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Introduction

* Highly absorptive, thus dispersive, medium: two close resonances
* Extreme optical non-linearity
 2-3 photon ionisation (more effective than in air)

 VVery long lifetimes (broadening mechanisms are negligible on the
pulse width scale)

e Several meter-long propagation distance
* To find a practical and effective modelling strategy is crucial
* Conventional strategies are problematic
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Modelling propagation in optics

* Expanding the dielectric susceptibility in a Taylor series in the electric
field

* This assumes the response is instantaneous and stationary

* In ultra-fast optics (fs pulses in the IR), we work far from resonances
(normally in the UV or far-IR), so this approximation is sound

* Where experts are going: time-dependent Schrodinger equation
(TDSE)

* Mostly to justify further approximations, e.g. comparing to Maxwell-Bloch
equations (MBE and their generalizations)

* Exploit and understand new effects beyond PPT (conventional ionization
theory): e.g. Kramers-Henneberger, high-order corrections to nonlinearities
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Nonlinear wave equation

* Nonlinear polarisation P(E) = 60(2(1)E + X(Z)EE + 2(3)EEE +--)
* Nonlinear wave equation 8Z2E _ %83(E + X(I)E 4 )2(3)EEE) — 0

C
* Conventional constant Kerr ()2(3)EEE)Kerr — XE39 ¥ = const.

 Bidirectional wave equation: ) ) w2 (3)
linear dispersion and four-wave 8z E,+ B (wE, + > Z X123 Eoy Ewy Ewy = 0
C

miXing 123|Ct)
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UPPE: unidirectional pulse propagation
eguation
i0:E + 1BIE,

(3) u v - .
2|ﬂ| : :X123a) (Ul 80)3_0
123|w

e Use of analytic signal &, =
* Only positive frequencies (® > 0)
» Discard negative frequencies at each computaiton of nonlinear

response o o o O O O
e Conservation of energy
° i 2
Either Kerr only |&]°& 0 o o | o .
e ..or three terms: Kerr effect,
* Conjugate Kerr effect, ‘éa|2éa (5*)25 1@@3
e and Third-order generation 3
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Dispersive non-linearities?

* Suppose we can obtain an effective nonlinear coefficient n,(w) (e.g. from “nonlinear
Kramers-Kronig relations”)

* |s it an effective non-linearity legit?

o drm(@)(@)do
ety [ (w)dw
* Miller rule: far from resonances relationship between linear and nonlinear susceptibilities

X9 = const x xP(@)x V(@) x P(w3)x P (w)

* What about losses?
* Each resonance has to be treated separately

* Does it give the same answer of steady-state response of Maxwell-
Bloch or semi-classical approaches? No
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Linear and nonlinear susceptibilities
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* Refractive index: real part odd,
Imaginary part even

* Nonlinear susceptibility (MBE, 2-
level approximation)

Bwpa/c (1 + A2TH)? ] 1)

* Real part odd
* [maginary part even



New normalisation
da) — X(l) (a))ga) Positive part of the spectrum

i, + Bl + Y

?[ B
resonances

* Numerical technicalities

* Reduce spectrum sampling by solving in a frame moving at group velocity at
laser frequency

* Split-step/pseudo-spectral
* Adaptive
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Example: Short pulse in Silica

'50 T I Z [mrlr‘] =5 I I T I
e TO=15fs Miller w/o losses
* Ipeak =10 TW/cmA2 ol T :\:!Itllal pljllse
* lambda0 =2mu ST WIHIOSSES
— No Miller w/o losses
* L=5mm 70k
* n2=2.7x10"-20 m"2/W
* Sellmeier 3 resonances (68 nm,116 ok
nm, 10 um) 3
¢ Nt=2A15 e ol
* Nz=2x10"4
* Complex interplay of resonant
radiation, self-steepening and 3™ 100
harmonic generation
* Tiny changes in Super-continuum i ]
features -110
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Example: Short pulses in Silica

Miller No Miller
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Pros&Cons

* Pros:
* Easy to include ionisation and spatial effects
* Lesser numerical effort than MBE

 Cons:

* Narrow resonances mean extreme non-linearity
* Losses at the linear level, non-linear part is more difficult
 Stability of the numerical solver

 Still Miller rule is debated, other solutions are not factorisable in the same
way
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The problem with ionization

* Limits of PPT (see Gabor Demeter’s talk) Suppression of the potential barrier

Bound electron ' Bound electron

N .

 Stabilization of atoms in strong electric 7\ T 0 T

fields: KH atom . 9
@ 5 O
b)
@ ©

Average potential

seen from the electron reference frame
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TDSE

e Back to ab-initio

* In collaboration with prof. E. Cormier (Bordeaux): solve
directly the full electronic polarisation from the Time-
Dependent Schrodinger equation (density of dipoles)

P (t) = Nuqe (P(1)|2]F(2))
. Riffe)rent exact and effective potentials available (H, He,
r...

e 1D (+1D for time) propagation takes months for few
centimetres length

* Possible improvements: solve TDSE only when the
field is strong
* Adapt TDSE to different field amplitudes
* Multi-thread computation of different points

* Follow the propagation of the wave: upwind, Lax-
Wendroff...
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Fine calculation of wave-function
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s it really a filament

* If it were a filament, we would have an homogeneous intensity and
stable propagation across the cell.

* A filament requires high intensity to be kept over several centimetres
or metres and losses to be not too strong

* Here we have strong linear and non-linear absorption and non-
negligible ionization probability (2-3 photons instead of >5)

* In alkali atoms, it seems clear that the nonlinearity switches from
focusing to defocusing across the resonance.
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Different strategies

* For filamentation in gases, particularly at higher intensity regimes (e.g.
multifilament), the effect of the background dispersion is an almost
negligible cause of catastrophic self-focusing effect

* |t becomes important in the interplay with plasma near the focusing point
* lonisation wipes coherent effects away (is it true?)
* lonisation is much more efficient in Rb and several paths are in competition

* Looking for a simplified approach: what if only plasma mattered and the
populations and coherences are fast saturated to a predictable value?

* |f focusing occurs, what are the nonlinear mechanisms?
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