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Abstract

I present my personal view on non-extensive thermodynamics, where
generalized canonical statistical factors replace the exponential func-
tion. By generalizing the familiar factor, exp(−E/T ), in counting the
relative occurence frequency of states with energy E at temperature
T one encounters primarily mathematical challenges. However, it is
of equal importance to built up the formalism on physical phenom-
ena, with an ample number of particular examples from the physical
world. This motivates to show simple theoretical problems first and
then gradually generalize. At the end alternative entropy formulas are
presented.
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Phase space and entropy
Boltzmann: S ∼ log Ω; Einstein: Ω ∼ eS

Phase-space volume with total energy, E , and n particles in some
dimensions.

hypervolume of n-ball in Lp-norm with radius R(E) and coordinates xi :(
n∑

i=1

|xi |p
)1/p

≤ R(E), Ω
(p)
n (R) =

Γ( 1
p + 1)n

Γ( n
p + 1)

(2R)n. (1)

abs Ω
(1)
n (E) = 1

n! (2E)n 1-dim jet light particles

euc Ω
(2)
2n (
√

2mE) = 1
n! (2πmE)n 2-dim massive particles

max Ω
(∞)
n (E) = (2E)n n-dim hypercube
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Phase space volume ratios
Basis of thermodynamics

Picking up 1 particle with energy ε. Statistical factor is based on
the ratio

rn =
Ω1(ε) Ωn−1(E − ε)

Ωn(E)
. (2)

abs r (1)
n (E) = ε

E n
(
1− ε

E

)n−1 1-dim jet light particles

euc r (2)
2n (
√

2mE) = ε
E n

(
1− ε

E

)n−1 2-dim massive particles

max r (∞)
n (E) = ε

E

(
1− ε

E

)n−1 n-dim hypercube

Beyond Exp 4 / 14



Phase space, entropy, canonical factor
Non-additive composition rules

Correction of the exp / log formula

Simple examples in phase space filling
Connecting number of degree of freedom and temperature fluctuations

Boltzmann–Gibbs statistical factor
the origin

When picking up a single degree of freedom with energy ε, the phase space
fraction for this partition in an 1-dim relativistic or 2-dim nonrelativistic ideal
gas is given by

r (1)
n = r (2)

2n = −ε ∂
∂ε

(
1− ε

E

)n
. (3)

Base statistical factor
ρn,E (ε) = (1− ε/E)n

In the textbook limit, n→∞ and E →∞ while E/n = T constant it delivers
the Boltzmann–Gibbs factor:

ρGibbs = lim
n→∞

ρn,E (ε) = e−ε/T . (4)
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However
there are other ways for getting exponential

Consider a fluctuating number of dimensionality of the phase space
at fixed total energy, with the probability Pn.

ρ := 〈ρn,E (ε)〉 =
∞∑

n=0

Pn (1− ε/E)n
. (5)

No ”thermodynamical limit” is taken.
Poissonian distribution leads to

ρPOI :=
∞∑

n=0

〈n〉n

n!
e−〈n〉 (1− ε/E)n = e−〈n〉 ε/E . (6)

Boltzmann–Gibbs factor with T = E/〈n〉.
valid even for 〈n〉 < 1!
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Negative Binomial Distribution
Beyond the exponential factor

Pn =

(
n + k

n

)
f n (1 + f )−n−k−1. (7)

In this case 〈n〉 = f (k + 1) and we obtain

ρNBD =

(
1 +

〈n〉
k + 1

ε

E

)−k−1

, (8)

a Tsallis–Pareto distribution with the temperature parameter
T = E/ 〈n〉 (again) and the power law tail with the negative power
(k + 1). Previous result: k →∞.
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General Pn
Gibbs, Pareto, etc. are approximations

Demanding the approximate equality

ρ(ε) =
∞∑

n=0

Pn (1− ε/E)n ≈
(

1 + (q − 1)
ε

T

)− 1
q−1

, (9)

expand for ε� E both sides. Linear and quadratic terms deliver

〈n〉
E

=
1
T
, and

〈n(n − 1)〉
E2 =

q
T 2 . (10)

the meaning of q: second scaled factorial moment ,

q =
〈n(n − 1)〉
〈n〉2

. (11)
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General Phase Space
Ω(E) = eS(E)

ρ(ε) =
〈

eS(E−ε)−S(E)
〉
. (12)

Expand and compare:〈
1− εS′(E) +

ε2

2
(
S′′(E) + S′(E)2)+ . . .

〉
= 1− ε

T
+

q ε2

2T 2 +. . . (13)

Identify leading terms:

1
T

= 〈S′(E)〉 and q =

〈
S′′(E) + S′(E)2

〉
〈S′(E)〉2

. (14)

q = 1− 1/C + ∆β2/ 〈β〉2
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Non-additivity→ entropy formula
for general associative rules

The general composition rule

S12 = S1 ⊕ S2 = h(S1,S2),

if associative,
K (S12) = K (S1) + K (S2),

shows also the way to the deformation of the entropy.
deformed entropy is additive

K (S) :=
∑

i

piK (− ln pi ). (15)
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Canonical factor using deformed entropy

ρK (ε) =
〈

eK (S(E−ε))−K (S(E))
〉

(16)

From linear and quadratic term coefficients compared to the
expansion of Pareto:

qK =

[
1 +

K ′′

K ′ 2

] (
1 + T 2∆β2)− 1

C
1
K ′
. (17)

Requiring now qK = 1, since we want to use exactly that K (S)

deformation which results in an additive system, we obtain a
differential equation determining the sought K (S).
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Solution of qK = 1
for S-independent C and T 2∆β2

With hα(x) := (eαx − 1)/α:

K (S) = h−1
λ (hµ(S)) and K−1(σ) = h−1

µ (hλ(σ)) . (18)

with λ = ∆β2

1/T 2+∆β2 and µ = (1− λ)/C.

additive entropy for non-additive ln pi

Sadd
λ,µ =

1
λ

∑
i

pi ln
[
1 +

λ

µ

(
p−µi − 1

)]
. (19)

The Tsallis–Pareto power index is related to the parameters of the
more general entropy formula as q = 1−µ

1−λ .
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Particular entropy formulas
corresponding to different assumptions

1 q = 1: (∆β/ 〈β〉 = 1/
√

C)

Sλ=µ = −
∑

i

pi ln pi .

2 q ≤ 1: (∆β/ 〈β〉 � 1/
√

C)

Sλ�µ =
1

1− q

∑
i

(
pq

i − pi
)
.

3 q ≥ 1: (∆β/ 〈β〉 � 1/
√

C)

Sλ�µ =
1
λ

∑
i

pi ln (1− λ ln pi ) .
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