

Nuclear physics in Debrecen

Attila Krasznahorkay

Our first director (Alexander Szalay) was a postdoc of Lord Rutherford in Cambridge at 1936

A. Szala Recent P. Iv. 8. J. Csika

reoreticneskoj riziki 55 (1958) 107

A. Szalay, J. Csikai: The Recoil Effect Of The Neutrino In The Beta-Decay Of He6. Int. Conf. On Mesons And Recently Discovered Particles E 43 Congresso Nazionale Di Fizica, Padova-Venezia, 22-28 Settembre 1957. P. Iv. 8. Societá Italiana di Fisica, Padova 1 (1958) 1.

J. Csikai, A. Szalay: The Electron Neutrino Angular Correlation In The Beta-Decay Of He6. Comptes rendus du congres international de physique nucleaire. Interations nucleaires aux basses energies et structure des noyaux, Paris, 7-12 Juillet, 1958. Paris, 1 (1959) 840.

A. Szalay, J. Csikai, J. Bacsó: Critical comments on the investigation of the electron-neutrino angular correlation by the cloud chamber method. Acta Physica Academiae Scientiarum Hungaricae 13 (1961) 437.

MGC Cyclotron of ATOMKI An efficient and versatile tool for research and applications

	Main b	eam paramete					
<u>Particle beam</u> [mA]		Energy [MeV]	<u>Intensity</u>	The			
pr de He alı	oton euteron e-3 pha	2.5 - 18 1 - 10 4 - 26 2 - 20	40 40 10 20				
Energ 3*10- Energ	gy spread o 3 gy spread o	of extracted bean of analyzed beam					
Exter	nal target	locations: 8 hori	zontal				
			Ma	ain fields of utilization			
	Physics application	<u>s research</u> ons	Medi	ical applications			
	Nuclear s	spectroscopy	SP	'ECT-isotopes			

Physics research applications				Medical applications				<u>Industrial</u>							
Nuclear spectroscopy					SPECT-isotopes				TLA for wear						
Nuclear astrophysics irradiations				PET-isotopes				CVD Diamond							
Nuclear data measurements				S	Target technology			Radiation							
		1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	Average
Total time Beam on target	h h	3946 1168	4096 1520	4265 1792	4227 1685	4300 1803	4084 1791	4051 1973	3554 1086	3302 1353	3445 1690	2951 1061	2302 1239	2009 1242	3579 1493
Maintenance Breakdowns Availability	% % %	11 2 87	18 1 81	7 2 91	9,5 0,5 90	11,2 1,5 87,3	11 0,4 88,6	9 0,1 90,9	12,6 2 85,4	12,7 1,3 86	12,8 1,8 85,4	11,6 1,5 86,9	13,6 3,4 83	16,3 0,1 83,6	12,0 1,4 86,6
Cyclotron on Beam tuning Beam on target	% % %	45 15 30	47 10 37	55 13 42	51 11 40	48,3 6,3 42	50,7 6,8 43,9	54,8 6,2 48,7	36,6 6 30,6	46,8 5,8 41	54,3 5,3 49	41,8 5,8 36	59,4 5,6 53,8	68,6 6,8 61,8	50,7 8,0 42,8

Nuclear- and astrophysics Laboratory

(http://www.atomki.hu/muszerek/fa

K value	80 (26)
Angle of the focal plane	450
Length of the focal plane	120 cm
Length of the Si detector	72 cm
resolution	1 mm
bending radius	40 - 90 cm
Max field	1.6 (0.8) T
Max solid angle	5.4 msr
Energy range Emax/Emin	4.8
Horizontal magnification	0.34
Vertical magnification	1.7 - 3.3
Energy dispersion	10 mm/%

Impact of the results for ²³⁹Pu: electromagnetic or γ component

A. Algora, Phys. Rev. Letts. 105, 202505 (2011)

Development of a new Time-of-Flight neutron spectrometer (LENA) in Atomki for studying Giant Resonances and neutron skins

Isovector GR's in unstable nuclei

NEUTRON SKIN

Experiments at GSI, Germany

Recent prosals

- \cdot T. Aumann (S393) Neutron-rich Nuclei at and Beyond the Dripline in the Range Z=4 to
- Z=10Studied in Kinematically Complete Measurements of Direct Reactions at Relativistic Energies
- · N. Kalantar (E105) Start up of part of the EXL physics program with 56Ni
- \cdot R. Reifarth (S405) 64Ni(p,n) reaction measurements in inverse kinematics at the LAND/R3B setup in Cave C
- \cdot A.Krasznahorkay (S408) Constraining the symmetry energy of the EoS by precise neutron-skin thickness measurements
- \cdot T. Aumann (S412) Isovector and isoscalar electric dipole and quadrupole response of neutronrich Sn nuclei

Energy resolution (5.5
MeV for α-particles)2%Efficiency for protons70%Efficiency for α-particles50%

Motivations in detector R&D:

- Traditions of instrumental developments in ATOMKI production of state-of-the-art detectors and electronics
- Involvement of researchers in physics at large-scale facilities Contributions to 'mile-stone' experiments abroad and at home (study of nuclei under extreme conditions: super- and hyperdeformation, neutron-skin and halo, etc)

doi:10.1038/nature09644

Evidence for a spin-aligned neutron-proton paired phase from the level structure of ⁹²Pd

B. Cederwall¹, F. Ghazi Moradi¹, T. Bäck¹, A. Johnson¹, J. Blomqvist¹, E. Clément², G. de France², R. Wadsworth³, K. Andgren¹, K. Lagergren^{1,4}, A. Dijon², G. Jaworski^{5,6}, R. Liotta¹, C. Qi¹, B. M. Nyakó⁷, J. Nyberg⁸, M. Palacz⁵, H. Al-Azri³, A. Algora⁹, G. de Angelis¹⁰, A. Ataç¹¹, S. Bhattacharyya²†, T. Brock³, J. R. Brown³, P. Davies³, A. Di Nitto¹², Zs. Dombrádi⁷, A. Gadea⁹, J. Gál⁷, B. Hadinia¹, F. Johnston-Theasby³, P. Joshi³, K. Juhász¹³, R. Julin¹⁴, A. Jungclaus¹⁵, G. Kalinka⁷, S. O. Kara¹¹, A. Khaplanov¹, J. Kownacki⁵, G. La Rana¹², S. M. Lenzi¹⁶, J. Molnár⁷, R. Moro¹², D. R. Napoli¹⁰, B. S. Nara Singh³, A. Persson¹, F. Recchia¹⁶, M. Sandzelius¹†, J.-N. Scheurer¹⁷, G. Sletten¹⁸, D. Sohler⁷, P.-A. Söderström⁸, M. J. Taylor³, J. Timár⁷, J. J. Valiente-Dobón¹⁰, E. Vardaci¹² & S. Williams¹⁹

Members of the Hungarian team

¹Department of Physics, Royal Institute of Technology, SE-10691 Stockholm, Sweden. ²Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DSM – CNRS/IN2P3, F-14076 Caen Cedex 5, France. ³Department of Physics, University of York, York YO10 5DD, UK. ⁴Joint Institute for Heavy-Ion Research, Holifield Radioactive Ion Beam Facility, Oak Ridge, Tennessee 37831, USA. ⁵Heavy Ion Laboratory, University of Warsaw, O2-093 Warsaw, Poland. ⁶Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland. ⁷Institute of Nuclear Research of the Hungarian Academy of Sciences, ATOMKI, H-4001 Debrecen, Hungary. ⁸Department of Physics and Astronomy, Uppsala University, SE-75121 Uppsala, Sweden. ⁹IFIC, CSIC, University of Valencia, E-46071 Valencia, Spain. ¹⁰Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy. ¹¹Department of Physics, Ankara University, 06100 Tandogan Ankara, Turkey. ¹²Dipartimento di Scienze Fisiche, Università di Napoli and Instituto Nazionale di Fisica Nucleare, I-80126 Napoli, Italy. ¹³Department of Information Technology, University of Debrecen, H-4010 Debrecen, Hungary. ¹⁴Department of Physics, University of Jyväskylä, FIN-40014 Jyväskylä, Finland. ¹⁵Instituto de Estructura de Ia Materia, CSIC, E-28006 Madrid, Spain. ¹⁶Diparimento di Fisica dell'Università di Padova and Instituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35122 Padova, Italy. ¹⁷Université Bordeaux 1, CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux Gradignan, F-33175 Gradignan, France. ¹⁸The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark. ¹⁹TRIUMF, Vancouver, British Columbia V6T 2A3, Canada. [†]Present addresses: VECC, 1/AF Bidhan Nagar, Kolkata 700064, India (S.B.); Department of Physics, University of Jyväskylä, FIN-40014 Jyväskylä, Finland (M.S.).

11 clovers, select _{YY}-coincidences

80 CsI, reject charged-particle channels

ZCO (channel number)

First identification of excited states in 92Pd

Interpretation: New spin-aligned np coupling scheme in 92Pd

- energy-systematics can only be reproduced by assuming T=0 isoscalar np-pairing;
 (g9/2)-2, "fully aligned" Jπ = 9+ pn pairs are doined (strong attractive pn-interaction: overlap)
 such Jπ = 9+ pairs couple into deuteron-like, T=0 isoscalar pn-pairs had dominance in determining the structure in the structure
 - : coupling of "fully aligned" pn-

W. opposit spin (np-quartets) Ch. Qi et al.: Phys. Rev. C84,021301(R) 2011

spin-alignment of the Quartets Phys. Rev. 161,(1967) 1034]

92Pd: 100Sn – 4n, – 4p 96Pd: 100Sn – 4p pn-hole quartets pp-hole pairs n-s & p-s all in g9/2 !

B(E2)'s should be measured!

J = 0

Volume470 cm3Efficiency (@ 1332 keV, in add-back mode)125 %Energy resolution (@ 1332 keV)~ 2.2 keVCompton supression~ 3

Time resolution	< 1 ns
Angular resolution	< 30
Energy resolution	< 10%
Coincidency ef	

Searching for a new elusive boson in nuclear transitions

2 7

A <u>Compact Positron Electron spectrometer</u> (COPE) for internal pair creation studies (ENSAR support)

File prefix: cope2.POU Plot type: Vector Quantity: |B| (tesla)

carbon fibre tube

Experiments at GANIL, France

T.o.f

ypical research topics we were (are)

Recentl prosals

Experiments at RIKEN, Japan

Experiments in Osaka, Japan

The relative energy

resolution is the best in the world ($\Delta E/E \approx 10\text{-}5$).

Nuclear-structure data evaluation

NSDD - International Network of Nuclear Structure and Decay Data Evaluators

<u>Coordinates</u>: IAEA <u>Led by</u>: Brookhaven Nat. Lab. <u>Activity</u>: critical evaluation of nuclear structure and decay data and their publication in the ENSDF online database and in Nuclear Data Sheets

Nuclear Data

Sheets

Aim: to provide ftestar chers and applications with up to date reliable not shake to cate A = 101 - 105 Results: from 2009 2 masser fans (20 appendix)

Available online at www.sciencedirect.com

Nuclear Data Sheets for $A = 50^{\circ}$

ZOLTAN ELEKES AND JANOS TIMAR

Institute of Nuclear Research (ATOMKI), Pf. 51, 4001, Debrecen, Hungary

BALRAJ SINGH

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada.

(Received September 29, 2009; Revised October 20, 2010)

Instruct. The apprimental andre spectroscopic data for known multikes of mass number 50 (CLA,KL,KL,KL, C.M.KL,CLA,ML, We have related and presented together with Adopted properties for Invites and τ rays. This evaluation has been carried and about 15 years after the presence sub-37 Human Burrers (1958)KD, This relation has been carried and about 15 years after the presence sub-37 Human Burrers (1958)KD, This relation has been carried and about 15 years after the presence sub-37 Human Burrers (1958)KD, This relation has been carried and about 15 years after the presence sub-37 Human Burrers (1958)KD, The relation of the presence of the presence

ENSDF DATA EVALUATION CENTERS (www.nndc.bnl.gov/nsdd/Datacenters)

National Nuclear Data Center Brookhaven National Laboratory Upton, NY 11973, U.S.A. Contact: J. K. Tuli e-mail: Tuli@BNL.Gov

- Nuclear Data Project Oak Ridge National Laboratory Oak Ridge, TN 37831, U.S.A. **Contact: M. S. Smith** e-mail: MSmith@ORNL.Gov
- c. Isotopes Project Lawrence Berkeley National Laboratory Berkeley, CA 94720, U.S.A. **Contact: R. B. Firestone** e-mail: rbf@LBL.Gov
- d. Triangle University Nuclear Lab. Duke University Durham, NC 27706, U.S.A. **Contact: J. H. Kelley** e-mail: kelley@tunl.duke.edu
- e. Argonne National Laboratory 9700 South Cass Ave. Argonne, IL 60439-4815, U.S.A. **Contact: F. G. Kondev** e-mail: kondev@ANL.Gov
- f. Indian Institute of Technology, Department of Physics, Roorkee Uttaranchal 247667 India Contact: A. K. Jain e-mail:ajainfph@iitr.ernet.in

Nuclear Data Center Petersburg Nucl. Phys. Inst. Academy of Sciences of Russia Gatchina, Leningrad Region, 188 350, Russia **Contact: I. A. Mitropolsky** e-mail: mitrplsk@pnpi.spb.ru

g.

h. Institute of Atomic Energy P.O. Box 275 (41), Beijing, PRC **Contact: Ge Zhigang** e-mail: gezg@iris.ciae.ac.cn

> Jilin University, Physics Dept. Changchun 130023, PRC **Contact: Huo Junde** e-mail: jdhuo@mail.jlu.edu.cn

- i. Centre de Spectrometrie Nucleaire et de masse Bat 104-108 F-91405 Orsay Campus, France Contact: J. Blachot e-mail: jblachot@orange.fr
- j. Nuclear Data Center Japan Atomic Energy Agency 2-4 Shirakata-shirane Tokai-mura, Naka-gun Ibaraki-ken 319-1195, Japan Contact: J. Katakura e-mail: katakura.junichi@ jaea.go.jp

Physics Department Kuwait University P.O. Box 5969 Kuwait, Kuwait **Contact: A. Farhan** e-mail: Ameenah@ kuc01.kuniv.edu.kw

k.

- 1. Dept. of Physics and Astronomy McMaster University Hamilton, Ontario L8S 4M1 Canada **Contact: B. Singh** e-mail: ndgroup@mcmaster.ca
- m. Australian National University Dept. of Nuclear Physics Canberra ACT 0200, Australia **Contact: T. Kibedi** e-mail: Tibor.Kibedi@anu.edu
- Institute of Nuclear Research Hungarian Academy of Sciences Bem ter 18/c, P.O. Box 5, 4001 Debrecen, Hungary Contact: J. Timar e-mail: timar@mamafia.atomki.hu,

A-Chain Evaluation Responsibility

Center	Mass Chains	Center	Mass Chains
a. US/NNDC	45-50,57,58,60-73(ex 62-64),82-88 (ex	g. Russia/StP	130-135,146
	83), 94-97, 99, 118, 119, 136-148, 150,	h. PRC	51-56,62,63,195-198
	152-165 (ex 164),	i. France	113-117
	180-183,185,189,230-240,>249	j. Japan	120-129
b. US/NDP	241-249	k. Kuwait	74-80
c. US/LBL	21 - 30, 59, 81, 83, 90 - 93, 166 - 171, 184, 186,	1. Canada	1,31-44,64,89,98,100,149,
	187,191-193,210-217		151,164,188,190,194
d. US/TUNL	2-20	Australia	172-175
e. US/ANL	106-112,176-179,199-209	n. Hungary	101-105
f. India	218-229	0.1	

Publications with authors (coauthors) from Atomki

