Fundamental Interactions

Zétényi Miklós

Elementary fermions

- · Neutrino oscillations and mixing matrix
- · Neutrino masses
- · Quark mixing
- · Baryon- and lepton number violation
- New forms of weak interaction

Discrete symmetries

- · Parity
- Time reversal and CP violation
- · CPT and Lorentz invariance

Properties of known basic interactions

- · QED
- · QCD
- · Gravitation

Neutrino oscillations

Neutrino oscillation \rightarrow different neutrino masses (Δm_{ij}^2) (Super-Kamiokande, 1998)

Mixing matrix (Maki-Nakagawa-Sakata-Pontecorvo, MNSP):

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \cdot \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \cdot \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Unknown parameters:

- θ_{13} mixing angle
- sign of Δm_{23}^{2}
- the phase $\boldsymbol{\delta}$

 $\delta{\neq}0 \rightarrow CP$ violation \rightarrow high intensity neutrino beams are needed

- super-beams (pion and muon decay)
- β beams (β decay of boosted radioactive ions pure flavour) CERN \rightarrow Frejus Underground Laboratory
- neutrino factories (decay of stored, accelerated muons)

Neutrino masses

Why so small?

- Majorana mass term (v and anti-v are identical)
- seesaw mechanism (beyond SM physics)
- v oscillation: only Δm_{ii}^{2} is measurable
 - sign of Δm ?
 - absolute magnitude of m ? fluctuations of microwave backgroung radiation $\rightarrow \Sigma m_{_{\rm l}} < 0.61 \mbox{ eV/c}^2$

Direct mass measurement:

 kinematics of β decay, electron spectrum close to the end point KATRIN (Karlsruhe, 2012-): triton β decay MARE (Milano, Genova, planned): ¹⁸⁷Re

Neutrino masses 2.

Neutrinoless double β decay – allowed if neutrinos are Majorana particles

Future experiments:

Name	Nucleus	Mass*	Method	Location		Expected start date	Expected final sensitivity (eV)
CUORE	130 Te	200 kg	Bolometric	LNGS	EU	2012	0.05-0.10
EXO-200	136 Xe	160 kg	Liquid TPC	WIPP	USA	2010	0.13-0.19
GERDA	^{76}Ge	35 kg	Ionization	LNGS	EU	2010	0.08-0.13
LUCIFER	82 Se	18 kg	Bolometric	LNGS	EU	2014	0.05-0.07
MAJORANA	76 Ge	30 kg	Ionization	DUSL	USA	2013	0.08 - 0.13
NEXT	136 Xe	100 kg	Gas TPC	LSC	EU	2013	u.e.
SNO+	¹⁵⁰ Nd	40 kg	Scintillation	SNOlab	CAN	2011	0.1
SuperNEMO	82 Se or 150 Nd	100 kg	Tracking, calorimetry	LSM	EU	2013	0.04 - 0.15

Experimental constraints on neutrino masses: (from neutrino oscillations)

$$\langle m_{ee} \rangle = \left\| U_{e1}^2 \right\| m_1 + \left| U_{e2}^2 \right| m_2 e^{i\phi_1} + \left| U_{e3}^2 \right| m_3 e^{i\phi_2} \right\|$$

Quark mixing

Unitarity of CKM matrix earlies questioned, but recently confirmed at the $6\cdot10^{-4}$ level (value of V_{us} shifted by 2.5 σ)

Measurement of CKM matrix elements:

- V_{us} precise measurement of K-decay branching ratios
- V_{ud} nuclear decays, free neutron decay, pion decay

Baryon and lepton number violation

Grand Unified Theories: baryon – lepton transitions are allowed, but B - L conserved \rightarrow proton decay, $p \rightarrow \pi^0 e^+$ allowed

if in addition neutrinos are Majorana fermions:

B - L is also violated \rightarrow baryon-antibaryon oscillations allowed

Family number violation

Family number is not conserved in SM due to mixing matrices

- neutrino oscillations are allowed
- Decays like $b \rightarrow s\gamma$ and $\mu \rightarrow e\gamma$ are allowed, but are suppressed by a factor $(\Delta m_v/m_w)^4$ – not yet observed

BR of $\mu^+ \rightarrow e^+\gamma < 1.2 \cdot 10^{-11}$ (MEGA at LAMPF, Los Alamos) MEG at PSI: 10⁻¹³ sensitivity is aimed

 $\tau \rightarrow 3\mu$ – upper limit for BR at LHC

Discrete Symmetries – Parity

Atomic parity violation

- correction to EM interaction due to the Z⁰ boson
 → atomic transitions otherwise forbidden
- strength is measured by the weak charge, $Q_W [Q_W(e) = -(1-4sin^2\theta_w)]$ e.g. ¹³³Cs: $Q_W^{exp} = 73.16\pm0.0049$, $Q_W^{theor} = 73.16\pm0.03$

 \rightarrow determination of θ_{w} at low energy

- effect increases with Z faster than Z³
 → high Z atoms
 ⁸⁷Fr trapping (LNL, TRIUMF, RCNP/CYRIC)
- single ions in radiofrequency traps KVI, Groningen: future Ra⁺ experiment

Discrete Symmetries – CP violation, Time reversal violation

CP and T violation are equivalent if CPT is conserved source: complex phase in CKM matrix

QCD θ term

– explain CP violation in K^0 and B^0 , but not baryon asymmetry

Permanent electric dipole moment of a fundamental quantum system

- electron: enhanced in heavy paramagnetic atoms
 - present limit: $d_e < 2.10^{-27} e$ cm using ²⁰⁵Tl, enhancement: $d_{Tl} = -585 d_e$
 - larger enhancement is expected in polar molecules (e.g. YbF, Imperial College, London)
- neutron:
 - present limit: $d_n < 3.10^{-26} e$ cm
 - future: ~ 10² factor improvement using ultracold neutrons (ILL Grenoble, PSI Villigen)
- nuclei: diamagnetic atoms
 - limit for Hg: $d_{\rm Hg} < 3.10^{-29} e$ cm
 - new experiments: ¹²⁹Xe (Princeton, TU Munchen),

²²⁵Ra (Argonne NL, KVI Groningen) etc.

Discrete Symmetries – CPT and Lorentz invariance

CPT theorem: CPT is conserved in local, causal, Lorentz invariant theories

Violation of CPT/Lorentz invariance occurs in theories unifying SM and gravity e.g. string theory: spontaneous breaking of Lorentz symmetry

- \rightarrow nonzero VEV of Lorentz tensors
- \rightarrow signals in high precision measurements at low energy

Alternative explanation of baryogenesis

Tests of CPT: comparison of mass and charges of particles and antiparticles

Known basic interactions – QED and fundamental constants

- Lamb shift
- magnetic moment anomaly, a = (g-2)/2 for electron and muon
- light hydrogen-like ions
- light few body atoms
- highly charged heavy ions
 - test QED in strong electric fields

Lamb shift of U⁹²⁺ has been measured in GSI

magnetic moment of a heavy ion (HITRAP in GSI)

- nonexponential orbital electron capture decay of ¹⁴⁰Pr and ¹⁴²Pm
- many electron atoms theoretical work needed
- variation of fundamental constants with time

e.g. optical clock measurement $\rightarrow 1/\alpha \cdot d\alpha/dt < 10^{\text{-17}}/$ year

Known basic interactions – QCD and hadronic atoms

- pion-pion and pion-Kaon system (DIRAC at CERN)
- pionic hydrogen, deuterium, ³He, ⁴He (PSI)
- Kaonic atoms, K⁻p, K⁻d, K⁻³He, K⁻⁴He (SIDDHARTA at LN Frascati)
 → nuclear bound states of K⁻ with few nucleons predicted
 planned experiments: AMADEUS at LNF, E15 at J-PARC
- antiprotonic atoms (planned experimets FLAIR at GSI)

Known basic interactions – Gravity

Test the equivalence principle for antimatter \rightarrow free fall of antimatter

- antineutron? no way to slow down
- antihydrogen: planned AEGIS experiment at CERN Antiproton Decelerator
 → measure the gravitational mass of anti-hydrogen with 1% precision

Non-Newtonian gravity – additional Yukawa term in Newton's law:

$$V(r) = -G \frac{mM}{r} (1 - \alpha e^{-r/\lambda})$$

motivation:

- theories containing large extra dimensions with bulk gauge field
- modification of gravity at small distances to explain the smallness of the cosmological constant

possible measurements:

- $\lambda < 10$ nm: neutron scattering
- larger λ: mechanical experiments (torsion pendulums)