Independence ratio of large girth regular graphs

Balázs Gerencsér Joint work with Endre Csóka

MTA Rényi Institute

MTA Cloud Workshop 2017 February 17

Structural properties of graphs

Structural properties of graphs

Size of independent sets

Independence ratio $\rightarrow 0.5$

Current target: 3-regular graphs

Current target: 3-regular graphs

Bollobás: Independence ratio < 0.46

Lower bound by constructing independent sets.

Lower bound by constructing independent sets.

Finding independent sets by local algorithms.

Local algorithms

Local algorithms

Consistent local output leads to global independent set.

"Roll a dice at each node."

"Roll a dice at each node."

"Roll a dice at each node." "Select if higher than all neighbors."

"Roll a dice at each node." "Select if higher than all neighbors."

Consistency of local algorithm:

only formal proof makes sense.

Consistency of local algorithm:

only formal proof makes sense.

Size of independent set, Independence ratio:

numerical estimates feasible, using MTA Cloud resources.

Calculations

Count nodes

Calculations

$\mathsf{Count} \ \mathsf{nodes} \to \mathsf{sample} \ \mathsf{nodes}$

Calculations

 $\mathsf{Count} \ \mathsf{nodes} \to \mathsf{sample} \ \mathsf{nodes} \to \mathsf{repeat} \ \mathsf{algorithm}$

Independence ratio

Algorithm

Algorithm Proof

Algorithm

Proof

Calculation

Algorithm Proof

Calculation Statistics

Algorithm Proof

Calculation Statistics $0.4??? \pm ?$

Thank you!