Plasma Radius Measurement using Schlieren Imaging Wigner Institute Meeting

Anna-Maria Bachmann

Max-Planck-Institute for Physics, Munich bachmann@mpp.mpg.de

April 8, 2016

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Transverse Component of Wakefield

- \Rightarrow Focusing impact on atoms with $r \lesssim 1 \text{ mm}$
- \Rightarrow Requirment of plasma radius $\mathit{r_{plasma}} \gtrsim 1\,\mathrm{mm}$

Plasma Radius Measurement at AWAKE

cell

10 m Rb vapor cell Oil heating system Schlieren Image through windows at the end of the Rb Rb Windows Vapor Ionizing Laser Plasma Laser

Principle of Schlieren Imaging

Principle of Schlieren Imaging

Schlieren Image of Density Perturbations

Schlieren photo of a turbulent flame of an oxy-acetylene torch¹

¹SETTLES, G.S.: Schlieren and Shadowgraph Techniques. Springer, 2001

Plasma Radius Measurement using Schlieren Imaging

Parameters

- Beam size $\sigma_{beam} = 5 \,\mathrm{mm}$
- Plasma radius $r_{plasma} = 1 \,\mathrm{mm}$
- Focal lengths $f_1 = 500 \,\mathrm{mm}$. $f_2 = 100 \,\mathrm{mm}$
- Laser detuning $\Delta \omega = 20 \, \text{GHz}$

Index of refraction

Vapor

state

for plasma n = 1 $\frac{\omega_{pe}^2}{2}$

Formulas of Fourier Optics

Propagation over z along optical axis ²

$$\begin{aligned} S_0(\vec{k}) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_0(\vec{r}) \, \exp(-i \, \vec{k} \, \vec{r}) \, d^2 \vec{r} \\ u_1(\vec{r}, z) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S_0(\vec{k}) \, \exp(i \, z \, \sqrt{k_0^2 - \vec{k}^2}) \, \exp(i \, \vec{k} \, \vec{r}) \, d^2 \vec{k} \end{aligned}$$

Phase Shift through Object

 $u_1(\vec{r}) = u_0(\vec{r}) \cdot \exp(i \Phi)$ with Φ phase shift through object

²HECHT, E.: Optics (4th ed.). Addison Wesley, 1987

Gaussian Beam - No Object - Horizontal Knife Edge

Parameters:

- Standard derivation of Gaussian beam: $\sigma_r = 5 \text{ mm}$
- Focal lengths and propagation distances f1 = L1 = 500 mm, f2 = L2 = 100 mm
- Position horizontal knife-edge: y = 0.04 mm

Gaussian Beam - Plasma Column - No Cut Off

Parameters:

- Standard derivation of Gaussian beam: $\sigma_r = 5 \text{ mm}$
- Focal lengths and propagation distances f1 = L1 = 500 mm, f2 = L2 = 100 mm
- Radius of plasma column: $r_{plasma} = 1 \text{ mm}$

Contours of the plasma column due to diffraction

- \Rightarrow Information about the size
- \Rightarrow No information about the shape

Gaussian Beam - Plasma Column - Horizontal Knife Edge

Parameters:

- Standard derivation of Gaussian beam: $\sigma_r = 5 \text{ mm}$
- Focal lengths and propagation distances f1 = L1 = 500 mm, f2 = L2 = 100 mm
- Radius of plasma column: $r_{plasma} = 1 \text{ mm}$
- Position horizontal knife-edge: y = 0.04 mm

Half of the plasma column and its contour is imaged

 $\Rightarrow \text{Information about}$ the size $\Rightarrow \text{Information about}$ the shape

Gaussian Beam - Plasma Column - Horizontal Wire

Parameters:

- Standard derivation of Gaussian beam: $\sigma_r = 5 \text{ mm}$
- Focal lengths and propagation distances f1 = L1 = 500 mm, f2 = L2 = 100 mm
- Radius of plasma column: r_{plasma} = 1 mm
- Position horizontal wire: y = 0 mm

Whole plasma column is imaged

 \Rightarrow Information about the size \Rightarrow Information about the shape Main goals:

- Study of the possibility of the measurement
- Proof ionization
- Measure a plasma radius of r > 1 mm after 10 m rubidium

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

UNIVERSITÄT DÜSSELDORE