Probe QGP properties using jet observables at LHC

Yaxian MAO

Central China Normal University

Wigner RCP, Hungary, 11/08/2017

QCD phase transition and HI collision

 QCD calculations (on the lattice) indicate that the phase transition occurs at a critical energy density

We can thus create a system of deconfined quarks and gluons

- \Rightarrow by heating (T)
- → by compression (matter density)

Probing QGP

We study the QCD matter produced in HI collisions by looking how well understood probes are modified, as a function of temperature (centrality of the collisions)

The Probes Gallery

The importance of the control measurement(s) cannot be overstated!

Jets: a tomographic probe of the medium

 High momentum transfer scattering in 2→2 process (LO pQCD) develops a partonic shower and hadronizes into final state particles (non pQCD) collimated in a spray of hadrons (jet)

Jets: a tomographic probe of the medium

- High momentum transfer scattering in 2→2 process (LO pQCD) develops a partonic shower and hadronizes into final state particles (non pQCD) collimated in a spray of hadrons (jet)
- Partons loose energy ΔE (collision + radiation) when traversing the medium

 $Jet(E) \rightarrow Jet(E' = E-\Delta E) + soft particles(\Delta E)$

Jet quenching: suppression of high p_T particles

• Constraints on the parton energy loss in QGP

How much energy do single jets loose?

ALICE

Jet cross section in pp collisions

- Jet cross section is well described by POWHEG+PYTHIA8 NLO calculations within systematic uncertainties
- Cross section ratio between R = 0.2/R = 0.4 consistent with different \sqrt{s} , slightly increasing with jet $p_T \rightarrow$ reflects jet collimation

Jet nuclear modification factor RAA

- Strong suppression of jet yield in most central collisions
- JEWEL models the suppression as observed in data

Jets and hadrons RAA

- "compensation" between increasing suppression and modification of the shape of the spectra
- Charged jet and Calo jets have similar features of jet quenching
- Suppression of jet yield and charged particles are quite similar
 - \rightarrow jets fragment into high-p_T particles in pp and PbPb the same way

How low p_T jet quenched?

- High pT jet RAA is in good agreement, however low pT behavior is different
 - different jet cone size, precise low pT measurements quite important

Are heavy-quark jets quenched differently?

Yaxian MAO Central China Normal University

Wigner RCP, Hungary, 11/08/2017

Tagging and counting b-quark jets

- Long lifetime of b (~1.5 ps) leads to measurable displaced secondary vertices (SV)
- Subsequent charm decay may lead to a tertiary vertex (TV)
- B-jets are tagged using reconstructed SV's based on flight distance
- Tagging efficiency estimated in a datadriven way
- b-jet fraction (purity) is extracted by a template fit to the (tagged) SV mass

PRL 113 (2014) 132301

b-jet suppression

- Evidence of b-jet suppression in central PbPb collisions
- b-jet RAA favours pQCD models that include strong jet-medium coupling

Flavour/mass dependence: yes, no, maybe?

- $R_{AA}(b-jet) \simeq R_{AA}(inclusive-jet)$ at high p_T , no strong flavour dependence
- $R_{AA}(J/\psi \leftarrow B) > R_{AA}(D) \simeq R_{AA}(\pi)$

Is the energy loss depending on the quark mass as predicted?

Precise measurements down to low pT are needed to conclude

More exclusive observables: di-jets

ALICE

Yaxian MAO Central China Normal University

Jet energy imbalance

 Jet energy loss is observed as a pronounced dijet energy imbalance in central PbPb collisions

Dijet p_T imbalance

- Energy imbalance increases with centrality
- p_T -ratio deviates from the unquenched reference in a p_T -independent way

Semi-exclusive measurements: recoil jets

$$\Delta_{recoil} = \frac{1}{N_{trig}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\eta} \Big|_{p_{T,trig} \in \{20,50\}} - c_{\text{Re}f} \cdot \frac{1}{N_{trig}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\eta} \Big|_{p_{T,trig} \in \{8,9\}}$$
Trigger hadron
Recoil

ALICE

Yaxian MAO Central China Normal University

Wigner RCP, Hungary, 11/08/2017

Semi-inclusive hadron-jet correlations

- New observables of recoil jet measurements:
 - pp: calculable via pQCD
 - AA: a good handle on the combinatorial background by varying $p_{T,trig} \rightarrow$ systematically well-controlled at low p_{Tjet} , large R
 - Trigger hadron close to surface, but no bias on recoil jets

$$\Delta_{recoil} = \frac{1}{N_{trig}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\eta} \Big|_{P_{T,trig} \in \{20,50\}} - c_{\text{Re}f} \cdot \frac{1}{N_{trig}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\eta} \Big|_{P_{T,trig} \in \{8,9\}}$$

Recoil jet yield measurements

Trigger-normalized yield of jets recoiling from a high pT trigger

- Recoil jet yield ratio between different Rs well described by PYTHIA Perugia tune → reflects jet collimation
- Recoil jet yield suppressed in central PbPb compared to PYTHIA reference → jet quenching
- No jet broadening observed

Jet anatomy

• Jet are extended objects with momentum and angular structure

Central China Normal University

ALICE

Jet mass

- Difference of the momentum of the jets and the energy of its constituents weighted by their pseudo-rapidity $M = \sqrt{p^2 - p_T^2 - p_z^2}$ $p = \sum_{i=1}^{n} p_{T_i} \cosh \eta_i$. $p_z = \sum_{i=1}^{n} p_{T_i} \sinh \eta_i$
- Related to the virtuality of the parton traversing the medium
 - small mass: collimated jet, small number of constituents \rightarrow low virtuality

Central China Normal University

ALICE

Charged jet mass in different collision systems

• Difference observed between pPb and Pb-Pb jet mass distribution

• Shift also quantified in the ratio Pb-Pb/pPb and PYTHIA at the two energies

Charged jet mass comparison

- Model without quenching describes Pb-Pb data, quenching generates larger mean jet mass
- Small difference between p-Pb and Pb-Pb observed in mean jet mass for low pT jets

Jet angularity and p_T dispersion

• Probe angular and momentum scale of quenched jets

- Accelerated shower leads to higher angularities (broader) and small $p_T D$ (more constituents)
- Qualitatively consistent with collimation of the jet core
- g and p_TD qualitatively described by JEWEL model with recoils off

Jet shapes

- Ratio close I for most peripheral collisions \rightarrow no jet shape modification
- Depletion in the intermediate radius $(0.1 < r < 0.2) \rightarrow jet$ quenching
- Excess at large radius (r>0.2) for most central PbPb collisions → jet broadening

Broadening observed in two particle correlations

Probe angular scale of quenched jets

Small broadening in $\Delta \varphi$, significant broadening in $\Delta \eta$ (p_{T,trig} 1, width \downarrow)

Near side jet peak broadening

- Small broadening in $\Delta \phi$, significant broadening in $\Delta \eta$
- Broadening vanished at high $p_T(p_{T,trig} \uparrow, width \downarrow)$
- None of model settings describe the absolute width

Low p_T broadening observed in π^0 -h correlations

Enhancement at very low p_T, indicating extra particles excess → consistent with low p_T broadening (soften of fragmentation functions? excited by medium?)
Suppression on the away side for high p_T → consistent with jet quenching

Jet fragmentation function

- Peripheral PbPb similar to $pp \rightarrow no$ jet FF modification
- Excess at low p_T (< 4 GeV/c) in most central collisions \rightarrow jet broadening
- Suppression at $4 < p_T < 20$ in more central collisions \rightarrow jet quenching

Jet shape measurements to larger distance

- Extend jet shape analysis to large R using 2-d correlation methods
- Large angle broadening becomes stronger
 - decouple such broadening in $\Delta\eta$ and $\Delta\phi$ directions for low p_T jets in ALICE 32

Jet substructure

Using clustering+jet grooming techniques to map structure of final state jets to evolution of parton shower (e.g. "splitting function")

- Splitting function z_g : observable connected to the hardest splitting
- Measure the momentum balance of the two hard sub-jets
- Looking for modifications of the jet hard substructure

Splitting function in p-Pb collisions

ALI-PREL-120123

- First measurement of z_g in p-Pb collisions at 5.02 TeV
- No modification observed in minimum-bias p-Pb data compared to PYTHIA
- Next: redo the analysis in multiplicity classes, measurements in pp and PbPb collisions

Nsubjettiness measurements

- $\tau_{2/\tau_{1}}$: measures the two prongness of the jet
 - Small $\tau_{2/\tau_{I}}$ related to leading parton splitting into 2 resolvable partons
 - Medium modifications can shift $\tau_{2/T_{I}}$ to a higher value
- Data comparable with PYTHIA prediction without quenching effect

y+jet: "golden" probe for energy loss

- •Photon tagging:
 - Sets the reference of the hard process
 - Provide the calibrated energy of the jet opposite
 - Identify quark jets by photon tagging
 - Allows to measure jets in an energy domain where jet cannot be fully reconstructed

Yaxian MAO

γ-jet correlations

y-triggered hadron correlations

- Provide sensitive measurements of medium effects modifying the away side jet structure
 - probe jet fragmentation modifications
 - Study broadening in azimuthal correlations

Color and mass dependence by tagging

Tagging jets by different triggered-particle correlations

- OPAL and DELPHI measured quark and gluon has different fragmentation pattern in e+e-
- Theory predicted jet fragmentation pattern modified differently for g, q and Q
 - can be studied at LHC with Run2&3 data

Path length dependent medium effect by tagging

- By selecting jet pair events using different asymmetry (x_T) value, one can probe different medium lengths and density profile, and result different modification patterns
 - can be studied at LHC with Run2&3 data

Summary and outlook

- So far so good...
 - consistent picture about jet quenching in PbPb collisions from different experiments
 - high pT jets/particles strongly suppressed
 - Dijet imbalance and asymmetric
 - Jet structure modified with low p_T and large angle broadening
 - New sets of jet observables probing additional aspects of QCD developed
 - sophisticated measurements (g, p_TD , z_g , $\tau_{2/\tau_{1,...}}$)
 - improving understanding on jet thermalization and resolving power of jets
- But...still left with questions...
 - can be addressed and checked by high statistics LHC Runll and Runll data

Thank you for your attention!

Yaxian MAO Central China Normal University

Wigner RCP, Hungary, 11/08/2017

backup

響

Jet fragmentation and shape

Jet fragmentation function:

 particle momenta projected onto the jet axis

$$\xi = \ln(1/z) = \ln(p^{jet}/p^{track})$$

Jet shape:

 transverse momenta-flow as a function of the distance from the jet axis (r) in the η-φ plane

$$\rho(r) = \frac{1}{f_{ch}} \frac{1}{\delta r} \frac{1}{N_{jet}} \sum_{jets} \frac{p_T(r - \delta r / 2, r + \delta r / 2)}{p_T^{jet}},$$

Jet fragmentation function

- No strong jet p_T dependent fragmentation pattern
- difference observed at very low z (high ξ), especially for low p_T jets
- Next: do the analysis in PbPb collisions and study FF modification for low p_T jets 45

γ-jet correlations

- Ratio of jet to photon $p_T (x_{JY} = p_T^{jet}/p_T^{Y})$ is a direct measure of the jet energy loss: gradual centrality-dependence of x_{JY}
- Fraction of isolated photon-jet pair (R_{JY}): less jet partners above threshold (> 30 GeV/c)

Controlled Experiment: p + Pb ?

PbPb collisions

- Clear signs of Quark-Gluon Plasma (QGP)
- Strongly interacting particles affected by the presence of QGP
 - \bullet quenched jets and high p_{T}
 - modified jet structure

- Can we understand the baseline for PbPb?
- How do strongly interacting particles behave in cold nuclear matter? quenching?
- Can we see nuclear structure?

Jet quenching in p + Pb?

- No strong jet p_T dependence observed
- Consistent with EPS09 description

Dijet n asymmetry

Probing nPDF with jets and hadrons

x - fractional momentum from a colliding nucleon carried by the parton

• Different p_T and η region can probe different x-range

Probing nPDF with jets and hadrons

x - fractional momentum from a colliding nucleon carried by the parton

• Different p_T and η region can probe different x-range

Probing nPDF with jets and hadrons

x - fractional momentum from a colliding nucleon carried by the parton

• Different p_T and η region can probe different x-range

dijet n and charged hadron asymmetry

- shifted to p-going side, expect $Y_{asym} < I$
- "Central" events with high HF activity: dijets shifted to Pb-going side, expect $Y_{asym} > I$

10²

oPb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, charged particles

p_{_} [GeV/c]

E_T HF (ml>4) ≥ 40 GeV

CMS Preliminary

1

0.5

Color charge dependent jet FF and modifications?

High z fragments modified? Different partons have different modification? 25 < p² < 50 GeV $|y_{\gamma}, y_{h}| < 2$ 10^{3} $\times 10^2$ CMS: HIN-12-013 10 100-10%/70-100%, p_r^{jet}>100 GeV 1.5 ATLAS: arXiv:1406.2979 1010×10⁻² 0-10%/60-80%, p^{jet}≯92 GeV 1010 p+p $R_{D(z)}$ -5 Pb+Pb 10 dd/q_{1.5} √s = 2760 GeV ATLAS: PLB 739 (2014) 320 0.5 CMS: PRC 90 (2014) 024908 0.5 PRD 84 (2011) 014034 0 10-2 10⁻¹ 0.2 0.8 0.40.6 ZT

FF Rcp shows difference hints at high z between experiments

need precise measurements with coming LHC data

- Theory predicted jet fragmentation pattern modified differently for different parton mass
 - can be checked at LHC with coming data

Di-jet and di-hadron correlations

 hard scattered parton looses energy while traversing the medium
 CMS Experiment at LHC, CERN Data recorded: Sun Nov 14 19:31:39 2010 CEST

umi section: 249

• di-jet (im)balance (E_{jet} and $\Delta \phi$)

- di-hadron correlation pattern
 - Inter-jet properties ($\Delta \varphi$, away side x_E)

π^{0} -hadron azimuthal correlations

- Double peaks observed \rightarrow di-jet structure
- Near side peak width broader in PbPb compared to $pp \rightarrow jet$ broadening
- Away side peak in central PbPb collision is strongly suppressed \rightarrow jet quenching

Yield modification IAA

- π^0 triggered correlation identical to non identified di-hadron correlations
- No or little yield modification in the near side and yield suppression in the away side for high p_T particles
- Yield enhancement observed at very low p_T for both near and away side

x_E kinematics

Central China Normal University

Isolated π^0 -hadron x_E distributions

• Very limited statistics and large uncertainties from Run I analysis

Isolated y-hadron x_E distributions

- Isolated γ -hadron x_E distributions seems in favour of quark jet FF
- Detailed tagging study limited by Run 1 statistics

ALICE

Path length dependent medium effect

- By selecting jet pair events using different asymmetry (x_T) value, one can probe different medium lengths and density profile, and result different modification patterns
 - can be studied at LHC with coming data

Jet peak from di-hadron correlations

arXiv:1609.06643, submitted to PRL $3 < p_{T,trig}$ < 4 GeV/*c* 0.3ALICE, Pb-Pb b $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ $1 < p_{T,trig} < 2 \text{ GeV/}c$ $1 < p_{T,assoc} < 2 \text{ GeV/}c$ ALICE, Pb-Pb $2 < p_{_{T,assoc}}$ < 3 GeV/c (rad⁻¹) $s_{NN} = 2.76 \text{ TeV}$ 0-10% 0-10% $|\Delta \phi| < \pi/2$ dN_{assoc} ($|\Delta \eta| < 1.6$ φ∆ρ 5.4 4% scale $rac{1}{N_{
m trig}} rac{d^2 N_{
m assoc}}{d\Delta \eta d\Delta \phi} (rad^{-1})$ uncertainty o 5.2 #000000 dN_{assoc} d∆h 0. 5 $\Delta \phi$ proj. $\Delta\eta$ proj. 4.8 $\Delta \phi$ fit N_{trig} De radi $\Delta\eta$ fit $\begin{array}{c} 0 \\ \Delta \eta \end{array}$ _1 -1 $\Delta \phi$ (rad) or $\Delta \eta$ ALI-PUB-112811 ALI-PUB-113150

- Jets distributed much wider in $\Delta\eta$ than in $\Delta\phi$
- Near side peak is fitted to characterize its shape evolution
- Fit function: background + generalized Gaussian

ALICE

Comparison to MC — absolute width in central

• Absolute width described by $\frac{\sigma_{\Delta\varphi}(Data)}{\sigma_{\Delta\varphi}(MC)}$, $\frac{\sigma_{\Delta\eta}(Data)}{\sigma_{\Delta\eta}(MC)}$

None of the AMPT settings describe all pT bins

Virtuality evolution

- In hard scattering processes the leading parton (LP) is usually produced off-shell, its off-shellness is the virtuality ~ jet mass
 - In vacuum, parton virtuality decreases at each emission
 - In a medium, parton virtuality can rise due to scatterings

Jet reconstruction

Anti-k⊤:

Sequential clustering of objects in event (calo towers, tracks etc) with a particular distance measure:

$$egin{aligned} d_{ij} &= \min(k_{ti}^{2p},k_{tj}^{2p})rac{\Delta_{ij}^2}{R^2},\ d_{iB} &= k_{ti}^{2p}\,, \
ho$$
=-1

Results in cone-shaped, approximately R-sized jets

2008: Fastjet revolution

Cacciari, Salam, Soyez, JHEP 0804 (2008) 063 "anti-kT" replaced zoo of prior algorithms:

- conceptually simple
- theoretically sound
 - infrared safe
 - collinear safe
- computationally efficient & robust
- part of Fastjet package

Which jets are found depends on anti-k⊤ resolution parameter

Jet and underlying event

Jets in heavy-ion collisions sit on top of large underlying event (UE) Need to **decide** which particles are part of jet and which belong to UE: **UE** subtraction

Current methods assume that local UE (under jet) is the same as elsewhere in the event I.e., UE modification due to jet would manifest as modification of observed jet

