Interferometer-based white light measurement of neutral rubidium density and gradient at AWAKE

Fabian Batsch, Erdem Öz, Mikhail Martyanov CERN / TUM / Max-Planck-Institute for Physics

2nd Wigner - AWAKE Workshop, Budapest, May 5, 2017

SPONSORED BY THE

Federal Ministry of Education and Research

- Motivation and requirements
- Measurement method
- Achieved accuracy
- Measurements at AWAKE
- > Summary

Motivation

- Central part in AWAKE: 10 m long rubidium plasma source, n = 10¹⁴ 10¹⁵ cm⁻³
- Full laser-ionization of Rb vapor -> plasma with same density
 → Measure instead vapor density at both ends
- Linear density ramp of 0-10 % in plasma cell used to optimize e⁻ acceleration process
- Gradient set and controlled by Rb reservoir temperatures at both cell ends with better 1 % accuracy

 \rightarrow Goal: Measure optically Rb vapor density at both ends with ± 0.5% relative accuracy and in a fully automated way

Motivation

- Central part in AWAKE: 10 m long rubidium plasma source, n = 10¹⁴ 10¹⁵ cm⁻³
- Full laser-ionization of Rb vapor -> plasma with same density
 → Measure instead vapor density at both ends
- Linear density ramp of 0-10 % in plasma cell used to optimize e⁻ acceleration process
- Gradient set and controlled by Rb reservoir temperatures at both cell ends with better 1 % accuracy

→ Goal: Measure optically Rb vapor density at both ends with ± 0.5% relative accuracy and in a fully automated way

Motivation

- Central part in AWAKE: 10 m long rubidium plasma source, n = 10¹⁴ 10¹⁵ cm⁻³
- Full laser-ionization of Rb vapor -> plasma with same density
 → Measure instead vapor density at both ends
- Linear density ramp of 0-10 % in plasma cell used to optimize e⁻ acceleration process
- Gradient set and controlled by Rb reservoir temperatures at both cell ends with better 1 % accuracy
- \rightarrow Goal: Measure optically Rb vapor density at both ends with ± 0.5% relative accuracy and in a fully automated way

- Motivation and requirements
- Measurement method
- Achieved accuracy
- Measurements at AWAKE
- > Summary

Properties of Rb Vapor

- Vapor temperatures of 150°C to 200°C, corresponding to a density range of 10¹⁴ - 10¹⁵ cm⁻³
- Vapor density n(T) from vapor pressure curve (5% abs. accuracy):

Fig. Rb Vapor temperature plotted versus its density

- Optical transitions from ground state at 780.24 nm (D₂ line) and 794.98 nm (D₁)
- Anomalous dispersion and absorption in their vicinity

<u>Fig.</u> Index of refraction for $n = 9.8 \cdot 10^{14} \text{ cm}^{-3}$

Measurement Method

- Use interferometry and the <u>hook</u> <u>method adapted to vertical fringes</u>
- Main set-up components: coherent white light source, Mach-Zehnderinterferometer and spectrometer
- Optical single mode fibers guide light
- Fiber collimators allows for free space $I_1(\lambda)$ travel through Rb

<u>Fig.</u> Setup of the fiber-based Mach-Zehnder Interferometer Fringes equidistant for $n_{Rb} = 0$

With Rb vapor, anomalous dispersion causes density-dependant change in periodicity of interference maxima.

May 05, 2017

2. Wigner - MPP - AWAKE Workshop

Analyze intensity spectrum I_{tot}:
 Use 1D spectrograph

 $I_{tot}(\lambda) = I_1(\lambda) + I_2(\lambda) + 2\sqrt{I_1(\lambda)I_2(\lambda)}\cos(\Delta\varphi)$

Before fit, normalize intensity spectrum to compensate inhomogeneous light distribution (caused by light source, light transport in fiber):

Normalization by recording arm spectra or by spectrograph signal conditioning using FFT (by M. Martyanov, does not require reference spectra / noise filtered) possible

Analyze intensity spectrum I_{tot}:
 Use 1D spectrograph

 $I_{tot}(\lambda) = I_1(\lambda) + I_2(\lambda) + 2\sqrt{I_1(\lambda)I_2(\lambda)}\cos(\Delta\varphi)$

Before fit, normalize intensity spectrum to compensate inhomogeneous light distribution (caused by light source, light transport in fiber):

Areas ignored by fit

CERN

2. Wigner - MPP - AWAKE Workshop

May 05, 2017

CERN

F. Batsch

Norm. by FFT

Automation of the system at CERN:

- Laser: runs with constant power 24/7
- Interferometer: Flippers in both arms, to block and record arms separately, path length difference constant for all measurements
- Spectrograph: Remotely controlled, software acquires data with both spectrographs simultaneously, saved on local computer
- Data analysis: CERN FileReader reads-in up- and downstream data for density calculation (done in a FESA class) -> density displayed in control room, density-time file saved in data base (implementation ongoing)

- Motivation and requirements
- Measurement method
- Achieved accuracy
- Measurements at AWAKE
- > Summary

Two different Rb test cells at MPP:

- Oil-heated Rb reservoir with a temperature stability of 0.1 K
- Vapor column length / = 8 cm

E. Öz, F. Batsch, P. Muggli, Nuclear Instruments & Methods in Physics Research A (2016), http://dx.doi.org/10.1016/j. nima.2016.02.005 Electrically heated pipe system with I = 51 cm and valves to control Rb flow

Evaluation of the absolute accuracy

Norm. by arm spectra

> Absolute accuracy measured by using a temperature - stabilized Rb vapor source:

From vapor pressure curve:

Gradient determination accuracy:

Norm. by arm spectra

Crucial point: Measure not one, but two density - length products with the same accuracy < ± 0.5% <-> determine density gradient at (sub-) % level

- Idea: Probing the same Rb vapor with two independent measurement setups to simulate to equal vapor column length
- Interferometer test setup:

Results for the relative accuracy:

Norm. by arm spectra

Record images at const. n, arm 1 (2) corresponds to spectrograph 1 (2):

 \checkmark Result: Both measurements differ by 0.1 % (up to 0.3 %, depending on temperature):

- Motivation and requirements
- Measurement method
- Achieved accuracy
- Measurements at AWAKE
- Summary

The AWAKE facility:

- Basic setup:
 - Two interferometer at each cell end
 - Laser and spectrographs located in electronics gallery to protect hardware from radiation, 120 m fiber length guide light between rack and cell ends
 - Remote control, display spectrograph images & densities in control room Rack with

Rack with laser, filter and spectrograph

Fiber path schematic:

Situation equivalent for both ends:

Installation at AWAKE:

Optic holder legs and diagnostic window:

Setup photos downstream:

Applications:

- Measured Rb density downstream during Dec run
- Determine vapor cells (long-term) density stability
- Vapor cell calibration: set temperature in reservoir measured density in the beam pipe

• During run: density live on fixed display in control room

Results from Dec run:

> Measured density vs time (t = $0 \sim 12/12/16$, 00:00 Geneva time)

Results from Dec run:

Measured density downstream over time (t = 0 ~ 12/12/16, 00:00 Geneva time,

Norm. by FFT

 Determine measurement uncertainties at stable density by recording 50 images over short time (< 10 sec)

Measurements:

Norm. by FFT

• Long-term stability:

Measurements:

• Vapor cell calibration: correlation between temperature set in Rb reservoir and measured Rb vapor density

Norm. by FFT

• Density over time: cell filling (cell hot, open Rb valves (1% accuracy))

Applications:

Norm. by FFT

• Density over time: cell emptying for both ends (0.25% accuracy)

- Use Mach-Zehnder Interferometer / White light interferometry
- Normalization of spectra + nonlinear least-square fitting routine, giving 0.3 % rel. accuracy.
- Measure Rb vapor density gradient with two interferometers at both ends, laser / spectrograph and cell separated -> light transport in 120 m fibers
- Use at AWAKE: last Dec, now remotely controlled. E.g for cell characterization
- Automated and density diagnostic during future runs.

SPONSORED BY THE

Federal Ministry of Education and Research

*

Thank you!

1VIdy US, 2017	May	05,	2017
----------------	-----	-----	------

2. Wigner - MPP - AWAKE Workshop

SPONSORED BY THE

Federal Ministry of Education and Research

Back-up slides

May	/ 05,	2017

2. Wigner - MPP - AWAKE Workshop

Fiber specification :

Nufern 780-HP:

Optical Specifications

Operating Wavelength	780 – 970 nm
Core NA	0.130
Mode Field Diameter(Gaussian)	5.0 ± 0.5 µm @ 850 nm
Cutoff	730 ± 30 nm
Core Attenuation	≤ 4.0 dB/km @ 780 nm

Geometrical & Mechanical Specifications

Cladding Diameter	125.0 ± 1.0 μm
Core Diameter	4.4 µm
Coating Diameter	245.0 ± 15.0 μm
Coating Concentricity	< 5.0 µm
Core/Clad Offset	≤0.50 µm

NKT SuperK Compact Laser

450-2400 nm
> 110 mW
> 25 mW
± 2.0 %
Variable 1 Hz to minimum 20 kHz
Variable 1 Hz to minimum 20 kHz < 2 ns
Variable 1 Hz to minimum 20 kHz < 2 ns < 2 µs (rep rate dependent)

Appendix: IR light filtering

Select wavelength range around 780 nm to avoid high-intensity laser light > 950 nm for safety (peak in laser intensity at 1064 nm)

Applications:

• Density over longer time for emptying process

Spectrometer signal conditioning: Rb-NO case

Spectrometer signal conditioning: Rb-YES case

Raw signal

Conditioned signal + Envelope

Raw data image:

Influence of other fit parameter errors

Results have to be independent from all others parameters:
 Path length difference (pld), Amplitude A and Size of excluded data around transition line.

Comparison Fit - Data

Fit results plotted over excluded image regime:

Effect of amplitude errors

- Results have to be independent from all other fitting parameters:
 Path length difference, Amplitude A and Size of excluded data around transition line.
- > Calculating n_{Rb} by varying the amplitude A manually from A = 0.79 to false values:

→ An error of Δ A = 0.15 \triangleq 19 % in amplitude leads to an error of 0.012 % in n_{Rb}
 ✓ Negligible

Size of excluded data

- Results have to be independent from all others fitting parameters:
 Path length difference, Amplitude and Size of excluded data around transition line.
- Calculating n_{Rb} by changing the size of the ignored area in spectrograph image:

Speckles in MM fibers

In multi mode fibers, different modes interfere randomly, forming speckles.

The hook method

- > The original hook method uses not fibers, but mirrors
- Form not vertical, but oblique fringes (set to an angle wrt. the spectrograph slit)

