Overview, control & status of AWAKE plasma cell

Falk Braunmueller , Patric Muggli, Erdem Öz, Daniel Easton, Roberto Speroni & AWAKE team

05 May 2017

Wigner-MPP-AWAKE workshop Budapest

A.Petrenko

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline

- Vapour cell overview
- Vapour cell control system
- Operation essentials
- Density calibration
- Status & modifications

Vapour cell and vapour source

Vapour cell and vapour source

Vapour cell overview

- Rb-sources & vapour cell ends:
 - Electrical heating zones, distributed according to thermal simulation
 - Heater power defined by control system
- Expansion volumes kept cold by chillers
- Valves for Rb flow-path, Ar-flush and windows

Vapour cell control system

Control of heaters & valves

- Controlling to well-defined target temperature
- Stepper: Default cycle
 Stop Self-test Heat-up Stabilization –
 Experiment Cooldown Stop

User interface 1/3: Stepper

Stepper acts in programmed way in each step

Vapour cell operation

- Keep flask always coldest point: 15° C below vapour cell to prevent cold spots
- Control via T_{vapour-cell} & offsets for electrical heaters
- > 30 hours cooldown / 17 hours heatup (limiting during experiment)
- Rb valve only open for measurements
 - 10 min stabilization time: Rb flow + temperature re-adjustment

Measurement of Rb-level

Vapour cell density calibration

- From T=T_{min} (pump heating) to T≈T_{max} (safety threshold)
- Characterization every 10-12° C
- → Measurement intervals $n_2/n_1 < 1.9$
- Gradient kept at <1%
- Limitation of calibration:

Flow dependent on temperature profile

→ Might change due to insulation modifications (incl. manual valve opening procedure)

Comparison with flow-simulations

- → Need higher temperature than predicted
- → Affects Rb consumption (~150g/24h predicted)

Deviations from: - Simplified flow-path geometry

- Evaporation rate from restricted surface

- Rb-viscosity value

Planned Improvements

- Calibrated temperature probes
- Recycling procedure
- New design of flasks (difficult handling in filling procedure)
- Heating slower than would be possible from hardware ratings
 → Increase of heating power
- Temperature non-uniformities: improvement before e⁻s
 → insulation & heating power

- Vapour cell operation with elaborate control system
- Rb-level monitoring via temperature probes
- Density-calibration with deviations from simulation
- Modifications planned

Thank you for your attention!

User interface 2/3: Instrumentation

User interface 3/3

Overview control panel

- User friendly operation page
- Most important information at a glance
- + parameter control panel

Vapour cell control system

Control of heaters & valves

- Controlling to uniform target temperature
- Stepper:
 - Stop Self-test Heat-up Stabilization Experiment – Cooldown – Stop
 - + Temporary Halt & Emergency Shutdown
- Emergency system:
 - Probe failure detection
 - Pressure increase detection
 - Manual stop
 - Overtemperature
- Prevention of cold-spots & too large temperature gradients
- User management: operation only by 'experts'

17

A WAKE

Vapour cell commisioning

- Extremely tight schedule before experiments → Priority to get working system
- Hardware commissioning:
 - all probes & heaters tested
 - Wiring finished and tested
 - Oil bath commissioning
- Control system commissioning:
 - Test of stepper & emergency functions
 - Test of all functionalities before operation for safety approval
- Not yet included:
 - Recycling procedure
 - Calibration of temperature probes (except plasma cell)

Vapour cell calibration

Influence of flow:

- Continuous dependence on temperature
- Depends on gradient
- Limitation of calibration:
- Flow dependent on temperature profile
- Might change due to manual valve opening procedure

System operation in December

- Modifications till last-minute before experiment run
- Well-behaved during experiments, flexible operation
- Simultaneously test run to identify possible improvements in real operation
- Slow reaction to changes of temperature
- Temperature profile will be further improved
- Density uniformity measurement for vapour source validation: Incomplete (see presentation F. Batsch)

Cold spot prevention

Controlled cool-down

Full cool-down

Heat-up

24

