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Background information 

• Collaboration Spotting (CS) Platform (V2) used to 
process examples 

• CS is a Visual Analytics tool originally developed to 
analyse the technology landscape of key enabling 
technologies for the Particle Physics programme at 
CERN 
• Using Publications and Patent metadata 

• The CS Platform has been used to visualize other 
datasets: 
• CERN procurement data 

• Ceased assets in collaborations with the UN-UNCRI 

• Neuro-science data in collaboration with Wigner 
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Characteristics of Big Data 

• Huge quantity 

 

 

• Distributed sources 

 

 

• Complexity 

 

 

• Interconnectivity 

• Processing and storage  

 

 

• Access rights, security  

 

 

• Valuable information may be 

hidden behind complexity 

 

• Unravelling new knowledge 

 Data scientists are instrumental to analytics 

 Domain experts are at the heart of the reasoning process 
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Big Data is organised in networks 

• Document systems with metadata in 
Database 

• Database tables with metadata in 
schema 

Big Data is 
distributed 

• Connectivity not materialised due to 
the distributed nature of data sources 

• Connectivity relates to the 
understanding of the data 

Big Data is 
strongly 

interconnected 
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Big Data Intrinsic vs additional value 

• The additional value of Big Data comes from 

its interconnectivity 
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Relational DBMS 

Discrete data 

No-SQL 

Connected data 

Graph DB 

Conventional analytics Conventional + visual analytics 



Two Criteria: 

Bottom-up VS Top Down 

Discrete data VS highly interconnected data 
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Top-Down VS Bottom-up 

Typically hard sciences Empirical approach 

• Process driven 

• Hypothesis 

• Simulation software 

• Validation with real data 

• Review hypothesis 

 

• Experiments 

• Compare results with 

simulation 

• Data driven 

• Extract features from data 

• Generate hypothesis 

• Run what-if scenario 

• Validate with data 

 

• Big Data 

• Software for domain expert to 

make sense out of Big Data 
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Relational DBMS 

Discrete data 

No-SQL 

Connected data 

Graph DB 

Domain Expert 
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Domain expert vs Data scientist 

Source: JIOX: Intelligence Tradecraft & Analysis 

Domain expert 

Domain expert 

Software developer 

Software developer 

Cycle is managed by 

Data Scientist 
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• Experts have the knowledge 

• Data scientists have the skills 
 

Data scientists to build platforms that enable experts to 

perform analytics by themselves 

Domain expert  

• Bring analytics to experts 
•  “Understand” results of analytics 

•  “Instruct” computers to perform 

analytics according to findings 
 

Challenge   Bring domain experts  

at the centre of the visual analytics cycle 



What is required? 

• Support interconnectivity 

• Support Cross Domain applications 

Network Data and 
Domain 

independent 

• Support any combination of data sources 

• Support any combination of data structures 

Scalable and 
flexible 

• Support visualisation of network content 

• Support visualisation of analysis results 

Easily accessible 
and navigable to 

Experts 

• Support navigation of network content 

• Support queries of network content 

Enhance value of 
Data Network for 

Experts 
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Smart Data management  

concepts and tools 

Smart graphic management  

concepts and tools 

A Domain independent platform 



Smart Data Management 

• Complexity 

• Interconnectivity 

• Scalability 

• Multi dimensional 

Directed graphs are 
natural representations 

of large and 
interconnected 

datasets 

• Nodes’ labels 

• Compact graph structure 

• Graph query language 

• No schema evolution 

Schema is embedded 
in the data  

• Schema: labels and edges (interconnectivity) 

• Labels  Graph dimensions 

• Edges  Directed relationships between Labels 

• Data graph: vertices and edges 

• Vertices: data instances and dimension instances 

• Edges: Directed relationships between vertices 

Graphs of connected 
elements constitute 
multi-dimensional 

networks 

Graph Databases offer a natural support for storing network information 

 Label property graph data model 
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Building a Network from two data 

sources (Pub/Pat) 

Document metadata Graph of data types 

SCat: Journal category, Kw: Keyword, Org: Organisation,  

Cny: Country, Tech: Technology 
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Graph of Network 

T: Technologies, A: Pub/Pat, K: keywords, O: Organisations, C: Countries 13 



Data Graph & Graph Schema 

14 Technical challenges of using Big Data analytics 

Reachability Graph Graph of data network 



Building multi-dimensional networks 

File Systems Tables in 

DB 

Graphs in 

DB 

Processing/Populating/Labelling/Organising 

Multi-dimensional 

Network in 

GraphDB 

 No limitations on the sixe of a network! 15 Technical challenges of using Big Data analytics 



Combining data sources  Enriching 

networks  More interconnectivity 

 No limitations on the extension of the network’s schema! 

Schema: Graph of datatypes/labels 

Dimension: a datatype i.e. a node in the graph schema 

• Data sources 

• Publications/Patents 

• Citations 

• Institutions/Companies 

• Data sources 

• EU projects 

• Financial data 

• Geolocation data  
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Smart Graphic Concepts and 

Management tools 

• Retain complexity 

• Singularities 

• Clusters/communities/patterns 

Graphs are 
excellent for 
visualising 
networks 

• Vertex label, shape, size and colour 
to visualise properties of datasets 

• Edges colours to highlight clusters 

Graphs contain 
many visual 
information 

 Visualisation enhances the  perceptual reasoning potential of analytics 



Smart Graphic Concepts and 

Management tools(2) 

• Selecting network dimensions 

• Traversing network dimensions 

• Graphical queries 

• Time/Frequency evolution 

Maximizing 
human 

understanding 

• Viewing multiple data sources 

• Looking for collaborations 

• Sorting communities 

• Contextual visualisation & analytics 

Enhancing 
reasoning 
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Selecting Visualisation dimensions 

(Pub) (Pat) 

(Org) (Kw) 

(Cny) 

(Tech) 

(SCat) 

Reference dimensions for Analytics 
Pub: Publications, Pat: Patents (Attributes: Title and abstract are used for semantic searches) 

Visualisation dimensions of Analytics results: 
SCat: Journal category, Kw: Keyword, Org: Organisation and Cny: Country) 

Technology Search: Czochralski Silicon wafer 

Pub/Pat: documents found in search results 19 



Technology Search: Czochralski Silicon wafer 

Pub/Pat: documents found in search results 
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(SCat) (Org) 

Traversing Dimensions 

(Pub) (Pat) 

(Kw) 

(Cny) 

(Tech) 

(SCat) (Org) 

(Cny) 

(Kw) 



How to scale up the “graph” approach for very large multi-

dimensional networks? 
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Visual analytics features 

• Visual analytics does not replace Big Data 
analytics  Visualize results 

• Maintain visual perception quality and user 
interactivity 

• No matter the size  

• No matter the diversity (dimensions) 

• No matter the interconnectivity 
 

  Data sampling & filtering 

  Visualize subsets of network dimensions 
  View data from different perspectives 
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Visual analytics Needs 

• Visualize part of data network with respect to 

particular references and from different perspectives 

• Reference: Data dimensions (labels) 

• Perspective: Visual dimensions (labels) 

• Need to navigate across visual dimensions 

• => Visual queries 

• Need to get contextual statistics  

• In the context of a particular view 

• Need to change Data Reference while navigating 

• Queries adapted to change of reference 
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Visual analytics Features (2) 

• Structural vs Behavioural 
• Understand from the data how something is working 

• Visualization 
• Maximum number of collaborations that can be processed 

(~100k) to feed visualization 

• Maximum number of vertices and edges one can visualize 
within a graph (~ 10k) 

• Maximum number of Clusters one can visualize within a 
graph (~10k) 

• Data quality 
• Can the data be trusted?  

• How complete is the dataset under study? 
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Visual analytics Needs(2) 

• Need to visualize processes, interactions in 
addition to structure of data network 
• Connectivity graphs AND 

• Causality graphs  directed edges 

• For large graphs: 
• Replace vertices with communities in complex graphs 

• Compound graph approach 

• For graphs built out of large collaborations 
• Replace 2-adic calculations with m-adic 

• Example 
• Neuro science: paths of length 2 to visualize 

input/process/target flows 
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Reduce visual complexity & faster graph 

processing: Hyperedges vs edges 

Edges vs hyper-edges 
Technology search: BGO Crystals 

Pub/Pat: documents found in search results 

Organisation landscape hypergraph view Organisation landscape graph view 
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Tailor visualisation to data 

• STRATEGY: Combining various techniques to 

support quality visual perception and user 

interactions according to data and graph sizes 

• Statistics 

• Data sampling & Reduction 

• Compound graphs 

• 2-adic vs n-adic node-link graph representation 
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Combining techniques for visualisation 
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Visual Data 

Analysis: 

Compute 

Collaborations 

# 

collabo-

rations 

too 

large? 

Community 

Processing: 

Compute Compound 

Graph 

Can 

graph 

be 

layered

? 

Visual Data 

Analysis: 

Build statistics 

No 

Yes 

Yes 

No 

Visual Data 

Analysis: 

Filter/Reduce 

dataset 

Objective: Reduce dataset and graph content with very minimal loss in visual perception 

# 

clusters 

too 

large? 

No 

Yes 

# 

vertices 

too large 

Visual Analysis: 

Display Graph with 

vertices 

Visual Analysis: 

Display Graph with 

clusters as vertices 

Yes No 

Visual Data 

Analysis: 

Data 

Reduction/Sampling 

Visualize 

Data 

anyway? 

Yes No 

Community 

Processing: 

Compute clusters 



Computing requirements for visualization 

• Service users within a few seconds 

• Heavy computing at the backend to process 
clusters, optimize layout and support visual 
navigation 

• Need for Cloud computing 

• Using machines with 4 CPU cores (8 threads), 8 
GB of memory 

• CPU vs GPU 

• Comparing them using consumer level hardware 
(Intel Core i7, GeForce GTX 980) 
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Computing requirements for visualization 

• Computation on the CPU 

• Graphs with tens of thousands of nodes and 
hundreds of thousands of edges, computing requires 
~17 seconds. 

• Further optimization can be achieved by further 
distributing the computation among multiple 
machines 

• Computation on the GPU 

• Same graphs compute ~8 times faster (~2 seconds) 

• Distribution among multiple GPUs is a further 
possible optimization  
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Computing requirements for visualization 
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The macaque case 
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g0: directed graph of brain area 

interconnectivity* 

(42 vertices = areas, 601 edges= interactions)  

*Data/slide: L. Négyessy, A. Fülöp 

g2: directed graph of cortical interactions*  

(Input/Processing/Target) 

(9869 vertices = IPT flows, 166219 edges = common 

interactions)  

g2 is too large for 

visual perception 

Communities 

172 clusters 

10668 edges 

Technical challenges of using Big Data analytics 



Constructed Reachability Graph 

33 Macaque brain network data: optimal for navigation 

Brain 

Area 

Cerebral 

lobe 

Modality 

L2_path 
ProcessType 

InterLobe 

g0 edges 

g2 edges 

g2  g0 connections 

Input Area 

Processing Area 

Target Area 

Are “type of processing” and “Interactive lobe” 

- Vertex attributes? 

- Visual dimensions? 



g0 graph 
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g2 (with intercluster edges) 
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g2 (paths of length 2) 



Community_61 Egocentric 
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Community_61 
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Community_61 
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Conclusion 

• To visualize Big Data Analytics output you need: 
• Graphs to store your data networks and their schema 

• Graphs to view network structure through selected dimensions 

• Graphs to navigate across dimensions to provide contextual 
data to visualisation tools 

• To maintain visual perception you need to combine 
various techniques 
• Statistics, sampling, compound graph, layered graph 

• To support structural and behavioural visualisation 
you need to explore 
• Clustering algorithms supporting directed edges 

• Processes, interactions in relation with the data 
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Thank you for your attention! 


