do not learn from Abel but from someone who is a
student of abelian integrals.

Raussen and Skau: In fact, Abel wrote in his mathemat-
ical diary that one should study the masters and not their
pupils.

Professor Nash: Yes, that’s somewhat the idea. Yes,
that’s very parallel.
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Raussen and Skau: While at Princeton you contacted
Albert Einstein and von Neumann, on separate occasions.
They were at the Institute for Advanced Study in Princeton,
which is located close to the campus of Princeton University.
It was very audacious for a young student to contact such
famous people, was it not?

Professor Nash: Well, it could be done. It fits into the
idea of intellectual functions. Concerning von Neumann,
I had achieved my proof of the equilibrium theorem
for game theory using the Brouwer fixed-point theorem,
while von Neumann and Morgenstern used other things
in their book. But when I got to von Neumann, and I was
at the blackboard, he asked: “Did you use the fixed-point
theorem?” “Yes,” I said. “I used Brouwer’s fixed-point
theorem.”

I had already, for some time, realized that there was
a proof version using Kakutani’s fixed-point theorem,
which is convenient in applications in economics since
the mapping is not required to be quite continuous. It
has certain continuity properties, so-called generalized
continuity properties, and there is a fixed-point theorem
in that case as well. I did not realize that Kakutani proved
that after being inspired by von Neumann, who was using
a fixed-point theorem approach to an economic problem
with interacting parties in an economy (however, he was
not using it in game theory).

Raussen and Skau: What was von Neumann’s reaction
when you talked with him?

Professor Nash: Well, as I told you, I was in his office
and he just mentioned some general things. I can imagine
now what he may have thought, since he knew the
Kakutani fixed-point theorem and I did not mention that
(which I could have done). He said some general things,
like: “Of course, this works.” He did not say too much
about how wonderful it was.

Raussen and Skau: When you met Einstein and talked
with him, explaining some of your ideas in physics, how
did Einstein react?

Professor Nash: He had one of his student assistants
there with him. I was not quite expecting that. I talked
about my idea, which related to photons losing energy
on long travels through the Universe and as a result
getting a red-shift. Other people have had this idea. I
saw much later that someone in Germany wrote a paper
about it but I can’t give you a direct reference. If this
phenomenon existed then the popular opinion at the time
of the expanding Universe would be undermined because
what would appear to be an effect of the expansion of
the Universe (sort of a Doppler red-shift) could not be
validly interpreted in that way because there could be a
red-shift of another origin. I developed a mathematical
theory about this later on. I will present this here as a
possible interpretation, in my Abel lecture tomorrow.

There is an interesting equation that could describe
different types of space-times. There are some singulari-
ties that could be related to ideas about dark matter and
dark energy. People who really promote it are promoting
the idea that most of the mass in the Universe derives
from dark energy. But maybe there is none. There could
be alternative theories.

Raussen and Skau: John Milnor, who was awarded the
Abel Prize in 2011, entered Princeton as a freshman the
same year as you became a graduate student. He made
the observation that you were very much aware of un-
solved problems, often cross-examining people about these.
Were you on the lookout for famous open problems while
at Princeton?

Professor Nash: Well, I was. I have been in general.
Milnor may have noticed at that time that I was looking
at some particular problems to study.

Milnor made various spectacular discoveries himself.
For example, the nonstandard differentiable structures
on the seven-sphere. He also proved that any knot has a
certain amount of curvature although this was not really
a new theorem, since someone else had—unknown to
Milnor—proved that.
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John F. Nash Jr. at the Common Room, Institute for
Advanced Study.

A Series of Famous Results
Raussen and Skau: While you wrote your thesis on game
theory at Princeton University, you were already working
on problems of a very different nature, of a rather geomet-
ric flavor. And you continued this work while you were on
the staff at MIT in Boston, where you worked from 1951
to 1959. You came up with a range of really stunning re-
sults. In fact, the results that you obtained in this period
are the main motivation for awarding you the Abel Prize
this year. Before we get closer to your results from this
period, we would like to give some perspective by quoting
Mikhail Gromov, who received the Abel Prize in 2009. He
told us, in the interview we had with him six years ago, that
your methods showed “incredible originality”. And more-
over: “What Nash has done in geometry is from my point
of view incomparably greater than what he has done in
economics, by many orders of magnitude.” Do you agree
with Gromov’s assessment?

Professor Nash: It’s simply a question of taste, I say. It
wasquite a struggle. Therewassomething Idid inalgebraic
geometry, which is related to differential geometry with
some subtleties in it. I made a breakthrough there. One
could actually gain control of the geometric shape of an
algebraic variety.
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Raussen and Skau: That will be the subject of our next
question. You submitted a paper on real algebraic mani-
folds when you started at MIT, in October 1951. We would
like to quote Michael Artin at MIT, who later made use
of your result. He commented: “Just to conceive such a
theorem was remarkable.”

Could you tell us a little of what you dealt with and what
you proved in that paper, and how you got started?

Professor Nash: I was really influenced by space-time
and Einstein, and the idea of distributions of stars, and
I thought: “Suppose some pattern of distributions of
stars could be selected; could it be that there would
be a manifold, something curving around and coming
in on itself that would be in some equilibrium position
with those distributions of stars?” This is the idea I was
considering.

Ultimately, I developed some mathematical ideas so
that the distribution of points (interesting points) could
be chosen, and then there would be some manifold that
would go around in a desired geometrical and topological
way. So I did that and developed some additional general
theory for doing that at the same time, and that was
published.

Later on, people began working on making the repre-
sentation more precise because I think what I proved may
have allowed some geometrically less beautiful things in
the manifold that is represented, and it might come close
to other things. It might not be strictly finite. There might
be some part of it lying out at infinity.

Ultimately, someone else, A. H. Wallace [1926–2008],
appeared to have fixed it, but he hadn’t—he had a flaw.
But later it was fixed by amathematician in Italy, in Trento,
named Alberto Tognoli [1937–2008].

Raussen and Skau: We would like to ask you about
another result, concerning the realisation of Riemannian
manifolds. Riemannian manifolds are, loosely speak-
ing, abstract smooth structures on which distances
and angles are only locally defined in a quite abstract
manner. You showed that these abstract entities can be
realised very concretely as sub-manifolds in sufficiently
high-dimensional Euclidean spaces.

Professor Nash: Yes, if themetric was given, as you say,
in an abstract manner but was considered as sufficient
to define a metric structure then that could also be
achieved by an embedding, the metric being induced by
the embedding. There I got on a side-track. I first proved it
formanifoldswitha lower level of smoothness, the𝐶1 case.
Some other people have followed up on that. I published
a paper on that. Then there was a Dutch mathematician,
Nicolaas Kuiper [1920–1994], who managed to reduce the
dimension of the embedding space by one.

Raussen and Skau:Apart from the results you obtained,
many people have told us that the methods you applied
were ingenious. Let us, for example, quote Gromov and
John Conway.

Gromov said, when he first read about your result: “I
thought it was nonsense, it couldn’t be true. But it was true,
it was incredible.” And later on: “He completely changed
the perspective on partial differential equations.”

And Conway said: “What he did was one of the most
important pieces of mathematical analysis in the twentieth
century.” Well, that is quite something!

Professor Nash: Yes.
Raussen and Skau: Is it true, as rumours have it, that

you started to work on the embedding problem as a result
of a bet?

Professor Nash: There was something like a bet. There
was a discussion in the Common Room, which is the
meeting place for faculty at MIT. I discussed the idea of
an embedding with one of the senior faculty members
in geometry, Professor Warren Ambrose [1914–1995]. I
got from him the idea of the realization of the metric by
an embedding. At the time, this was a completely open
problem; there was nothing there beforehand.

I began to work on it. Then I got shifted onto the
𝐶1 case. It turned out that one could do it in this case
with very few excess dimensions of the embedding space
compared with the manifold. I did it with two but then
Kuiper did it with only one. But he did not do it smoothly,
which seemed to be the right thing—since you are given
something smooth, it should have a smooth answer.

But a few years later, I made the generalisation to
smooth. I published it in a paper with four parts. There
is an error, I can confess now. Some forty years after the
paper was published, the logician Robert M. Solovay from
the University of California sent me a communication
pointing out the error. I thought: “How could it be?” I
started to look at it and finally I realized the error in
that if you want to do a smooth embedding and you have
an infinite manifold, you divide it up into portions and
you have embeddings for a certain amount of metric on
each portion. So you are dividing it up into a number of
things: smaller, finite manifolds. But what I had done was
a failure in logic. I had proved that—how can I express
it?—that points local enough to any point where it was
spread out and differentiated perfectly if you take points
close enough to one point; but for two different points
it could happen that they were mapped onto the same
point. So the mapping, strictly speaking, wasn’t properly
embedded; there was a chance it had self-intersections.

Raussen and Skau: But the proof was fixed? The mis-
take was fixed?

Professor Nash: Well, it was many years from the
publication that I learned about it. It may have been
known without being officially noticed, or it may have
been noticed but people may have kept the knowledge of
it secret.

Raussen and Skau: May we interject the following to
highlight how surprising your result was? One of your col-
leagues at MIT, Gian-Carlo Rota [1932–1999], professor of
mathematics and also philosophy at MIT, said: “One of the
great experts on the subject told me that if one of his grad-
uate students had proposed such an outlandish idea, he
would throw him out of his office.”

Professor Nash: That’s not a proper liberal, progressive
attitude.
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Nash interviewed by Christian Skau and Martin
Raussen.

Partial Differential Equations
Raussen and Skau: But nevertheless it seems that the re-
sult you proved was perceived as something that was out
of the scope of the techniques that one had at the time.

Professor Nash: Yes, the techniques led to new meth-
ods to study PDEs in general.

Raussen and Skau: Let us continue with work of yours
purely within the theory of PDEs. If we are not mistaken,
this came about as a result of a conversation you had with
Louis Nirenberg, with whom you are sharing this year’s
Abel Prize, at the Courant Institute in New York in 1956. He
told you about amajor unsolved problemwithin non-linear
partial differential equations.

Professor Nash: He told me about this problem, yes.
There was some work that had been done previously by a
professor in California, C. B. Morrey [1907–1984], in two
dimensions. The continuity property of the solution of
a partial differential equation was found to be intrinsic
in two dimensions by Morrey. The question was what
happened beyond two dimensions. That was what I
got to work on, and De Giorgi [1928–1996], an Italian
mathematician, got to work on it also.

Raussen and Skau: But you didn’t know of each other’s
work at that time?

Professor Nash: No, I didn’t know of De Giorgi’s work
on this, but he did solve it first.

Raussen and Skau: Only in the elliptic case though.
Professor Nash: Yes, well, it was really the elliptic case

originally but I sort of generalized it to include parabolic
equations, which turned out to be very favorable. With
parabolic equations, the method of getting an argument
relating to an entropy concept came up. I don’t know; I
am not trying to argue about precedents but a similar
entropy method was used by Professor Hamilton in New
York and then by Perelman. They use an entropy which
they can control in order to control various improvements
that they need.

Raussen and Skau:And that was what finally led to the
proof of the Poincaré Conjecture?

Professor Nash: Their use of entropy is quite essential.
Hamilton used it first and then Perelman took it up
from there. Of course, it’s hard to foresee success. It’s
a funny thing that Perelman hasn’t accepted any prizes.
He rejected the Fields Prize and also the Clay Millennium
Prize, which comes with a cash award of one million
dollars.

Raussen and Skau: Coming back to the time when you
and De Giorgi worked more or less on the same problem.
When you first found out that De Giorgi had solved the
problem before you, were you very disappointed?

Professor Nash: Of course I was disappointed but one
tends to find some other way to think about it. Like
water building up and the lake flowing over, and then the
outflow stream backing up, so it comes out another way.

Raussen and Skau: Some people have been speculating
that you might have received the Fields Medal if there had
not been the coincidence with the work of De Giorgi.

Professor Nash: Yes, that seems likely; that seems a
natural thing. De Giorgi did not get the Fields Medal
either, though he did get some other recognition. But
this is not mathematics, thinking about how some sort
of selecting body may function. It is better to be thought
about by people who are sure they are not in the category
of possible targets of selection.

Raussen and Skau: When you made your major and
really stunning discoveries in the 1950s, did you have any-
body that you could discuss with, who would act as some
sort of sounding board for you?

Professor Nash: For the proofs? Well, for the proof
in game theory there is not so much to discuss. Von
Neumann knew that there could be such a proof as soon
as the issue was raised.

Raussen and Skau: What about the geometric results
and also your other results? Did you have anyone you
could discuss the proofs with?

Professor Nash: Well, there were people who were
interested in geometry in general, like Professor Ambrose.
But they were not so much help with the details of the
proof.

Raussen and Skau: What about Spencer [1912–2001]
at Princeton? Did you discuss with him?

Professor Nash: He was at Princeton and he was on my
General Exam committee. He seemed to appreciate me.
He worked in complex analysis.

Raussen and Skau: Were there any particular mathe-
maticians that you met either at Princeton or MIT that you
really admired, that you held in high esteem?

Professor Nash: Well, of course, there is Professor
Levinson [1912–1975] at MIT. I admired him. I talked with
Norman Steenrod [1910–1971] at Princeton and I knew
Solomon Lefschetz [1884–1972], who was Department
Chairman at Princeton. He was a good mathematician.
I did not have such a good rapport with the algebra
professor at Princeton, Emil Artin [1898–1962].

The Riemann Hypothesis
Raussen and Skau: Let us move forward to a turning point
in your life. You decided to attack arguably the most fa-
mous of all open problems in mathematics, the Riemann
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Hypothesis, which is still wide open. It is one of the Clay
Millennium Prize problems that we talked about. Could
you tell us how you experienced mental exhaustion as a
result of your endeavor?

I am a little
cautious …
when I try to
attack some
problem

because the
problem can
attack back.

Professor Nash: Well, I think
it is sort of a rumor or a myth
that I actually made a frontal
attack on the hypothesis. I was
cautious. I am a little cautious
about my efforts when I try to
attack some problem because the
problem can attack back, so to
say. Concerning the Riemann Hy-
pothesis, I don’t think of myself
as an actual student but maybe
some casual—whatever—where I
could see some beautiful and
interesting new aspect.

Professor Selberg [1917–2007],
a Norwegian mathematician who
was at the Institute for Advanced Study, proved back in
the time of World War II that there was at least some
finite measure of these zeros that were actually on the
critical line. They come as different types of zeros; it’s
like a double zero that appears as a single zero. Selberg
proved that a very small fraction of zeros were on the
critical line. That was some years before he came to the
Institute. He did some good work at that time.

And then, later on, in 1974, Professor Levinson at MIT,
where I had been, proved that a good fraction—around
1/3—of the zeros were actually on the critical line. At
that time he was suffering from brain cancer, which he
died from. Such things can happen; your brain can be
under attack and yet you can do some good reasoning for
a while.

A Very Special Mathematician?
Raussen and Skau: Mathematicians who know you de-
scribe your attitude toward working on mathematical
problems as very different from that of most other people.
Can you tell us a little about your approach? What are
your sources of inspiration?

Professor Nash: Well, I can’t argue that at the present
time I am working in such and such a way, which is
different from a more standard way. In other words, I
try to think of what I can do with my mind and my
experiences and connections. What might be favourable
for me to try? So I don’t think of trying anything of the
latest popular nonsense.

Raussen and Skau: You have said in an interview (you
may correct us) something like: “I wouldn’t have had good
scientific ideas if I had thought more normally.” You had
a different way of looking at things.

Professor Nash: Well, it’s easy to think that. I think
that is true for me just as a mathematician. It wouldn’t be
worth it to think like a good student doing a thesis. Most
mathematical theses are pretty routine. It’s a lot of work
but sort of set up by the thesis advisor; you work until
you have enough and then the thesis is recognized.

Interests and Hobbies
Raussen and Skau: Can we finally ask you a question that
we have asked all the previous Abel Prize laureates? What
are your main interests or hobbies outside of mathemat-
ics?

Professor Nash: Well, there are various things. Of
course, I do watch the financial markets. This is not
entirely outside of the proper range of the economics
Nobel Prize but there is a lot there you can do if you
think about things. Concerning the great depression, the
crisis that came soon after Obama was elected, you can
make one decision or another decision which will have
quite different consequences. The economy started on a
recovery in 2009, I think.

Raussen and Skau: It is known that when you were
a student at Princeton you were biking around campus
whistling Bach’s “Little Fugue”. Do you like classical music?

Professor Nash: Yes, I do like Bach.
Raussen and Skau: Other favorite composers than

Bach?
Professor Nash: Well, there are lot of classical com-

posers that can be quite pleasing to listen to, for instance
when you hear a good piece by Mozart. They are so much
better than composers like Pachelbel and others.

Raussen and Skau: We would like to thank you very
much for a very interesting interview. Apart from the two
of us, this is on behalf of the Danish, Norwegian and Euro-
pean Mathematical Societies.

Afterword: After the end of the interview proper,
there was an informal chat about John Nash’s main
current interests. He mentioned again his reflections
about cosmology. Concerning publications, Nash told us
about a book entitled “Open Problems in Mathematics”
that he was editing with the young Greek mathematician
Michael Th. Rassias, who was conducting postdoctoral
research at Princeton University during that academic
year.
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John F. Nash Jr. and wife Alicia.
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John Forbes Nash Jr.
(1928–2015)
Camillo De Lellis, Coordinating Editor

John Forbes Nash Jr. was born in Bluefield, West Virginia,
on June 13, 1928 and was named after his father, who
was an electrical engineer. His mother, Margaret Virginia
(née Martin), was a school teacher before her marriage,
teaching English and sometimes Latin. After attending the
standard schools in Bluefield, Nash entered the Carnegie
Institute of Technology in Pittsburgh (now Carnegie Mel-
lon University) with a George Westinghouse Scholarship.
He spent one semester as a student of chemical engi-
neering, switched momentarily to chemistry and finally
decided to major in mathematics. After graduating in
1948 with a BS and a MS at the same time, Nash was of-
fered a scholarship to enter as a graduate student at either
Harvard or Princeton. He decided for Princeton, where in
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A picture of Nash taken the
day of his graduation in
Princeton.

1950 he earned a PhD de-
gree with his celebrated
work on noncooperative
games, which won him the
Nobel Prize in Economics
thirty-four years later.

In the summer of 1950
heworked at theRAND (Re-
search and Development)
Corporation, and although
he went back to Princeton
during the autumn of the
same year, he remained a
consultant and occasion-
ally worked at RAND for
the subsequent four years,
as a leading expert on
the Cold War conflict. He
was fired from RAND in
1954 after being arrested
for indecent exposure in
SantaMonica, although the
charges were dropped.

In 1951 he joined the mathematics faculty of MIT as
a C.L.E. Moore Instructor, where he remained until his
resignation in the spring of 1959. In 1951 he wrote his
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John and Alicia Nash on the day of their wedding.

groundbreaking paper “Real algebraic manifolds”, cf. [39],
much of which was indeed conceived at the end of his
graduate studies: According to his autobiographical notes,
cf. [44], Nash was prepared for the possibility that the
game theory work would not be regarded as acceptable
as a thesis at the Princeton mathematics department.
Around this time Nash met Eleanor Stier, with whom he
had his first son, John David Stier, in 1953.

After his work on real algebraic manifolds he began his
deep studies on the existence of isometric embeddings
of Riemannian manifolds, a fundamental and classical
open problem, which Nash solved completely in his two
subsequent revolutionary papers [40] and [41]. During
the academic year 1956–1957 he received an Alfred
P. Sloan grant and decided to spend the year as a
temporary member of the Institute for Advanced Study in
Princeton. It is during this period that he got interested in
another classical question, the continuity of solutions to
uniformly elliptic and parabolic second order equations,
which would have lead to a solution of the 19th Hilbert
problem. Nash published his solution [42] and learned
slightly after that a different independent proof, in the
case of elliptic equations, had just been given by De Giorgi
[14].

During his academica sabbatical at the Institute for
Advanced Study Nash married Alicia Lopez-Harrison de
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Lardé and shortly after, in 1958, he earned a tenured
position at MIT. In the last months of 1958 and the early
months of 1959 the first signs of mental disorder had
become evident, while his wife was pregnant with their
child, John Charles. This was the start of a long miserable
period of mental illness, during which Nash still managed
to produce some remarkable pieces of mathematics, such
as [45], [43], [46] (published a couple of decades later)
and the idea of the “Nash blow-up.”

Nash and de Lardé divorced in 1962. However, after his
final hospital discharge in 1970, Nash lived in the house
of his former wife and the couple eventually remarried in
2003. After a long period Nash gradually recovered from
his paranoid delusions, was allowed by Princeton to audit
classes and finally to teach again.

After he received the Nobel Memorial Prize in Economic
Sciences in 1994, jointly with John Harsanyi and Reinhard
Selten, Nash’s dramatic life attracted the attention of the
media and was the subject of Sylvia Nasar’s bestseller A
Beautiful Mind, which inspired the 2001 movie with the
same title. During this period Nash became an icon of
genius in popular culture.

In 1978 he was awarded the John von Neumann Theory
Prize for his discovery of the Nash Equilibria. In 1999 he
received a Leroy P. Steele Prize for Seminal Contribution
to Research from the American Mathematical Society and
finally in 2015 he was one of the two recipients of the
Abel Prize, the other one being Louis Nirenberg. On May
23, 2015, on their way back home after spending one
week in Oslo on the occasion of the Abel prize ceremony,
John and Alicia Nash were killed in a taxi accident on the
New Jersey Turnpike.

John Milnor
About John Nash
John Forbes Nash was an amazing person, highly original,
and determined to make a name for himself by attacking
the most difficult and important mathematical problems.

His most widely influential work is surely the 1950
Princeton Thesis, in which he introducedwhat we now call
a Nash equilibrium . I have heard that this was described
by von Neumann as “just another fixed point theorem”.
Whether or not this is a true quotation, this evaluation is
certainly valid from the point of view of puremathematics.
However, when mathematics is applied to the real world,
the important question is not whether it represents
the most cutting edge mathematical techniques, but
whether it tells us something meaningful about reality.
The theory of two-person zero-sum games had been
firmly established by the work of Zermelo, von Neumann
and Morgenstern; but before Nash’s work the theory of
any more general form of conflict between two or more
parties was a wasteland of complicated mathematics with
no apparent relation to reality. Nash’s ideas transformed
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the subject, and over the years, they have become basic
and central in fields as diverse as economic theory and
evolutionary biology. (See the exposition by Nachbar and
Weinstein below.)

In 1952, Nash created a relation between differential
and algebraic manifolds by showing that every smooth
compact manifold is diffeomorphic to an essentially
isolated smooth subset of some real algebraic variety.
(See the exposition by Henry King below. One important
application was given by Michael Artin and Barry Mazur
[4] thirteen years later: For any smooth compact manifold
𝑀, they used Nash’s result in proving that any smooth
mapping from 𝑀 to itself can be smoothly approximated
by one for which the number of isolated periodic points of
period 𝑛 grows at most exponentially with 𝑛. For related
results by V. Kaloshin, see [27].)

An amazing
person, highly
original, and
determined to

make a name for
himself.

Nashhadnot forgot-
ten about application
of mathematical ideas
to real world prob-
lems. A 1954 RAND
Corporationmemoran-
dum described his
ideas for the architec-
ture and programing
of a parallel process-
ingcomputer.Thiswas
well before any such
machine existed. In
1955, he wrote a letter to the National Security Agency
which proposed an encypherment procedure, and ex-
plained his ideas about computational complexity and
cryptography. Long before such ideas were generally
known, he realized that a key criterion for secure cryptog-
raphy is that the computation time for determining the
key, given other information about the system, should in-
crease exponentially with the key length. He conjectured
that this criterion should be satisfied, but very hard to
prove, for many possible encryption schemes. (This is
perhaps an early relative of the P versus NP problem,
which was posed by Stephen Cook sixteen year later, see
[12].) More explicitly, Nash stated that “I cannot prove
[this conjecture], nor do I expect it to be proven.” His
message was filed and presumably forgotten by the NSA,
but declassified and released in 2012.

Returning to the study of smooth manifolds, the fol-
lowing classical statement could easily have been proved
by Gauss, if he had considered such questions: A com-
pact surface which is smoothly embedded in 3-dimensional
Euclidean space must have points of positive Gaussian cur-
vature. More precisely, the proof requires that the
embedding should be twice continuously differentiable. A
reasonable person would assume that 𝐶2-differentiability
is just a technicality, but Nash was never a reasonable
person. His 1954 paper, as sharpened one year later by
Nicholaas Kuiper, shows in particular that every compact
surface with a smooth Riemannian metric can be 𝐶1-
isometrically embedded in Euclidean 3-space. Such exotic
𝐶1-embeddings are very hard to visualize, and it is only
in the last year or so that a determined French team
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Nash and his first son John David Stier in a picture
taken at Princeton in the mid-1970s.

has managed to provide computer visualizations, and
even 3-D printed models, for a flat torus 𝐶1-isometrically
embedded in 3-space (see [7]).

For 𝑘 > 1, the problem of 𝐶𝑘-isometric embedding of
a smooth manifold in a suitable Euclidean space is less
dramatic, but farmore important formost applications. Its
effective solution by Nash in 1956 required the invention
of new and important methods in the study of partial
differential equations. One step in the proof was extracted
by Jürgen Moser ten years later [32], [33] and used to
study periodic orbits in celestial mechanics. The resulting
Nash-Moser Inverse Function Theorem is a basic tool; but
is not easy to explain. (Richard Hamilton in 1982 took
more than 150 pages to explain it, see [23].)

A reasonable
person would
assume that

𝐶2-differentiability
is just a

technicality, but
Nash was never a
reasonable person.

Further informa-
tion on Nash’s Embed-
ding Theory can be
found in the article by
De Lellis and Székely-
hidi below. This was
just the beginning of
Nash’s work in partial
differential equations.
For his 1957–1958
study of parabolic and
elliptic equations, see
the article by Villani
below. It is hard for
a nonspecialist to un-
derstand the details of
this work, but it is

surely notable for its originality and depth.
During these years, Nash was bouncing back and forth

between the Courant Institute in New York and the

Institute for Advanced Study in Princeton. He was full of
ideas on every subject. At Courant he was talking about
partial differential equations and fluid mechanics, for
example, with Louis Nirenberg and Peter Lax. In Princeton
he was talking with number theorists such as Atle Selberg
about ideas towards the RiemannHypothesis, and arguing
with physicists such as Robert Oppenheimer about the
foundations of quantum mechanics.

Nash’sworkwasdrastically interruptedbyabreakdown
in early 1959. (Many years later, he blamed his collapse
on efforts to resolve the contradictions in quantum
mechanics.) Whatever the cause, the next thirty years were
quite miserable for Nash and for his friends, although
he did manage to write a few more papers. It was a
wonderful relief when he began to recover in the early
1990s. It was also wonderful that he lived to see his life’s
work validated, both by a Nobel Prize in Economics in
1994, and by an Abel Prize in Mathematics this May, just
a few days before his untimely death.

Comments and Further References
One convenient source is The Essential John Nash, edited
by Harold Kuhn and Sylvia Nasar, Princeton University
Press, 2002. This includes biographical and autobiograph-
ical material, as well as the complete texts of a number
of papers, including the following:

Real Algebraic Manifolds [39].
Parallel Control [an otherwise unpublished RAND
Corporation memorandum from 1954].
The Imbedding Problem for Riemannian Mani-
folds [41], plus an erratum.
Continuity of Solutions of Parabolic and Elliptic
Equations [42].

ForNash’s letter to theNSA, seehttps://www.nsa.gov/
public_info/_files/nash_letters/nash_letters1. 
pdf . For a discussion of Nash’s cryptosystem by Ron 
Rivest and Adi Shamir, see www.iacr.org/conferences/
eurocrypt2012/Rump/nash.pdf .

For video illustrating a flat torus in 3-space, see 
hevea.imag.fr/Site/Hevea_images-eng.html.

John Nachbar and
Jonathan Weinstein
Nash Equilibrium
Game theory is a mathematical framework for analyzing 
conflict and cooperation. It was originally motivated by 
recreational games and gambling, but has subsequently 
seen application to a wide range of disciplines, including 
the social sciences, computer science, and evolutionary
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biology. Within game theory, the single most important
tool has proven to be Nash equilibrium. Our objective
here is to explain why John Nash’s introduction of Nash
equilibrium (Nash called it an “equilibrium point”) in [37]
and [38] caused a radical shift in game theory’s research
program.

We start with some terminology. A finite strategic-form
game (henceforth simply game), is a triple 𝐺 = (𝑁,𝑆, 𝑢)
where 𝑁 = {1,… ,𝑛} is a finite set of players, 𝑆 = ∏𝑖∈𝑁 𝑆𝑖,
where 𝑆𝑖 denotes the finite set of strategies available to
player 𝑖, and 𝑢 = (𝑢1,… ,𝑢𝑛) where 𝑢𝑖 ∶ 𝑆 → ℝ describes
the utility achieved by player 𝑖 at each strategy profile
𝑠 ∈ 𝑆. A mixed strategy 𝜎𝑖 is a probability distribution
over 𝑆𝑖. Players attempt to maximize their utilities, or,
if facing randomness, the expected value of their utili-
ties; we extend our notation by letting 𝑢𝑖(𝜎1,… ,𝜎𝑛) be
the expectation of 𝑢𝑖 with respect to the independent
distribution over strategy profiles induced by (𝜎1,… ,𝜎𝑛).

Two-player zero-sum games (two-player games for
which 𝑢1(𝑠) + 𝑢2(𝑠) = 0 for all 𝑠 ∈ 𝑆) are games of
pure conflict. The central result for such games was first
established by von Neumann ([55]):

Theorem 1 (Minimax Theorem). For every two-player
zero-sum game, there is a number 𝑉 such that:

𝑉 = max
𝜎1

min
𝜎2

𝑢1(𝜎1,𝜎2) = min
𝜎2

max
𝜎1

𝑢1(𝜎1,𝜎2).

Player 1 can thus guarantee an average utility of at least
𝑉, called the security value of the game, while Player 2 can
guarantee that Player 1 achieves atmost𝑉, or equivalently
(since the game is zero-sum) that Player 2 achieves at
least −𝑉. This provides a strong basis for the prediction
that players will achieve average utilities of 𝑉 and −𝑉.
Any other outcome involves some player achieving less
than he or she could have guaranteed. In standard
formalizationsofRock-Paper-Scissors, for example,𝑉 = 0,
which players can guarantee by randomizing equally over
“rock”, “paper”, and “scissors”.

In game theory,
the single most

important tool has
proven to be Nash

equilibrium.

At the time Nash be-
gan working on game
theory, the de facto
bible in the disci-
pline was [56] by von
Neumann and Morgen-
stern (hereafter VN-M).
VN-M made the follow-
ing proposal for how
to extend the Minimax
Theorem to general
games, games that may combine elements of both co-
operation and conflict. Given a general 𝑛-player game,
construct an (𝑛 + 1)-player zero-sum game by adding
a dummy player. For each coalition (nonempty set of
players), construct a two-player zero-sum game in which
the two players are the coalition and its complement; im-
plicitly, each coalition is assumed to cooperate perfectly
within itself. The value of the coalition is the value𝑉 from
theMinimax Theorem in the induced two-player zero-sum
game. VN-M thus converted a general 𝑛-player game in
strategic form into an (𝑛 + 1)-player game in coalition
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Nash and his second son John Charles.

form. For games in coalition form, VN-M proposed a so-
lution concept now called a stable set, consisting of a set
of payoff profiles with certain properties. Finally, VN-M
proposed that for a general 𝑛-player game in strategic
form, the solution is the set of utility profiles that cor-
respond to elements of the stable set for the associated
(𝑛+1)-player game in coalition form, with the additional
restriction that the solution maximize the total utility to
the nondummy players.

The VN-M solution is difficult to compute for games
of four or more players. When there are only two players,
however, the VN-M solution is simply the set of all utility
profiles such that (1) each player gets at least his security
value (which is defined even in a nonzero-sum game) and
(2) the sum of player utilities is maximal. We refer to such
utility profiles as efficient.

Consider, in particular, a game of the Prisoner’s
Dilemma form.

𝐶 𝐷
𝐶 4, 4 0, 5
𝐷 5, 0 1, 1

Here, player 1 is the row player and player 2 is column.
If they play the strategy profile (𝐶,𝐷), for example, then
player 1 gets 0 and player 2 gets 5. The VN-M solution
for this game is the set of utility profiles such that the
utilities sum to 8 and each player gets at least 1.

As an alternative to the VN-M solution, Nash ([37])
proposed what is now called a Nash equilibrium (NE): a NE
is a strategy profile (possibly involving mixed strategies)
such that each player maximizes his or her own expected
utility given the profile of (mixed) strategies of the other
players. The focus of NE is thus on individual, rather than
collective, optimization.

The zero-sum game Rock-Paper-Scissors has a unique
NE in which each player randomizes equally over “rock”,
“paper”, and “scissors”. This NE yields an expected utility
profile of (0,0), which is the VN-M solution.
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On the other hand, in the Prisoner’s Dilemma, the
unique NE is (𝐷,𝐷). The induced utility profile (1, 1) is
inefficient, hence is not an element of the VN-M solution.
The Prisoner’s Dilemma is the canonical example of a
game in which individual incentives lead players away
from collective optimality. The VN-M solution, in contrast,
assumes this inefficiency away.

Nash proved:

Theorem 2 (Existence of Nash Equilibrium). For every fi-
nite game, there is a Nash Equilibrium profile (𝜎∗

1 ,… ,𝜎∗
𝑛 ).

As noted in [37], Theorem 2 is an almost immediate
consequenceof [26],whichextendedBrouwer’sfixedpoint
theorem to correspondences for the express purpose
of aiding proofs in economics and game theory. ([38]
provided an alternate proof directly from Brouwer.) In
contrast, it was unknown at that time whether every finite
game had a VN-M solution; [30] later provided an example
of a game with no VN-M solution.

That Theorem 2 is a generalization of the Minimax
Theorem can be seen by noting that Theorem 1 is
equivalent to:

Theorem 3 (Minimax Theorem, Equilibrium Version). For
every two-player zero-sum game, there is a pair (𝜎∗

1 ,𝜎∗
2 )

such that

𝑢1(𝜎∗
1 ,𝜎∗

2 ) = max
𝜎1

𝑢1(𝜎1,𝜎∗
2 )

and

𝑢2(𝜎∗
1 ,𝜎∗

2 ) = max
𝜎2

𝑢2(𝜎∗
1 ,𝜎2).

Thus, both the VN-M solution and NE generalize the
Minimax Theorem, but along very different paths. To
characterize the difference between the approaches, Nash
([38]) coined the terms cooperative game theory (for games
in coalition form, solvedby concepts such as the stable set)
and noncooperative game theory (for games in strategic
form, solved by NE and related concepts). This choice of
language can be deceptive. In particular, noncooperative
game theory does not rule out cooperation.

For example, a standard explanation for cooperation
in the Prisoner’s Dilemma is that the players interact
repeatedly. But if this is the case, then the actual game
isn’t the Prisoner’s Dilemma as written above but a more
complicated game called a repeated game. If, in this
repeated game, players are sufficiently patient, then there
are NE that are cooperative: the players play (𝐶,𝐶) in
every period, and this cooperation is enforced by the
threat of retaliation in future periods if either player ever
deviates and plays 𝐷.

As this example illustrates, noncooperative game the-
ory requires that the analyst specify the strategic options
for the players correctly: if the game is played repeatedly,
or if players can negotiate, form coalitions, or make bind-
ing agreements, then all of that should be represented
in the strategic form. By highlighting both individual
optimization and the importance of the fine details of
the strategic environment, non-cooperative game theory
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A press conference in Princeton on occasion of Nash
winning the 1994 Nobel Prize. At left facing the
camera is Princeton mathematician and game
theorist Harold Kuhn.

allows us to investigate when, or to what degree, cooper-
ation can be sustained. Such questions could not even be
posed within the research program advocated by VN-M.

Noncooperative game theory has become the dominant
branch of game theory, and research on noncooperative
game theory began with Nash’s formulation of NE, [37]
and [38]. It was appropriate, therefore, that the 1994
Sveriges Riksbank Prize in Economic Science in Memory
of Alfred Nobel (the Nobel Prize in Economics), which
Nash shared with two other prominent game theorists,
cited Nash not only for Nash equilibrium, but also for
launching noncooperative game theory as a whole.

Additional Reading
For more on game theory generally, see [17] and [48]. For
motivation for, and interpretation of, NE, see [8] (intro-
spective reasoning), [36] (learning), and [49] (evolution).
For a gloss on whether NE is predictively accurate, and
why testing this is not straightforward, see [29]. For con-
nections between cooperative and noncooperative game
theory (often called the Nash program), see [52]. Finally,
see [35] for a more thorough history of NE. In particular,
[35] discusses at length an issue that we omitted: the
relationship between Nash’s work and that of Cournot
([13]).

Henry C. King
Nash’s Work on Algebraic Structures
I first learned of Nash’s work on algebraic structures
from Dick Palais who shaped my understanding of the
subject. I never met Nash, but am grateful to him for the
many enjoyable mathematical excursions his work made
possible.

Henry C. King is professor emeritus of mathematics at the Uni-
versity of Maryland. His email address is hking@math.umd.edu.
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An 𝑚-dimensional differentiable submanifold 𝑀 of
ℝ𝑛 is locally given as the zeroes of 𝑛 −𝑚 differentiable
functions 𝑓𝑖 with linearly independent gradients. By asking
that each 𝑓𝑖 be polynomial (or a generalization now called
a Nash function1) we get an algebraic structure on 𝑀.
In [39], Nash showed that any compact differentiable
manifold 𝑀 has a unique algebraic structure. The meat
of this result is showing existence, in particular that 𝑀
has a representation as a submanifold 𝑉0 of ℝ𝑛 locally
given by polynomials 𝑓𝑖 as above. This is what Nash
calls a proper representation: There is a real algebraic
set 𝑉 ⊂ ℝ𝑛; i.e., 𝑉 is the set of solutions of a collection
of polynomial equations in 𝑛 variables, and 𝑉0 is a
union of connected components of 𝑉. If 𝑉 = 𝑉0 it is
called a pure representation. There is also a plain old
representation (where the 𝑓𝑖 are Nash functions), an
example being the image of a polynomial embedding of a
proper representation.

Here are some examples if𝑀 is the circle. The algebraic
set 𝑋 in ℝ2 given by 𝑥2 +𝑦2 = 1 is a pure representation
of the circle. Let 𝑌 be the cubic 𝑦2 = 𝑥3 − 𝑥. The portion
𝑌0 of 𝑌 with −1 ≤ 𝑥 ≤ 0 is a proper representation of the
circle2. The cubic 𝑌 contains other points 𝑌1 with 𝑥 ≥ 1
but these are in a different connected component of 𝑌.
Now consider the image 𝑝(𝑌) under the map

𝑝(𝑥,𝑦) = (𝑥 − 𝑥2(𝑥 + 1)2/2, 𝑦).
Elimination theory tells us that this image is an algebraic
set 𝑍, as long as we include any real images of complex
solutions3 of 𝑦2 = 𝑥3 − 𝑥. Then 𝑝(𝑌0) is a representation
of the circle but is not proper since 𝑝(𝑌1) intersects 𝑝(𝑌0)
at (−1, 0) = 𝑝(1, 0) = 𝑝(−1, 0).

Nash finds an algebraic representation of 𝑀 by writing
𝑀 ⊂ ℝ𝑛 as the zeroes of some differentiable functions,
approximating these functions by polynomials, and con-
cluding that the zeroes of the polynomials have connected
components which are a slightly perturbed copy of 𝑀.
Unfortunately, to make this work Nash must add some
auxiliary variables and the proper representation ends up
in ℝ𝑛+𝑚.

Let 𝑦(𝑥) denote the closest point in 𝑀 to 𝑥; then 𝑀
is the zeroes of 𝑥 − 𝑦(𝑥). Approximate 𝑥 − 𝑦(𝑥) (and its
derivatives) near 𝑀 by some polynomial 𝑢(𝑥). We would
not expect the zeroes of 𝑢 to approximate 𝑀; after all,
𝑢(𝑥) = 0 is 𝑛 equations in 𝑛 unknowns so we expect its
solutions to have dimension 0. Let 𝐾(𝑥) be the matrix of
orthogonal projection to the 𝑛 − 𝑚 plane normal to 𝑀
at 𝑦(𝑥). If we could approximate 𝐾(𝑥) by a polynomial
𝑃(𝑥) so that 𝑃(𝑥) had rank 𝑛 − 𝑚 near 𝑀 we would be
in business; {𝑥 ∣ 𝑃(𝑥)𝑢(𝑥) = 0} would have connected
components which are a perturbed copy of𝑀. To see this,
restrict to theplanenormal to𝑀at apoint𝑝,𝐾(𝑝)𝑃(𝑥)𝑢(𝑥)
approximates the identity and thus has a unique zero

1Nash functions are only needed for uniqueness; we shall ignore
them here.
2The map (𝑥, 𝑦) ↦ (2𝑥 + 1, 2𝑦/√1− 𝑥) gives a Nash diffeomor-
phism from 𝑌0 to 𝑋.
3We’ll have to include (2 − 2√3,± 4√12) = 𝑝((−√3 ±
√−5)/2,± 4√12).

near 𝑝. But 𝐾(𝑝)𝑃(𝑥)𝑢(𝑥) = 0 implies 𝑃(𝑥)𝑢(𝑥) = 0
near 𝑝, so we have a one-to-one correspondence between
𝑀 and the components of {𝑥 ∣ 𝑃(𝑥)𝑢(𝑥) = 0} near
𝑀. If we approximate 𝐾(𝑥) by a polynomial 𝐿(𝑥) we
would not expect 𝐿 to have rank 𝑛 − 𝑚. But let 𝛼(𝑡) =
𝑡𝑚 + 𝛿1𝑡𝑚−1 +⋯+𝛿𝑚 = (𝑡 − 𝑟1)(𝑡 − 𝑟2)⋯(𝑡 − 𝑟𝑚) where
the 𝑟𝑖 are the eigenvalues of 𝐿(𝑥) close to 0. Then
𝑃(𝑥) = 𝛼(𝐿(𝑥)) has rank 𝑛−𝑚 and 𝑃(𝑥) ≈ 𝐾𝑚(𝑥) = 𝐾(𝑥).
The coefficients 𝛿𝑖 are polynomially related to 𝑥, set to
0 the remainder of the quotient of the characteristic
polynomial of 𝐿(𝑥) by 𝛼. So at the expense of adding
the auxiliary variables 𝛿𝑖, we can perturb 𝑀 to a proper
algebraic representation.

Nash’s paper mentions the following questions, among
others.
(1) Can every compact differentiable submanifold 𝑀

of ℝ𝑛 be approximated by a proper algebraic rep-
resentation in ℝ𝑛? He tried proving this without
success.

(2) Can every compact differentiable submanifold 𝑀
of ℝ𝑛 be approximated by a pure algebraic rep-
resentation in ℝ𝑛? He speculated that this is
plausible.

(3) Does every compact differentiable manifold𝑀 have
a pure algebraic representation in some ℝ𝑛? He
thought this was probably true.

In [57], Wallace claimed to prove conjecture 1. Unfortu-
nately, there was a serious error (he neglected to include
the real images of complex solutions in his projections).
However he did prove conjecture 3 in the case where 𝑀
is the boundary of a compact differentiable manifold 𝑊.
Glue two copies of 𝑊 together along 𝑀. By Nash, we may
assume this is a component 𝑉0 of an algebraic subset 𝑉
of some ℝ𝑛. Let 𝑓 be a differentiable function which is
positive on one copy of 𝑊, negative on the other copy of
𝑊, zero on 𝑀, and positive on 𝑉−𝑉0. Approximate 𝑓 by a
polynomial 𝑝 and then𝑉∩𝑝−1(0) is a pure representation
of 𝑀.

In [53], Tognoli proved conjecture 3 by greatly improv-
ing on this idea of Wallace. By work of Thom and Milnor,
we know that any compact differentiable manifold 𝑀 is
cobordant to a nonsingular real algebraic set 𝑆; i.e., there
is a compact differentiablemanifold𝑊whose boundary is
𝑀∪𝑆 where 𝑆 is a pure representation of some manifold.
Glue two copies of 𝑊 together along their boundaries.
Tognoli then does a careful version of Nash to make
the result a component 𝑉0 of a real algebraic set 𝑉 so
that 𝑆 ⊂ 𝑉 is still a nonsingular algebraic set. Let 𝑓 be a
differentiable function which is positive on one copy of
𝑊, negative on the other copy of 𝑊, zero on 𝑀 and 𝑆,
and positive on 𝑉− 𝑉0. Approximate 𝑓 by a polynomial
𝑝, being careful to ensure that 𝑝 still vanishes on 𝑆, and
then 𝑉 ∩ 𝑝−1(0) = 𝑀′ ∪ 𝑆 is an algebraic set with 𝑀′

diffeomorphic to 𝑀. It turns out that 𝑀′ is by itself an
algebraic set and the conjecture is proven.

This method of Tognoli ends up being very useful
and gives us a general rule of thumb: If a differentiable
situation is cobordant to a real algebraic situation, then
it can be perturbed to be real algebraic.
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In [54], Tognoli claimed to prove conjecture 2 but the
proof had serious errors detailed in [2]. This inspired
Akbulut and me to prove Conjecture 1 [2] and to use the
above rule of thumb [1] to reduce conjecture 2 to a cobor-
dism statement: A compact differentiable submanifold 𝑀
ofℝ𝑛 can be approximated by a pure representation if and
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only if there is a compact differen-
tiable submanifold𝑊ofℝ𝑛×[0, 1]
whose boundary is 𝑀×0∪ 𝑆× 1
where 𝑆 ⊂ ℝ𝑛 is a pure representa-
tion of some manifold. The proof
in [2] consists of being carefulwith
the images of complex solutions.
Nash’s proof gives a nonsingular
component 𝑉0 of a real algebraic
set 𝑉 and a polynomial embed-
ding 𝑝∶ 𝑉0 → ℝ𝑛 so that 𝑝(𝑉0) is
a perturbation of 𝑀. We alter one
coordinate of 𝑝 to make sure that

𝑝(𝑉 − 𝑉0) is far from 𝑝(𝑉0) and also any real images of
nonreal solutions of the polynomial equations of 𝑉 lie
far from 𝑝(𝑉0). Then 𝑝(𝑉0) is a proper representation
approximating 𝑀.

Camillo De Lellis and
László Székelyhidi Jr.
Nash’s Work on Isometric Embeddings
Nash wrote three papers on isometric embeddings of
Riemannian manifolds in Euclidean space, which are
landmark papers not only for the mathematical problem
they solved, but more importantly because of the impact
they had on other fields, encompassing applications that
go well beyond differential geometry. In these papers
Nash studied the following problem:

Given a smooth compact 𝑛-dimensional Riemannian
manifold 𝑀 with metric 𝑔, can we find an embedding
of 𝑀 into some Euclidean space ℝ𝑁 which preserves
the metric structure?

This was a fundamental issue, aimed at linking the notion
of submanifolds of ℝ𝑁, and hence of classical surfaces,
to the abstract concept arising from the pioneering work
of Riemann and his contemporaries.

In the statement of the problem there are two
complementary requirements on the map 𝑢 ∶ 𝑀 → ℝ𝑁:
(i) it should be a topological embedding, that is, continu-

ous and injective;
(ii) it should be continuously differentiable and preserve

the length of curves; in other words the length of any
rectifiable curve 𝛾 ⊂ 𝑀 should agree with the length
of its image 𝑢(𝛾) ⊂ ℝ𝑁:

(1) ℓ(𝑢 ∘ 𝛾) = ℓ(𝛾) for all rectifiable 𝛾 ⊂ 𝑀.

László Székelyhidi Jr. is professor ofMathematics at theUniversität
Leipzig. His email address is laszlo.szekelyhidi@math.uni-
leipzig.de.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

In local coordinates the condition (ii) amounts to the
following system of partial differential equations

(2)
𝑁

∑
𝑘=1

𝜕𝑖𝑢𝑘𝜕𝑗𝑢𝑘 = 𝑔𝑖𝑗, 𝑖, 𝑗 = 1…𝑛

consisting of 𝑠𝑛 ∶= 𝑛(𝑛+ 1)/2 equations in 𝑁 unknowns.
An important relaxation of the concept above is that of

short embedding. A 𝐶1 embedding 𝑢 ∶ 𝑀 → ℝ𝑁 is called
short if it reduces (rather than preserving) the length of
all curves, i.e. if (1) holds with ≤ replacing the equality
sign. In coordinates this means that (𝜕𝑖𝑢 ⋅ 𝜕𝑗𝑢) ≤ (𝑔𝑖𝑗) in
the sense of quadratic forms.

Nash realized that given a smooth embedding 𝑢 ∶
𝑀 → ℝ𝑁, which is not necessarily isometric but it is
short, one may try to solve (2) via local perturbations
which are small in 𝐶0, because being an embedding
is a stable property with respect to a large class of
such perturbations (since (2) alone guarantees that the
differential of 𝑢 has maximal rank, i.e. that 𝑢 is an
immersion). Let us assume for simplicity that 𝑔 ∈ 𝐶∞.
The three main theorems concerning the solvability of
the system of partial differential equations (2) are the
following:
(A) If 𝑁 ≥ 𝑛+ 1, then any short 𝐶1 embedding can be

uniformly approximated by isometric embeddings
of class 𝐶1 (Nash [40] proved the statement for
𝑁 ≥ 𝑛+ 2, Kuiper [28] extended it to 𝑁 = 𝑛+ 1) .

(B) If 𝑁 ≥ 𝑠𝑛 +max{2𝑛, 5}, then any short 𝐶1 embed-
ding can be uniformly approximated by isometric
embeddings of class 𝐶∞ (Nash [41] proved the exis-
tence of isometric embeddings for 𝑁 ≥ 3𝑠𝑛+4𝑛; the
approximation statement above was first shown by
Gromov and Rokhlin for 𝑁 ≥ 𝑠𝑛 + 4𝑛+ 5 [20]; sub-
sequently the threshold was lowered by Gromov
[19] to 𝑁 ≥ 𝑠𝑛 + 2𝑛 + 3 and by Günther [21] to
𝑁 ≥ 𝑠𝑛 +max{2𝑛, 5}, see also [22]).

(C) If𝑔 is real analytic and𝑁 ≥ 𝑠𝑛+2𝑛+3, thenanyshort
𝐶1 embedding can be uniformly approximated by
analytic isometric embeddings (Nash [43] extended
his 𝐶∞ existence theorem to the analytic case,
whereas the approximation statement was shown
first by Gromov for𝑁 ≥ 𝑠𝑛+3𝑛+5 [18] and lowered
to the threshold above [19]).

Nash’s papers on
isometric embeddings

of Riemannian
manifolds in

Euclidean space are
landmark papers.

Corresponding
theorems can
also be proved
for noncompact
manifolds 𝑀,
but they are
more subtle (for
instance the non-
compact case of
(C) was left in
[43] as an open
problem; we refer
the reader to [18],

[19] for more details).
For 𝑀 compact, any 𝐶1 embedding of 𝑀 into ℝ𝑁 can

be made short after multiplying it by a sufficiently small
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The award ceremony of the Abel prize, with King
Harald V of Norway and Louis Nirenberg. Courtesy of
The Norwegian Academy of Science and Letters.

constant. Thus, (A), (B) and (C) are not merely existence
theorems: they show that the set of solutions is huge
(essentially𝐶0-dense). Naively, this type of flexibility could
be expected for high codimension as in (B) and (C), since
then there are many more unknowns than equations in
(2). Statement (A) on the other hand is rather striking, not
just because the problem is formally over-determined in
dimension 𝑛 ≥ 3, but also when compared to the classical
rigidity result concerning the Weyl problem: if (𝑆2, 𝑔)
is a compact Riemannian surface with positive Gauss
curvature and 𝑢 ∈ 𝐶2 is an isometric immersion into ℝ3,
then𝑢 is uniquely determined up to a rigidmotion [11, 24].
Notice on the other hand that if 𝑢 is required merely to
be Lipschitz, then condition (ii) still makes sense in the
form (1) and it is not difficult to construct a large class of
non-equivalent isometric embeddings of any (orientable)
surface in ℝ3: just think of crumpling paper!

The results (A) and (B)-(C) rely on two, rather different,
iterative constructions, devised by Nash to solve the
underlying set of equations (2). In order to explain the
basic idea, let us write (2) in short-hand notation as
(3) 𝑑𝑢 ⋅ 𝑑𝑢 = 𝑔.
Assuming that we have an approximation 𝑢𝑘, i.e. such
that 𝜀𝑘 ∶= ‖𝑑𝑢𝑘 ⋅ 𝑑𝑢𝑘 − 𝑔‖𝐶0 is small, we wish to add
a perturbation 𝑤𝑘 so that 𝑢𝑘+1 ∶= 𝑢𝑘 + 𝑤𝑘 is a better
approximation. The quadratic structure of the problem
yields the following equation for 𝑤𝑘:

[𝑑𝑤𝑘 ⋅ 𝑑𝑢𝑘 +𝑑𝑢𝑘 ⋅ 𝑑𝑤𝑘] + 𝑑𝑤𝑘 ⋅ 𝑑𝑤𝑘 = 𝑔− 𝑑𝑢𝑘 ⋅ 𝑑𝑢𝑘.
A basic geometric insight in both constructions is that,
assuming 𝑢𝑘 is a short embedding, the perturbation

𝑤𝑘 should increase lengths and thus it makes sense to
choose 𝑤𝑘 normal to the image 𝑢𝑘(𝑀). This amounts to
the differential condition 𝑑𝑢𝑘 ⋅ 𝑤𝑘 = 0, from which one
easily deduces 𝑑𝑢𝑘 ⋅ 𝑑𝑤𝑘 = −𝑑2𝑢𝑘 ⋅ 𝑤𝑘.

For the construction in (B)-(C) the idea is now to
follow the Newton scheme: assuming that 𝑤𝑘 and 𝑑𝑤𝑘 are
comparable and small, 𝑑𝑤𝑘 ⋅ 𝑑𝑤𝑘 is much smaller than
the linear term [𝑑𝑤𝑘 ⋅ 𝑑𝑢𝑘 + 𝑑𝑢𝑘 ⋅ 𝑑𝑤𝑘], hence a good
approximation can be obtained by solving for 𝑤𝑘 the
linearization

[𝑑𝑤𝑘 ⋅ 𝑑𝑢𝑘 +𝑑𝑢𝑘 ⋅ 𝑑𝑤𝑘] = 𝑔− 𝑑𝑢𝑘 ⋅ 𝑑𝑢𝑘.
This can be reduced to an algebraic system for 𝑤𝑘 by
using 𝑑𝑢𝑘 ⋅𝑤𝑘 = 0 and 𝑑𝑢𝑘 ⋅𝑑𝑤𝑘 = −𝑑2𝑢𝑘 ⋅𝑤𝑘. The central
analytic difficulty in carrying out the iteration is that, by
solving the corresponding algebraic system, estimates on
𝑤𝑘 will depend on estimates of 𝑑2𝑢𝑘 - the mathematical
literature refers to this phenomenon as loss of derivative
and Nash dealt with this by introducing an additional
regularization step.

The latter obviously perturbs the estimates on how
small 𝑢𝑘+1 −𝑢𝑘 is. However, Nash’s key realization is that
Newton-type iterations converge so fast that such loss in
the regularization step does not prevent the convergence
of the scheme. Regularizations are obviously easier in the
𝐶∞ category, where for instance standard convolutions
with compactly supported mollifiers are available. It is
thus not surprising that the real analytic case requires a
subtler argument and this is the reason why Nash dealt
with it much later in the subsequent paper [43].

Nash’s scheme has numerous applications in a wide
range of problems in partial differential equationswhere a
purely functional-analytic implicit function theorem fails.
The first author to put Nash’s ideas in the framework of an
abstract implicit function theoremwas J. Schwartz, cf. [51].
However the method became known as the Nash-Moser
iteration shortly after Moser succeeded in developing a
general framework going beyond an implicit function
theorem, which he applied to a variety of problems in
his fundamental papers [32], [33], in particular to the
celebrated KAM theory. Several subsequent authors gen-
eralized these ideas and a thorough mathematical theory
has been developed by Hamilton [23], who defined the
categories of “tame Fréchet spaces” and “tame nonlinear
maps.”

It is rather interesting to notice that in fact neither the
results in (B) nor those in (C) ultimately really needthe
Nash-Moser hard implicit function theorem. In fact in
case (B) Günther has shown that the perturbation 𝑤𝑘
can be generated inverting a suitable elliptic operator
and thus appealing to standard contraction arguments
in Banach spaces. Case (C) can instead be reduced to the
local solvability of (2) in the real analytic case (already
known in the thirties, cf. [25], [9]); such reduction uses
another idea of Nash on approximate decompositions of
the metric 𝑔 (compare to the decomposition in primitive
metrics explained below).

Contrary to the iteration outlined above to handle the
results in (B) and (C), in the construction used for (A)
𝑤𝑘 and 𝑑𝑤𝑘 have different orders of magnitude. More
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precisely, if 𝑤𝑘 is a highly oscillatory perturbation of the
type

(4) 𝑤𝑘(𝑥) ∼ Re(𝑎𝑘(𝑥)
𝜆𝑘

𝑒𝑖𝜆𝑘𝑥⋅𝜉𝑘),

then the linear term is𝑂(𝜆−1
𝑘 )whereas the quadratic term

is 𝑂(1). For the sake of our discussion, assume for the
moment the following:
(*) 𝑤𝑘 can be chosen with oscillatory structure (4) in such

a way that 𝑑𝑤𝑘 ⋅ 𝑑𝑤𝑘 ∼ 𝑔−𝑑𝑢𝑘 ⋅ 𝑑𝑢𝑘.
Then the amplitude of the perturbation will be ‖𝑎𝑘‖𝐶0 ∼
‖𝑔 − 𝑑𝑢𝑘 ⋅ 𝑑𝑢𝑘‖1/2

𝐶0 whereas the new error will be 𝜀𝑘+1 =
𝑂(𝜆−1

𝑘 ). Since
‖𝑑𝑢𝑘+1 −𝑑𝑢𝑘‖𝐶0 = ‖𝑑𝑤𝑘‖𝐶0 ∼ ‖𝑎𝑘‖𝐶0 ,

the 𝐶1 convergence of the sequence 𝑢𝑘 is guaranteed
when ∑𝑘 √𝜀𝑘 < ∞, which is easily achieved by choosing
a sequence 𝜆𝑘 which blows up sufficiently rapidly. Fur-
thermore, ‖𝑢𝑘+1 − 𝑢𝑘‖𝐶0 = 𝑂(𝜆−1

𝑘 ), so that topological
properties of the map 𝑢𝑘 (e.g. being an embedding) will
be easily preserved. On the other hand it is equally clear
that in this way ‖𝑢𝑘‖𝐶2 → ∞, so that the final embedding
will be 𝐶1 but not 𝐶2.

Nirenberg
did not

hesitate to
use the
word

‘genius’.

It should be added that in fact
it is not possible to achieve (*) as
stated above: it is easy to check that
a single oscillatory perturbation of
the type (4) adds a rank-1 tensor to
𝑑𝑢𝑘 ⋅ 𝑑𝑢𝑘, modulo terms of order
𝑂(𝜆−1

𝑘 ). Nash overcame this diffi-
culty by decomposing 𝑔−𝑑𝑢𝑘 ⋅𝑑𝑢𝑘
as a sum of finitely many (sym-
metric and positive semidefinite)
rank-1 tensors, which nowadays
are called primitive metrics: the
actual iterative step from 𝑢𝑘 to

𝑢𝑘+1 consists then in the (serial) addition of finitely many
oscillatory perturbations of type (4).

Nash’s iteration served as a prototype for a technique
developed by Gromov, called convex integration, which
unraveled the connection between the Nash-Kuiper the-
orem and several other counterintuitive constructions
in geometry, cf. [19]. In recent decades this technique
has been applied to show similar phenomena (called ℎ-
principle statements) in many other geometric contexts.
More recently, Müller and Šverak [34] discovered that a
suitablemodification ofGromov’s ideas provides a further
link between the geometric instances of the ℎ-principle
and several theorems with the same flavor proved in the
1980s and in the 1990s in partial differential equations.
This point of view can be used to explain the existence of
solutions to the Euler equations that do not preserve the
kinetic energy, cf. [15]. Although the latter phenomenon
was discovered only rather recently in the mathematical
literature by Scheffer [50], in the theory of turbulence
it was predicted already in 1949 by a famous paper of
Onsager, cf. [47]. Mil

Even nowadays the Nash-Kuiper theorem defies the
intuition of most scholars. In spite of the fact that Nash’s
iteration is constructive and indeed rather explicit, its
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Nash at the Abel Lectures. Courtesy of the University
of Oslo.

numerical implementation has been attempted only in
the last few years. After overcoming several hard com-
putational problems, a team of French mathematicians
have been able to produce its first computer-generated
illustrations, cf. [7].

Cedric Villani
On Nash’s Regularity Theory for Parabolic
Equations in Divergence Form
In the fall of 1958 the American Journal of Mathematics
published what may possibly be, to this date, the most
famous article in its long history:Continuity of solutions of
elliptic and parabolic equations, by John Nash. At twenty-
fourpages, this is aquite shortpaperbymodern standards
in partial differential equations; but it was solving a major
openproblemin thefield, andwas immediately considered
by experts (Carleson, Nirenberg, Hörmander, to name just
a few) as an extraordinary achievement. Nirenberg did
not hesitate to use the word “genius” to comment on the
paper; as for me, let me say that I remember very well
the emotion and marvel which I felt at studying it, nearly
forty years after its writing.

Here is one form of the main result in Nash’s
manuscript.
Theorem 4. Let 𝑎𝑖𝑗 = 𝑎𝑖𝑗(𝑥, 𝑡) be a 𝑛×𝑛 symmetric matrix
depending on 𝑥 ∈ ℝ𝑛 and 𝑡 ∈ ℝ+. Assume that (𝑎𝑖𝑗) is
uniformly elliptic, that is

(1) ∀𝜉 ∈ ℝ𝑛, 𝜆|𝜉|2 ≤ ∑
𝑖𝑗

𝑎𝑖𝑗𝜉𝑖𝜉𝑗 ≤ 𝛬|𝜉|2,

for some positive constants 𝜆 and 𝛬. Let 𝑓 = 𝑓(𝑥, 𝑡) ≥ 0
solve the divergence form linear parabolic equation

𝜕𝑓
𝜕𝑡 = ∑

𝑗

𝜕
𝜕𝑥𝑖

(𝑎𝑖𝑗
𝜕𝑓
𝜕𝑥𝑗

)

Cedric Villani is director of the Institute Henry Poincaré and pro-
fessor of mathematics at the Université Claude Bernard Lyon 1.
His email address is villani@ihp.fr.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
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in ℝ𝑛 ×ℝ+. Then 𝑓 is automatically continuous, and even
𝐶𝛼 (Hölder-continuous) for some exponent 𝛼 > 0, when
𝑡 > 0. The exponent 𝛼, as well as a bound on the 𝐶𝛼

norm, can be made explicit in terms of 𝜆, 𝛬, 𝑛 and the
(time-independent) 𝐿1(ℝ𝑛) norm of 𝑓.

The two key features in the assumptions of this
theorem are that

(a) no regularity assumption of any kind is made on
the diffusion matrix: the coefficients 𝑎𝑖𝑗 should just be
measurable, and this is in contrast with the older classical
regularity theories forparabolic equations,which required
at least Hölder continuity of the coefficients;

(b) Equation (1) is in divergence form; actually, equa-
tions in nondivergence form would later be the object of
a quite different theory pioneered by Krylov and Safonov.

The fact that the equation is of parabolic nature, on
the other hand, is not so rigid: elliptic equations can be
considered just the same, as a particular, stationary, case.
Also, this theorem can be localized by classical means
and considered in the geometric setting of a Riemannian
manifold.

The absence of regularity assumptions on the diffusion
matrix makes it possible to use this theorem to study non-
linear diffusion equations with a nonlinear dependence
between the diffusion matrix and the solution itself. In
this spirit, Nash hoped that these new estimates would
be useful in fluid mechanics. Still, the first notable use
of this theorem was the solution of Hilbert’s nineteenth
problem on the analyticity of minimizers of functionals
with analytic integrand. Namely, consider a nonnegative
minimizer for ∫𝐿(∇𝑣(𝑥))𝑑𝑥, with a uniformly convex
analytic 𝐿: is 𝑣 analytic too? Classical calculus of varia-
tions shows that 𝐶1,𝛼 solutions are analytic; then Nash’s
estimate completes the proof by establishing the Hölder-
continuity of ∇𝑣. Indeed, if 𝑣 is a minimizer, then for
any index 𝑘, 𝑢 = 𝜕𝑘𝑣 solves the divergence form linear
elliptic Euler–Lagrange equation∑𝑖𝑗 𝜕𝑖(𝑎𝑖𝑗𝜕𝑗𝑢) = 0, where
𝑎𝑖𝑗 = 𝜕2

𝑖𝑗𝐿(∇𝑣) is uniformly elliptic (this requires a few
clever manipulations of mixed derivatives). Note that in
this case, when we apply the theorem, absolutely nothing
is known on the regularity of 𝑎𝑖𝑗, which directly depends
on the unknown function 𝑣.

Still, it is not only its contents, and this foray into
Hilbert’s problem, that would make this paper unique,
but also the amazing set of circumstances and human
passion surrounding it.

First, although a complete outsider in the field, Nash
had managed to solve in just a few months the problem,
which had been submitted to him by Nirenberg.

Then it was discovered by accident that De Giorgi—
future icon, but completely unknown at the time—had
just published an alternative solution [14], in the form of
an even shorter article in a journal that was obscure (at
least in comparison with the AJM). For decades to come,
the coincidence of the solutions of Nash and De Giorgi
would be regarded by all analysts as the example par
excellence of simultaneous discovery.

As for his own paper, Nash, amazingly, withdrew it
immediately upon its acceptance by Acta Mathematica,

where the referee was none other than Hörmander; and
he resubmitted it to the AJM, in an unsuccessful hope of
winning the 1959 Bôcher Prize. Just a few months later,
Nash’s health would deteriorate to a point that would
(among other much more tragical consequences) stop his
scientific career for many years, leaving him only a couple
of later opportunities for additional contributions.

In spite of all this, when I read the detailed account by
Nasar [44, Chapters 30–31] or when I had the opportunity
to discuss with a prime witness like Nirenberg, what
most fascinated me was the genesis of the paper. (How
I would have loved that the movie A Beautiful Mind pay
proper tribute to this truly inspiring adventure, rather
than choosing to forget the science and focus on the
illness with such heavy pathos.)

In order to get to his goal, Nash had not developed
his own tools, but rather orchestrated fragmented efforts
from his best fellow analysts, combining his own intuition
with the skills of specialists. A typical example is Nash’s
interpolation inequality

(2) ∫
ℝ𝑛

𝑓2𝑑𝑥 ≤ 𝐶(𝑛) (∫
ℝ𝑛

|∇𝑥𝑓|2𝑑𝑥)
1−𝜃

(∫
ℝ𝑛

𝑓𝑑𝑥)
2𝜃

,

𝜃 = 2
𝑛+ 2.

As Nash acknowledged in the manuscript, this inequality
was actually proven, on his request, by Stein; but it was
Nash who understood the crucial role that it could play
in the regularity theory of diffusion processes, and which
has been later explored in great generality.

One should praise
Nash’s informal
style, intended to
convey not only

the proof, but also
the ideas

underlying it.

Another example is
the jaw-dropping use
of Boltzmann’s en-
tropy, 𝑆 = −∫𝑓 log 𝑓,
completely out of con-
text. Entropy became
famous as a notion
of disorder or in-
formation, mainly in
statistical physics; but
it certainly had noth-
ing to do with a
regularity issue. Still,
Nash brilliantly used
the entropy to mea-
sure the spreading of a distribution, and related this
spreading to the smoothing. Again, the tool was bor-
rowed from somebody else: I learnt from Carleson that
it was him who initiated Nash to the notion of entropy.
This was the start of a long tradition of using nonlinear
integral functionals of the solution as an approach to
regularity bounds.

Thenext thing that one shouldpraise isNash’s informal
style, all intended to convey not only the proof, but also
the ideas underlying it – or “powerful.”

But then, it is also the construction of the proof
which is a work of art. Nash uses a rather visual
strategy, inspired by physics: think of the solution
as the spreading of some quantity of heat, But
then, it is also the construction of the proof which
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and be interested in the con-
tribution of an initial point
source of heat; displacement
of “sources of heat” will im-
ply strict positivity, which in
turn will imply overlapping of
nearby contributions, which in
turnwill imply thecontinuity.He
also uses fine tactics, in partic-
ular to find dynamical relations
between appropriate “summary”
quantities. As a typical start:
Nash shows how the 𝐿2 norm
of the solution has to decrease

immediately, which implies an unconditional bound on
the maximum temperature, which in turn implies a lower
bound on the entropy. Then he shows that entropy
goes with spreading (high entropy implies spreading; but
through diffusion, spreading increases entropy). These
ideas have been quite influential, and can be found again,
for instance, in the beautiful work [10] by Carlen and
Loss on the 2-dimensional incompressible Navier–Stokes
equation.

Various authors rewrote, simplified andpushed further
the De Giorgi–Nash theory. The two most important
contributors were Moser [31] and Aronson [3]. Moser
introduced the versatile Moser iteration, based on the
study of the time-evolution of successive powers, which
simplifies the proof and avoids the explicit use of the
entropy. (Entropy is a way to consider the regime 𝑝 → 1
in the 𝐿𝑝 norm; a dual approach is to consider the regime
𝑝 → ∞ as Moser.) Moser further proved what can be
called the Moser–Harnack inequality: positive solutions
of an elliptic divergence equation satisfy an estimate of
the form

sup
𝐵(𝑥,𝑟)

𝑓 ≤ 𝐶 inf
𝐵(𝑥,2𝑟)

𝑓,

where 𝐶 only depends on 𝑟, 𝑛 and the ellipticity bounds.
As for Aronson, he established a Gaussian-type bound
on the associated heat kernel: 𝑝𝑡(𝑥, 𝑦) is bounded from
above and below by functions of the form

𝐾
𝑡𝑛/2 𝑒−𝐵|𝑥−𝑦|2/𝑡.

These three results—the Hölder continuity, the Moser–
Harnack inequality, and theGaussian type bounds—are all
connected and in some sense equivalent. Fine expositions
of this can be found in Bass [5] (Chapter 7), [6], and
Fabes & Stroock [16]. They have also been extended to
nonsmooth geometries. Actually, these techniques have
been so successful that some elements of proof now look
so familiar even when we are not aware of it!

To conclude this exposition, following Fabes & Stroock,
here is a brief sketch of the proof of Aronson’s upper
bound, using Nash’s original strategy. By density, we
may pretend that 𝑓 is smooth, so it is really about an a
priori estimate. First fix 𝑞 ∈ (1,∞) and consider the time-
evolution of the power 𝑞 of the solution: the divergence

assumption leads to a neat dissipation formula,
𝑑
𝑑𝑡 ∫𝑓𝑞 = −𝑞(𝑞− 1)∫⟨𝑎∇𝑓,∇𝑓⟩ 𝑓𝑞−2

≤ −𝐾𝑞(𝑞− 1)∫ |∇𝑓|2 𝑓𝑞−2.

Using the chain-rule, we deduce

𝑑
𝑑𝑡 ∫𝑓𝑞 ≤ −𝐾(𝑞− 1

𝑞 )∫|∇𝑓𝑞/2|2.

Now, the Nash inequality (2) tells us that the integral on
the right-hand side controls a higher power of the integral
on the left-hand side: more precisely, if, say, 𝑞 ≥ 2,

𝑑
𝑑𝑡 ∫𝑓𝑞 ≤ −𝐾(∫𝑓𝑞)1+𝛽

∫ 𝑓𝑞/2 ,

for some 𝛽 = 𝛽(𝑛) > 0. This relates the evolution of the
𝐿𝑞 norm and the evolution of the 𝐿𝑞/2 norm; it implies a
bound for ‖𝑓‖𝐿𝑞 in terms of 𝑡 and ‖𝑓‖𝐿𝑞/2 , which can be
made explicit after some work. Iterating this bound up to
infinity, we may obtain an estimate on ‖𝑓‖𝐿𝑝 as 𝑝 → ∞,
and eventually to ‖𝑓‖𝐿∞ : writing 𝑓0 = 𝑓(0, ⋅) we have

‖𝑓‖𝐿∞ ≤ 𝐶
𝑡𝑛/4 ‖𝑓0‖𝐿2 .

Combining this with the dual inequality

‖𝑓‖𝐿2 ≤ 𝐶
𝑡𝑛/4 ‖𝑓0‖𝐿1

(which can also be proven from Nash’s inequality), we
obtain

‖𝑓‖𝐿∞ ≤ 𝐶
𝑡𝑛/2 ‖𝑓0‖𝐿1 .

This is the sharp 𝐿∞ estimate in short time. Now do all the
analysis again with 𝑓 replaced by 𝑓 𝑒−𝛼⋅𝑥, for some 𝛼 ∈ ℝ𝑛.
Error terms will arise in the differential equations, leading
to

𝑑
𝑑𝑡‖𝑓‖𝐿𝑞 ≤ −𝐾

𝑞 ‖𝑓‖1+𝛽𝑞/2
𝐿𝑞 ‖𝑓‖−𝛽𝑞/2

𝐿𝑞/2 + |𝛼|2𝑞
2𝜆 ‖𝑓‖𝐿𝑞 .

Iteration and the study of these ordinary differential
inequalities will lead to a similar bound on 𝑓 𝑒−𝛼⋅𝑥 as on
𝑓; after some optimization this will imply the Gaussian
bound.

As can be seen, the method is elementary, but beau-
tifully arranged, and obviously flexible. Whether in the
original version, or in themodern rewritings, Nash’s proof
is a gem; or, to use the expression of Newton, a beautiful
pebble.
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2    Notices of the AMs VoluMe 63, NuMber 1

“Perhaps the best undergraduate course, the course in which I learned the most, was the junior full 
year course in real analysis. The teacher was John F. Nash Jr. He was brilliant, arrogant, and eccentric. 
At this time he was in the midst of his spectacular work on embedding theorems, nevertheless, his 
course was meticulously prepared and beautifully presented. The course started with an introduction 
to mathematical logic and set theory and covered, with great originality, the central topics of analysis 
culminating in the study of differential and integral equations.”

Joseph J. Kohn, "Mathematical Encounters", All That Math, Real Sociedad Matemática Espa˜ nola, 2011.
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Nash and the NSA

At left: An excerpt from a six-page letter Nash wrote to the NSA describing a conjecture that captures the 
transformation to modern cryptography, which occurred two decades after he wrote this letter. 
At right: Diagrams Nash drew, as part of another multi-page letter to the NSA, describing an enciphering 
machine he invented.
Both formerly classified letters are now available in full at https://www.nsa.gov/public_info/_files/
nash_letters/nash_letters1.pdf.

Above are excerpts from two Nash letters that the National Security Agency (NSA) declassified and made public in 2012. 
In these extraordinary letters sent to the agency in 1955, Nash anticipated ideas that now pervade modern cryptography 
and that led to the new field of complexity theory. (In the obituary for Nash that appears in this issue of the Notices, page 
492, John Milnor devotes a paragraph to these letters.)

Nash proposed to the NSA the idea of using computational difficulty as a basis for cryptography. He conjectured that 
some encryption schemes are essentially unbreakable because breaking them would be computationally too difficult. He 
cannot prove this conjecture, he wrote, nor does he expect it to be proved, “[but] that does not destroy its significance.” As 
Noam Nisan wrote in a February 2012 entry in the blog Turing’s Invisible Hand (https://agtb.wordpress.com), “[T]his is 
exactly the transformation to modern cryptography made two decades later by the rest of the world (at least publicly…).”

Nash also discussed in the letters the distinction between polynomial time and exponential time computations, which 
is the basis for complexity theory. “It is hard not to compare this letter to Gödel’s famous 1956 letter to von Neumann 
also anticipating complexity theory (but not cryptography),” Nisan writes. “That both Nash and Gödel passed through 
Princeton may imply that these ideas were somehow ‘in the air’ there.”

The handwriting and the style of Nash’s letters convey a forceful personality. One can imagine that the letters might not 
have been taken seriously at first by the NSA. “I hope my handwriting, etc. do not give the impression that I am just a crank 
or a circle-squarer,” Nash wrote, noting that he was an assistant professor at the Massachusetts Institute of Technology.

After receiving a reply from the NSA, Nash sent another letter describing a specific “enciphering-deciphering machine” 
he had developed while at the RAND Corporation. At the Eurocrypt 2012 conference, Ron Rivest and Adi Shamir presented 
an analysis of the actual security level of Nash’s proposed machine and found it was not as strong as Nash had thought 
(www.iacr.org/conferences/eurocrypt2012/Rump/nash.pdf). Their conclusion: “John Nash foresaw in 1955 many 
theoretical developments which would appear in complexity theory and cryptography decades later. However, he was a 
much better game theorist than a cryptographer…”.

 
—Allyn Jackson
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Open Problems in Mathematics

Just before he left to collect his Abel Prize in Oslo in 
May 2015, Nash was working with Princeton postdoc 
Michael Th. Rassias to finish up the preface to an ex-
traordinary book they edited together called Open Prob-
lems in Mathematics. The book will be published later 
this year by Springer.

The book consists of seventeen expository articles, 
written by outstanding researchers, on some of the cen-
tral open problems in the field of mathematics today. 
Each article is devoted to one problem or a “constella-
tion of related problems,” 
the preface says. Nash and 
Rassias do not claim the 
book represents all of the 
most important problems in 
mathematics; rather, it is “a 
collection of beautiful math-
ematical questions which 
were chosen for a variety of 
reasons. Some were chosen 
for their undoubtable im-
portance and applicability, 
others because they consti-
tute intriguing curiosities 
which remain unexplained 
mysteries on the basis of 
current knowledge and 
techniques, and some for more emotional reasons. 
Additionally, the attribute of a problem having a some-
what vintage flavor was also influential in our decision 
process.”

Here is another taste of the book, this one from the 
introduction, titled “John Nash: Theorems and Ideas” 
and written by Mikhail Gromov: “Nash was solving 
classical mathematical problems, difficult problems, 
something that nobody else was able to do, not even to 
imagine how to do it… But what Nash discovered in the 
course of his constructions of isometric embeddings is 

far from ‘classical’—it is something that brings about a 
dramatic alteration of our understanding of the basic 
logic of analysis and differential geometry. Judging from 
the classical perspective, what Nash has achieved in his 
papers is as impossible as the story of his life… [H]is 
work on isometric immersions…opened a new world of 
mathematics that stretches in front of our eyes in yet 
unknown directions and still waits to be explored.”

Nash and Rassias first met in September 2014 in the 
common room of the Princeton mathematics building, 

Fine Hall. Nash was eighty-
six years old and probably 
the most famous mathema-
tician in the world, and Ras-
sias a twenty-seven-year-old 
Princeton postdoc who hails 
from Greece and had just 
finished his PhD at the ETH 
in Zurich. A chemistry devel-
oped between the two math-
ematicians and precipitated 
their collaboration on Open 
Problems in Mathematics. A 
Princeton News article that 
appeared on the occasion of 

Nash receiving the 2015 Abel Prize discussed Ras-
sias’s interactions with Nash (www.princeton.edu/
main/news/archive/S42/72/29C63/index.xml?sec-
tion=topstories). Rassias is quoted as saying: “Work-
ing with him is an astonishing experience—he thinks 
differently than most other mathematicians I’ve ever 
met. He’s extremely brilliant and has all this experience. 
If you were a musician and had an opportunity to work 
with Beethoven and compose music with him, it’d be 
astonishing. It's the same thing.”
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Rassias talks to 2014 Abel Laureate Yakov Sinai 
as 2015 Abel Laureate Nash looks on.
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