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Nucleonic matter displays a quantum-liquid structure, but in some
cases finite nuclei behave like molecules composed of clusters of
protons and neutrons. Clustering is a recurrent feature in light
nuclei, from beryllium to nickel1–3. Cluster structures are typically
observed as excited states close to the corresponding decay threshold;
the origin of this phenomenon lies in the effective nuclear interaction,
but the detailed mechanism of clustering in nuclei has not yet been
fully understood. Here we use the theoretical framework of energy-
density functionals4,5, encompassing both cluster and quantum
liquid-drop aspects of nuclei, to show that conditions for cluster
formation can in part be traced back to the depth of the confining
nuclear potential. For the illustrative example of neon-20, we show
that the depth of the potential determines the energy spacings
between single-nucleon orbitals in deformed nuclei, the localization
of the corresponding wavefunctions and, therefore, the degree of
nucleonic density clustering. Relativistic functionals, in particular,
are characterized by deep single-nucleon potentials. When com-
pared to non-relativistic functionals that yield similar ground-state
properties (binding energy, deformation, radii), they predict the
occurrence of much more pronounced cluster structures. More
generally, clustering is considered as a transitional phenomenon
between crystalline and quantum-liquid phases of fermionic
systems.

The occurrence of molecular states in atomic nuclei and the forma-
tion of clusters of nucleons were predicted in the 1930s (refs 1 and 2).
Subsequently, the description of nuclear dynamics came to be based
predominantly on the concept of independent nucleons in a mean-
field potential, but a renewed interest in clustering phenomena in the
1960s led to the development of theoretical methods dedicated to
considering clusters3. Numerous experimental studies have revealed
a wealth of data on clustering phenomena in light nuclei3, and modern
theoretical approaches use microscopic models that take single-
nucleon degrees of freedom fully into account6–8. Clustering gives rise
to nuclear molecules. For instance, in 12C the second 01 state—the
Hoyle state that has a key role in stellar nucleosynthesis—is predicted
to display a structure composed of three a-particles9,10. The binding
energy of the a-particle, formed from two protons and two neutrons, is
much larger than that of other light nuclei. Cluster radioactivity11,
discovered in the 1980s, is another manifestation of clustering in
atomic nuclei. Experimental signatures of clustering are usually indirect.
Quasi-molecular resonances are probed by scattering one cluster on
another, such as in the 12C112C system3,12, and cluster structures are
also discernible in the break-up of nuclei. Evidence has been reported
for the formation of clusters in ground and excited states of a number
of a-conjugate nuclei3; that is, nuclei with an equal, even number of
protons and neutrons, from 8Be to 56Ni.

The mechanism of cluster formation has not yet been fully
understood. As shown in Ikeda diagrams13, cluster structures are pre-
dicted to appear as excited states close to the corresponding decay
threshold. However, the origin of cluster formation lies in the effective
nuclear interaction, and signatures should also be present in the ground
state14–16. Deformation has an important role because it removes the
degeneracy of single-nucleon levels associated with spherical symmetry.

At specific deformations the shell structure can restore degeneracies
corresponding, for instance, to a 2:1 ratio of the large axis over the small
axis of a quadrupole deformed system3. Consequently, the restored
degeneracy of deformed shell closures facilitates the formation of
clusters. However, this may be a rather qualitative explanation, because
clustering phenomena cannot generally be explained by accidental
degeneracies. Clustering is an essential feature of many-nucleon
dynamics that coexists with the nuclear mean-field. Therefore,
although in most cluster models the existence of such structures is
assumed a priori and the corresponding effective interactions are
adjusted to the binding energies and scattering phase shifts of these
configurations, a fully microscopic understanding of cluster formation
necessitates a more general description that encompasses both cluster
and quantum liquid-drop aspects in light and heavier nuclei. It is
well known that deformation and closeness to the cluster-emission
threshold favour cluster formation. States close to the particle-
emission threshold cannot be isolated from the environment of
scattering states, so cluster states at the threshold belong to an open
quantum system17. The aim of this work is to further explore the origin
of clustering: to examine the conditions for cluster formation in
ground states of finite nuclei, starting from a fully microscopic descrip-
tion based on the framework of energy-density functionals (EDFs).

At present, the only comprehensive approach to nuclear structure is
based on the framework of EDFs. Nuclear EDFs enable a complete and
accurate description of ground-state properties and collective excita-
tions over the whole nuclide chart4,5. In practical implementations,
nuclear EDFs are analogous to Kohn2Sham Density Functional
Theory, the most widely used method for electronic-structure calcula-
tions in condensed-matter physics and quantum chemistry. In the
nuclear case, the many-body dynamics is represented by independent
nucleons moving in a local self-consistent mean-field potential that
corresponds to the actual density and current distribution of a given
nucleus. Both relativistic and non-relativistic realizations of EDFs are
used in studies of nuclear matter and finite nuclei. A nuclear EDF is
universal in the sense that, for a given inter-nucleon interaction, it has
the same functional form for all systems. Using a small set of global
parameters adjusted to empirical properties of homogeneous nuclear
matter and data on finite nuclei, a universal functional provides a
description of the structure of nuclei across the chart of nuclides.

A number of recent studies based on nuclear EDFs or the mean-field
approach have analysed cluster structures ina-conjugate nuclei14–16,18–20.
In Fig. 1 we display the self-consistent ground-state densities of 20Ne,
calculated with two widely used functionals that are representative of the
two classes of nuclear EDFs: the non-relativistic Skyrme SLy4 (ref. 21),
and the relativistic functional DD-ME2 (ref. 22). The equilibrium shape
of 20Ne is a prolate, axially symmetric quadrupole ellipsoid. Although
they have not been specifically adjusted to this mass region, both func-
tionals reproduce the empirical ground-state properties of this nucleus:
the experimental binding energy, 160.6 MeV; the radius of the proton
distribution, 2.90 fm (ref. 23); and the radius of the matter distribution,
2.85 fm (ref. 24), all with a typical accuracy to within roughly 1%. It is
remarkable that, although these functionals predict similar values for the
binding energy, charge and matter radii, and quadrupole deformation
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of the equilibrium shape of 20Ne, the corresponding single-nucleon
densities are qualitatively very different. The density calculated with
SLy4 displays a smooth behaviour characteristic of a Fermi liquid, with
an extended surface region in which the density very gradually
decreases from the central value of around 0.16 fm23 (Fig. 1b). The
relativistic functional DD-ME2, on the other hand, predicts an
equilibrium density that is much more localized. The formation of
cluster structures is clearly visible, with density spikes as large as
roughly 0.2 fm23, and a much narrower surface region (Fig. 1a).

Understanding the difference in the equilibrium densities of 20Ne
calculated with SLy4 and DD-ME2 is a key to the mechanism of
ground-state cluster formation in this mass region of a-conjugate
deformed nuclei. The axially symmetric deformation of the nuclear
mean-field removes the degeneracy of spherical single-nucleon levels,
and nucleons paired by spin (up and down) occupy orbitals characterized
by time-reversal degeneracy. For large deformations these levels can be
labelled by a set of asymptotic Nilsson quantum numbers25 and,
because of the relatively weak Coulomb interactions in light nuclei,
the localization of proton and neutron orbitals is similar in nuclei with
equal numbers of protons and neutrons (Z 5 N nuclei). In the specific
case of 20Ne, ten protons and ten neutrons occupy five deformed
Nilsson levels, with the energy spacing between these levels propor-
tional to the deformation of the single-nucleon potential. Figure 2
shows the partial single-nucleon densities that correspond to the
highest occupied Nilsson orbital. Even without introducing a quant-
itative measure of localization, it is obvious that DD-ME2 predicts a
much more localized density distribution (Fig. 2a). More-localized
density distributions are also obtained for the other four occupied
orbitals when calculated using DD-ME2.

Localization of densities that correspond to single-particle orbitals is
a necessary precondition for the formation of clusters, and this effect
can be traced back to the corresponding single-nucleon spectra. The
comparison of spectra calculated with the two functionals shows that
the one obtained with DD-ME2 is more spread out, and the more
pronounced energy spacings between single-particle levels are also
reflected in the more localized wavefunctions and partial densities.
Starting from degenerate spherical single-particle levels, the splitting
of the corresponding Nilsson deformed states is proportional to the
deformation, and to the depth of the potential. Given that the two
functionals predict almost identical equilibrium deformations and
radii for 20Ne, the different energy spacings in the single-nucleon
spectra must have their origin in the difference in the corresponding
potentials. In fact, the self-consistent mean-field potential of DD-ME2
is considerably deeper than that of SLy4. In the centre of the nucleus,
the depth of the DD-ME2 single-neutron potential is 278.6 MeV,
whereas the depth of the SLy4 potential is 269.5 MeV. The corres-
ponding values of the single-proton potentials are 272.8 MeV for DD-
ME2 and 264.6 MeV for SLy4. The effect of the potential depth on the
localization of wavefunctions is shown schematically in Fig. 3a, where,
as an approximation to nuclear potentials, we plot three harmonic-
oscillator potentials with different depth values—30, 45 and 60 MeV—
but the same radius, R 5 3 fm. The radial wavefunctions of the
corresponding p-states are shown in Fig. 3b. The oscillator length b
determines the position of the maximum and the dispersion of the
wavefunction26. The deeper the potential, the smaller the oscillator
length (see the expression in the legend of Fig. 4), and the more
localized the wavefunctions. In the classically forbidden region
(R . 3 fm on Fig. 3), a smaller oscillator length leads to a more rapid
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Figure 1 | Self-consistent ground-state densities of 20Ne. Two nuclear
energy-density functionals are used: a, DD-ME2 (ref. 22), and b, Skyrme SLy4
(refs 21 and 30). The densities (in units of fm23) are plotted in the x2z plane of
the intrinsic frame of reference that coincides with the principal axes of the

nucleus, with z chosen as the symmetry axis. The inserts show the
corresponding three-dimensional density plots and the density profiles (r)
along the symmetry axis (x 5 0).
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Nucleonic matter displays a quantum-liquid structure, but in some
cases finite nuclei behave like molecules composed of clusters of
protons and neutrons. Clustering is a recurrent feature in light
nuclei, from beryllium to nickel1–3. Cluster structures are typically
observed as excited states close to the corresponding decay threshold;
the origin of this phenomenon lies in the effective nuclear interaction,
but the detailed mechanism of clustering in nuclei has not yet been
fully understood. Here we use the theoretical framework of energy-
density functionals4,5, encompassing both cluster and quantum
liquid-drop aspects of nuclei, to show that conditions for cluster
formation can in part be traced back to the depth of the confining
nuclear potential. For the illustrative example of neon-20, we show
that the depth of the potential determines the energy spacings
between single-nucleon orbitals in deformed nuclei, the localization
of the corresponding wavefunctions and, therefore, the degree of
nucleonic density clustering. Relativistic functionals, in particular,
are characterized by deep single-nucleon potentials. When com-
pared to non-relativistic functionals that yield similar ground-state
properties (binding energy, deformation, radii), they predict the
occurrence of much more pronounced cluster structures. More
generally, clustering is considered as a transitional phenomenon
between crystalline and quantum-liquid phases of fermionic
systems.

The occurrence of molecular states in atomic nuclei and the forma-
tion of clusters of nucleons were predicted in the 1930s (refs 1 and 2).
Subsequently, the description of nuclear dynamics came to be based
predominantly on the concept of independent nucleons in a mean-
field potential, but a renewed interest in clustering phenomena in the
1960s led to the development of theoretical methods dedicated to
considering clusters3. Numerous experimental studies have revealed
a wealth of data on clustering phenomena in light nuclei3, and modern
theoretical approaches use microscopic models that take single-
nucleon degrees of freedom fully into account6–8. Clustering gives rise
to nuclear molecules. For instance, in 12C the second 01 state—the
Hoyle state that has a key role in stellar nucleosynthesis—is predicted
to display a structure composed of three a-particles9,10. The binding
energy of the a-particle, formed from two protons and two neutrons, is
much larger than that of other light nuclei. Cluster radioactivity11,
discovered in the 1980s, is another manifestation of clustering in
atomic nuclei. Experimental signatures of clustering are usually indirect.
Quasi-molecular resonances are probed by scattering one cluster on
another, such as in the 12C112C system3,12, and cluster structures are
also discernible in the break-up of nuclei. Evidence has been reported
for the formation of clusters in ground and excited states of a number
of a-conjugate nuclei3; that is, nuclei with an equal, even number of
protons and neutrons, from 8Be to 56Ni.

The mechanism of cluster formation has not yet been fully
understood. As shown in Ikeda diagrams13, cluster structures are pre-
dicted to appear as excited states close to the corresponding decay
threshold. However, the origin of cluster formation lies in the effective
nuclear interaction, and signatures should also be present in the ground
state14–16. Deformation has an important role because it removes the
degeneracy of single-nucleon levels associated with spherical symmetry.

At specific deformations the shell structure can restore degeneracies
corresponding, for instance, to a 2:1 ratio of the large axis over the small
axis of a quadrupole deformed system3. Consequently, the restored
degeneracy of deformed shell closures facilitates the formation of
clusters. However, this may be a rather qualitative explanation, because
clustering phenomena cannot generally be explained by accidental
degeneracies. Clustering is an essential feature of many-nucleon
dynamics that coexists with the nuclear mean-field. Therefore,
although in most cluster models the existence of such structures is
assumed a priori and the corresponding effective interactions are
adjusted to the binding energies and scattering phase shifts of these
configurations, a fully microscopic understanding of cluster formation
necessitates a more general description that encompasses both cluster
and quantum liquid-drop aspects in light and heavier nuclei. It is
well known that deformation and closeness to the cluster-emission
threshold favour cluster formation. States close to the particle-
emission threshold cannot be isolated from the environment of
scattering states, so cluster states at the threshold belong to an open
quantum system17. The aim of this work is to further explore the origin
of clustering: to examine the conditions for cluster formation in
ground states of finite nuclei, starting from a fully microscopic descrip-
tion based on the framework of energy-density functionals (EDFs).

At present, the only comprehensive approach to nuclear structure is
based on the framework of EDFs. Nuclear EDFs enable a complete and
accurate description of ground-state properties and collective excita-
tions over the whole nuclide chart4,5. In practical implementations,
nuclear EDFs are analogous to Kohn2Sham Density Functional
Theory, the most widely used method for electronic-structure calcula-
tions in condensed-matter physics and quantum chemistry. In the
nuclear case, the many-body dynamics is represented by independent
nucleons moving in a local self-consistent mean-field potential that
corresponds to the actual density and current distribution of a given
nucleus. Both relativistic and non-relativistic realizations of EDFs are
used in studies of nuclear matter and finite nuclei. A nuclear EDF is
universal in the sense that, for a given inter-nucleon interaction, it has
the same functional form for all systems. Using a small set of global
parameters adjusted to empirical properties of homogeneous nuclear
matter and data on finite nuclei, a universal functional provides a
description of the structure of nuclei across the chart of nuclides.

A number of recent studies based on nuclear EDFs or the mean-field
approach have analysed cluster structures ina-conjugate nuclei14–16,18–20.
In Fig. 1 we display the self-consistent ground-state densities of 20Ne,
calculated with two widely used functionals that are representative of the
two classes of nuclear EDFs: the non-relativistic Skyrme SLy4 (ref. 21),
and the relativistic functional DD-ME2 (ref. 22). The equilibrium shape
of 20Ne is a prolate, axially symmetric quadrupole ellipsoid. Although
they have not been specifically adjusted to this mass region, both func-
tionals reproduce the empirical ground-state properties of this nucleus:
the experimental binding energy, 160.6 MeV; the radius of the proton
distribution, 2.90 fm (ref. 23); and the radius of the matter distribution,
2.85 fm (ref. 24), all with a typical accuracy to within roughly 1%. It is
remarkable that, although these functionals predict similar values for the
binding energy, charge and matter radii, and quadrupole deformation
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Clustering in neutron-rich nuclei ⇒ molecular bonding of α-particles by the excess neutrons.

Total nucleon density

Proton density

Neutron density

14Be

J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar
Phys. Rev. C 90, 054329



…formation and evolution  
of exotic cluster states



…evolution of nucleonic shells ⇒ phase transitions in equilibrium shapes (QPT)

III. RESULTS AND DISCUSSION

A. The 3D PESs of 148,150,152Nd
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FIG. 1: (Color online) The calculated potential energy surfaces of 148,150,152Nd.

4

Nuclear Quantum Phase Transitions:  

⇒  the physical control parameter - nucleon number  
⇒  order parameters - expectation values of operators that as observables  
characterize the state of a nuclear system.

Shape Quantum Phase Transitions



Transitions between spherical and axially deformed shapes in the chain of Nd-Sm-Gd isotopes. 



Experimental evidence for a first-order shape phase transition at N≈90

Nikšić, Vretenar, Lalazissis, Ring, Phys. Rev. Lett. 99, 092502 (2007)
Li, Nikšić, Vretenar, Meng, Lalazissis, Ring, Phys. Rev. C 79, 054301 (2009)
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Spectroscopy of quadrupole and octupole deformed heavy nuclei



Octupole deformed (pear-shaped) heavy nuclei:





Extrapolation to Superheavy Nuclei



Extrapolation to Superheavy Nuclei

Higher density of single-particle states ➠ the evolution of deformed shells with nucleon number 
will have a more pronounced effect on energy gaps, separation energies, Qα-values …



Extrapolation to Superheavy Nuclei

Higher density of single-particle states ➠ the evolution of deformed shells with nucleon number 
will have a more pronounced effect on energy gaps, separation energies, Qα-values …

Stronger competition between the attractive short-range nuclear interaction and the long-
range electrostatic repulsion ➠ Shape transitions! Exotic shapes!
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Harmonic vibrations

Isoscalar monopole resonance Isovector dipole resonance Isoscalar quadrupole resonance
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Dipole response of neutron-rich nuclei
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Dipole response of neutron-rich nuclei

In stable nuclei 100% of the E1 strength is  
absorbed in the Giant Dipole Resonance. 
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E1
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re
n

g
th

Energy [MeV]

Neutron-rich nuclei → predicted occurrence of a collective soft 
dipole mode (Pygmy Dipole Resonance)

Neutron-rich nuclei → weak binding of the excess neutrons, diffuse neutron densities,  
formation of a neutron skin.  



68Ni photoabsorption cross section E1 strength function
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Neutron skin thickness from the measured electric dipole polarizability in Ni 68 , Sn 120 , and Pb 208 
X. Roca-Maza, X. Viñas, M. Centelles, B. K. Agrawal, G. Colò, N. Paar, J. Piekarewicz, and D. Vretenar
Phys. Rev. C 92, 064304 (2015)
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Large-scale calculations of supernova neutrino-induced reactions
N. Paar, H. Tutman, T. Marketin, and T. Fischer
Phys. Rev. C 87, 025801 (2013)
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Modeling nuclear weak-interaction processes

Table 1. Comparison of the inclusive νe–56Fe cross
sections averaged with the Michel flux.

⟨σ⟩ [10−42 cm2]

RNEDF (DD-ME2) 263
SM (GXPF1J) + RPA (SGII)28,41 259
RPA (Landau–Migdal)67 240
QRPA (SIII)68 352
QRPA (G-matrix)69 173.5

Theoretical average 258± 57
Exp. (KARMEN)59 256± 108± 43

the experimental uncertainty of the KARMEN data. The calculated νe–56Fe cross
sections, averaged over the Michel spectrum, are listed in Table 1. In addition
to the RHB + RQRPA model calculation based on the density functional DD-
ME2, results are shown for the shell model (GXPF1J) (for 1+ transitions) plus
the RPA (SGII) for higher multipoles,28,41 RPA based on the Landau–Migdal
force,67 the QRPA(SIII)68 and QRPA based on the G-matrix formalism.69 By
using these methods, the cross section mean value and uncertainty are obtained:
⟨σ⟩th = (258 ± 57) × 10−42 cm2, in excellent agreement with the data from the
KARMEN collaboration: ⟨σ⟩exp = (256 ± 108 ± 43) × 10−42 cm2. At present, the
systematic theoretical uncertainty of the calculated cross section appears to be
smaller than the corresponding experimental value.

In the environment of high neutrino fluxes that occur in core-collapse supernovae
or neutron star mergers, neutrino–nucleus reactions are particularly important for
the process of nucleosynthesis. In addition, neutrino detectors are based on inelastic
neutrino–nucleus scattering and, to provide reliable predictions of supernova neu-
trino induced events, it is essential to be able to compute neutrino–nucleus cross
sections on a quantitative level. The supernova neutrino fluxes can be obtained
from core-collapse supernova simulations.70 However, for the purpose of testing
the sensitivity of the underlying models of nuclear structure and neutrino–nucleus
interactions, a simplified neutrino flux is employed, described by the Fermi–Dirac
spectrum

f(Eν) =
1

T 3

E2
ν

exp[(Eν/T ) − α] + 1
, (3)

where T denotes the temperature and α is the chemical potential. As shown in
Ref. 30 for the set of inclusive neutrino–nucleus cross sections calculated using the
RNEDF framework, the implementation of more realistic fluxes from core-collapse
supernova simulations is straightforward.

For a quantitative analysis of total cross sections, and also partial cross sec-
tions for neutrino-induced particle knockout, in a first step the neutrino-induced
excitation spectrum in the daughter nucleus has to be computed. In Ref. 67, it has
been shown that this spectrum provides a basis for the implementation of statistical
model codes (e.g., SMOKER), to determine for each final state the branching ratios
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Uncertainties in modeling low-energy 
neutrino-induced reactions on iron-group 
nuclei
N. Paar, T. Suzuki, M. Honma, T. Marketin, and D. Vretenar
Phys. Rev. C 84, 047305 (2011)

Neutrino-nucleus reactions
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β-decay half-lives of neutron-rich nuclei and matter flow in the r-process

Niu, Niu, Liang, Long, Nikšić, Vretenar, Meng, Phys. Lett. B 723, 172 (2013).

Contour maps of experimental and theoretical β-decay half-lives for the Z = 20–50 even–even nuclei. 
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β-decay half-lives of neutron-rich nuclei and matter flow in the r-process

Niu, Niu, Liang, Long, Nikšić, Vretenar, Meng, Phys. Lett. B 723, 172 (2013).

Contour maps of experimental and theoretical β-decay half-lives for the Z = 20–50 even–even nuclei. 

⇒ impact of the predicted β-decay half-lives on r - process abundances:
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The impact of nuclear β-decay half-lives on the r-matter flow.



How does the nuclear chart emerge from the underlying fundamental interactions? 

Where are the limits of stability and what is the heaviest element that can be created? 

How does nuclear structure evolve across the nuclear landscape and what shapes can 
nuclei adopt? 

How does nuclear structure change with temperature and angular momentum? 

How can nuclear structure and reaction approaches be unified? 

How complex are nuclear excitations? 

How do correlations appear in dilute neutron matter, both in structure and reactions? 

What is the density and isospin dependence of the nuclear equation of state?
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