Nuclear astrophysics research in ATOMKI

György Gyürky Institute of Nuclear Research (ATOMKI) Debrecen, Hungary

NuPECC meeting, October 7-8, 2011, Budapest, Hungary

Research activities of the nuclear astrophysics group of

The LUNA collaboration

- Italian-German-British-Hungarian collaboration
- Operates the only underground accelerator of the world at LNGS, Gran Sasso, Italy
- Measurement of extremely low cross sections of astrophysical reactions

Reactions studied at LUNA

The importance of ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$

pp-chain of Hydrogen burning, solar neutrinos

Υ SuperK, SNO 1012 1011 Bahcall-Serenelli 2005 pp→±1% Neutrino Spectrum $(\pm 1\sigma)$ 1010 D/H $\pm 10.5\%$ ²Be→ 10 9 ⁷lux (cm⁻² s⁻¹) 10 8 ³He/H peþ 10 +16%10 ⁷Be $\pm 10.5\%$ 10 5 10 4 7Li/H hep→ ±16% 10³ 10 ² 10 ¹ – 0.1 10 Neutrino Energy in MeV

big-bang nucleosynthesis, ⁷Li problem

Old data of ³He(α,γ)⁷Be S-**High uncertainty Ambiguous results** 0.700 Nagatani 1969 Parker 1963 Krawinkel 1982 0.600 Robertson 1983 Osborn 1984 S factor [keV barn] Osborn act. 1984 Hilgemeier 1988 0.500 Nara Singh 2004 on-line activation 0.400 0.300 0.200 500 1000 1500 2000 0 E_{c.m.} [keV] pp-chain big bang 6

The LUNA of ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ measurements

Low energies never reached before = 92 – 170 keV)

- With both activation and in-beam methods (good agreement found)
- ✓ With high precision (<5%)</p>

The LUNA results

D. Bemmerer *et al.*, Phys. Rev. Lett. **97** (2006) 122502
Gy. Gyürky *et al.*, Phys. Rev. C **75** (2007) 035805
F. Confortola *et al.*, Phys. Rev. C **75** (2007) 065803

ERNA ³He(α , γ)⁷Be experiment

ERNA Results

A. di Leva et al., Phys. Rev. Lett. **102** (2009) 232502

³He(α , γ)⁷Be: outlook

- new measurements in ATOMKI
- high energy activation and indirect measurements (ANC)

The p-process nucleosynthesis

- Secondary process initiated on s- and r-seeds
- Several sub-processes involved
- Most important: γ -process (γ -induced reactions)
- Models are not able to reproduce the observed p-isotope abundances

Data needs for the p-process

- Astrophysics: stellar environment
 - temperature
 - density
 - seed abundances
 - time scale
 - □ etc...

- Nuclear physics
 - masses
 - decay properties
 - reaction rates!!!

Reaction rates:

- based on theory
- very few experimental data
- high uncertainty
- experiments highly needed

Experiments

- Alpha-induced reations: 8-15 MeV
 - \Rightarrow Cyclotron

- Proton-induced reactions: 1-4 MeV
 - \Rightarrow Van de Graaff

Capture reaction cross section measurements

Comparison with theory

Z. Halász et al., in prep.

Fine tuning of parameters

G.G. Kiss et al., Phys. Rev. Lett. 101 (2008) 191101

Direct determination of alphanucleus optical potential

- High precision elastic scattering experiments
- Low energies (around Coulomb-barrier)
- Comparison with global optical potentials
- Construction of local potentials
- Experiments: cyclotron of ATOMKI

Capture and scattering experiments

P-process: Outlook

further needs for experimental data
 recognized by the scientific community

European Research Council

-Supporting top researchersfrom anywhere in the world

For further information...

http://www.atomki.hu/atomki/IonBeam/nag/index_en.html

Magyar verzió 💳

Staff/Contacts

Facilities

Home

Photo gallery

Collaborations

ERC grant

Welcome to the Website of the

Nuclear Astrophysics Group

Welcome to the homepage of the Nuclear Astrophysics Group of ATOMKI. Our group has been founded by Prof. Endre Somorjai and became one of the two research groups of the Section of Ion Beam Physics. Since its foundation, NAG represents experimental nuclear astrophysics among the walls of ATOMKI. In these pages you will find detailed information about our past and present activities, collaborations and group members. Have a nice browsing!