

Hungarian Academy of Science <u>KFKI Institute for Particle and Nuclear Physics</u> Theoretical Physics Department, April, 2010

Non-Congruent Phase Transitions in Cosmic Matter and Laboratory

Joint Institute for High Temperature (Russian Academy of Science) Moscow Institute of Physics and Technology (State University)

The base:

- Non-ideal plasma physics
- Developments of advanced nuclear reactor

Main issue for EMMI:

- The most general form of phase coexistence in *multy--component* systems is *non-congruent* phase transitions

(in contrast to the phase transitions in ordinary one-component systems)

Non-congruent phase transition – *what does it mean*?

Non-congruence – phase coexistence with different chemical composition !

Evident definition – *in* **terrestrial applications**

Evident definition – *in* **outer layers of compact stars**

<u>For example</u>: Non-congruent crystallization in accreting layers of NS (C.Horowitz)

No nuclear transformations // No quark deconfinement

NB !

Non-evident – *in* interiors *of* compact stars

Non-evident – *in* products *of* HIC

Nuclear transformations // Quark deconfinement

Thermodynamic dimensionality is the key parameter !

Advanced nuclear reactors developments

Developments of Gas-Core Nuclear Reactor

<u>The base</u>

Non-congruent phase transition in uranium-bearing mixtures

Gas-Core Nuclear Reactor Project (1957–1980)

<u>Competition</u>: Cosmic and Nuclear Agencies (Soviet Union) ⇔ Los Alamos (United States) Project Leader in Soviet Union – academician Vitalii Ievlev (RAS)

INTAS Project (1995–2002) // ISTC Project (2002–2005)

<u>Cooperation</u>: MIPT – IHED RAS – IPCP RAS – OSEU – MPEI – ITEP – VNIIEF ⇔ ITU (JRC, Germany) GSI (JRC, Germany) Managing, science and coordination: – V. Fortov (RAS, Moscow)/B. Sharkov (ITEP, Moscow) /C. Ronchi (ITU, JRC)

Two problems in phase transition calculation

- Construction of Equation of State (EOS)

- Phase coexistence parameters calculation

Chosen approach and fundamentals

Sketch of theoretical approach

Quasi-chemical representation for liquid & gaseous phasesInteractions: (Pseudopotential components)Ufor the short-range repulsion- Coulomb interaction between charged particles- Short-range effective attraction between all particlesInteraction corrections: (Modified for mixtures)- Hard-sphere mixture with varying diameters

- Modified Mean Spherical Approximation (MSAE+DHSE)
- Modified Thermodynamic Perturbation Theory {TPT- $\sigma(T)$; $\epsilon(T)$ }

* Iosilevskiy I., Yakub E., Hyland G., Ronchi C. Trans. Amer. Nuclear Soc. 81, 122 (1999)

* Iosilevskiy I., Yakub E., Hyland G., Ronchi C. Int. Journal of Thermophysics 22 1253 (2001)

* Iosilevskiy I., Gryaznov V., Yakub E., Ronchi C., Fortov V. Contrib. Plasma Phys. 43, (2003)

* Ronchi C., Iosilevskiy I., Yakub E. Equation of State of Uranium Dioxide / Springer, Berlin, (2004)

* Iosilevskiy I., Son E., Fortov V. Thermophysics of non-ideal plasmas. MIPT (2000); FIZMATLIT, (2009)

Quasi-chemical representation ("Chemical picture")

astro-ph/0601017v1/2006 /

Two problems in phase transition calculation

- Construction of Equation of State (EOS)

- Phase coexistence parameters calculation

Phase coexistence parameters calculation *(standard approach)*

Ordinary way:

in pressure P(V) – Maxwell (equal squares) or in free energy F(V) – "Double tangent"

(see for example: Iosilevskiy I., Encyclopedia on low-T plasmas. III-1, 2000, P.327-339); III-1 (suppl) 2004, P.349-428)

• Standard critical point: $(\partial P/\partial V)_T = 0$ // $(\partial^2 P/\partial V^2)_T = 0$ // $(\partial^3 P/\partial V^3)_T < 0$ $\mu_k'(P,T,x') = \mu_k''(P,T,x'')$ **Forced-congruent evaporation in U-O system** <u>does not correspond to the total equilibrium</u> (only to the partial one)

Maxwell approach

- is non-adequate for non-congruent phase transitions

Correct approach:

- Gibbs (+ Guggenheim) conditions

Phase equilibrium in reacting Coulomb system (Gibbs – Guggenheim conditions) Phase - I Phase -II (\pm) φ″ φ' $n_1' + n_2' + \ldots + n_k'$ $n_1'' + n_2'' + \dots + n_k''$ Heat exchange Impulse exchange T' = T''P' = P''**Bulk Bulk** potential potential Particle Exchange Particle Exchange neutral species charged species <u>NB</u>! - Chemical potentials of charged species $\mu_1'(P,T,x') = \mu_1''(P,T,x'')$ are not equal (Guggenheim, 1929) $\mu_{2}'(P,T,x') = \mu_{2}''(P,T,x'')$ Electro-chemical potentials are equal $\mu_{k}'(P,T, x') = \mu_{k}''(P,T, x'')$ $\mu_i' + Z_i e \varphi' = \mu_i'' + Z_i e \varphi'' \iff$ $\Delta \phi(T)$ Equilibrium reactions Potential drop at mean-phase interface $ah \Leftrightarrow a + h$ (reduced number of basic units) <u>in equilibrium Coulomb system</u> Uranium – Oxygen system $\mu_1'(P,T,x') = \mu_1''(P,T,x'') + Z_1 e \Delta \phi(T)$ $\mu_{II}(P,T,x') = \mu_{II}(P,T,x')$

$$\mu_{2}'(P,T,x') = \mu_{2}''(P,T,x'') + Z_{2}e \Delta \varphi(T)$$

$$\boldsymbol{\mu}_{\mathsf{e}}'(\boldsymbol{P},\boldsymbol{T},\,\boldsymbol{x}\,') = \boldsymbol{\mu}_{\mathsf{e}}''(\boldsymbol{P},\boldsymbol{T},\,\boldsymbol{x}\,'') - \boldsymbol{\mathcal{C}}\Delta\boldsymbol{\varphi}(\boldsymbol{T})$$

(see for example: Iosilevskiy I., Encyclopedia on low-T plasmas. III-1 (suppl) 2004, P.349-428)

 $\mu_{\Omega}'(P,T,x') = \mu_{\Omega}''(P,T,x'')$

Electrostatics of phase boundaries in Coulomb systems

Iosilevskiy & Chigvintsev, J. Physique (2000)

Impact and Fireball hydrodynamics in HIC

Phase equilibrium in reacting Coulomb system (Gibbs – Guggenheim conditions)

Phase - I Phase -II φ″ φ' $n_1' + n_2' + \ldots + n_k'$ $n_1'' + n_2'' + \ldots + n_k''$ T' = T''P' = P''Neutral species Charged species $\mu_1'(P,T,x') = \mu_1''(P,T,x'')$ $\mu_1'(P,T,x') = \mu_1''(P,T,x'') + \Delta \phi Z_1 \Theta$ $\mu_2'(P,T,x') = \mu_2''(P,T,x'')$ $\mu_2'(P,T,x') = \mu_2''(P,T,x'') + \Delta \phi Z_2 e$ $\mu_{k}'(P,T, x') = \mu_{k}''(P,T, x'')$ $\mu_{e}'(P,T,x') = \mu_{e}''(P,T,x'') - \Delta \phi e$ Equilibrium reactions <u>Electroneutrality</u> $\mu_{\rm U} + \mu_{\rm O} = \mu_{\rm UO}$ $n_{U+} + n_{U++} + n_{UO2+} + n_{UO3+} = n_e + n_{O-} + n_{O2-} + n_{UO3-}$ $\mu_{\rm UO} + \mu_{\rm O} = \mu_{\rm UO2}$ $\mu_{\rm UO2} + \mu_{\rm O} = \mu_{\rm UO3}$ $\mu_{\rm U+} + \mu_{\rm e} = \mu_{\rm U}$ $\mu_{\rm UO3} + \mu_{\rm e} = \mu_{\rm UO3-}$ $2\mu_{\rm O} = \mu_{\rm O2}$ $\mu_{\rm UO+} + \mu_{\rm e} = \mu_{\rm UO}$ $\mu_{O} + \mu_{e} = \mu_{O}$ $\mu_{\text{UO2+}} + \mu_{\text{e}} = \mu_{\text{UO2}}$

Non-congruent evaporation in U-O system (*Gibbs - Guggenheim conditions*)

Non-congruent evaporation in U – O system

Isotherms in two-phase region

• Isothermal phase transition starts and finishes at *different pressures*

• Isobaric phase transition starts and finishes at *different temperatures*

End-Points of Non-Congruent Phase Transition

<u>NB</u> !

- Point of temperature maximum
- Point of pressure maximum
- Point of chem. potential extremum
- **Critical point** (*thermodynamic singularity*)

are four different points !

Non-congruent phase transformation in two-phase region

Oxygen depleted liquid ! *Different stoichiometry*!

Last vapor bubbles in boiling liquid

Oxygen enriched vapor ! Different stoichiometry!

Chemical composition at coexisting phases

Liquid $(O/U = 2.0) \Leftrightarrow Vapor (O/U > 2.0)$

Vapor (O/U = 2.0) \Leftrightarrow Liquid (O/U < 2.0)

Non-congruent evaporation in U – O system

Isobaric transition through the two-phase region

Non-Congruent Phase Transitions in Cosmic Matter and Laboratory

N-C Phase Transition Thermodynamics

Two-phase region in intensive variables (*P*-*T*, μ -*T*, μ -*P*)

Two-phase region of non-congruent phase transition must be two-dimensional region (*instead of one-dimensional curve*)

Critical point

Critical point of non-congruent phase transition must be of non-standard type, i.e. $(\partial P/\partial V)_T \neq 0$ $(\partial^2 P/\partial V^2)_T \neq 0$

It should be instead: $(O/U)_{\text{liquid}} = (O/U)_{\text{vapor}} \text{ and } \{ //\partial \mu_i / \partial n_k //_T \}_{CP} = 0$

N-C Phase Transition Dynamics

Parameters of non-congruent phase transformation strongly depend on the rapidity of transition Non-Congruent Phase Transitions in Cosmic Matter and Laboratory

Non-congruence in general

Main issue for study of non-congruent evaporation in U–O system

Non-congruence of phase transition in U-O system – – is it an exception or a general rule ?

Non-congruence in H₂O etc... – what does it mean **?**

BASIC STATEMENT: Any phase transition in a system of two or more chemical elements must be <u>non-congruent</u>

Neptune and "hot-water" extrasolar planet GJ436b

Any phase transition in *high-T_high-P* water must be *non-congruent*

Phase diagram in simple mixture H₂ + He could be complicated due to non-congruence

The question is:

What kind of phase transition one can expect in high-*T* high-*P* complex plasma ? $H_2 + He + H_2O + NH_3 + CH_4...$ at *T* ~ 1 – 20 kK & *P* ~ 1 – 10 Mbar

Typical composition in planetary science

Hypothetical non-congruent phase transitions (*short list*)

Terrestrial applications:

- Uranium- and Plutonium-bearing compounds:
 - UO₂, PuO₂, UC, UN, ... ets.,
- Metallic alloys: (Li-K-Na,...etc.)
- **Oxides:** $(SiO_2...etc.)$
- Hydrides of metals (LiH,... etc.)
- Ionic liquids and molten salts:
 alkali halides (NaCl, ... etc.), ammonium halides (NH₄Cl ... etc.)
 - *"Dusty"* and *Colloid plasmas:* (*Coulomb system of macro-ions +Z and micro-ions: +1, −1*)

Non-Congruence in Cosmic Matter:

- Plasma Phase Transitions in mixture: H₂/ He /H₂0 / NH₃ / CH₄ in Giant Planets, Brown Dwarfs and Extra-Solar Planets,
- Phase Transitions in White Dwarfs,
- Phase Transitions in Neutron Stars,
- Phase Transitions in "Strange" Stars (quark-hadron transition ... ets.)

Iosilevskiy I. / Int. Congress on Plasma Physics / Fukuoka, Japan, 2008 (J. of Plasma and Fusion Research, 2009)

EMMI : Cosmic Matter in the Laboratory

The question is:

What kind of phase transition one can expect in high-*T*_high-*P* complex plasma ? SiO₂ + FeO + Al₂O₃ + CaO + . . .

Launch – June 18, 2009 // Impact – 9 October 2009 12:30 a.m[.]! Impact velocity ~ 9'000 km/h 🔅 Impact plume ~ 50 km high

0.1

10

lgV, g/cc

0.01

Exploration of the Moon Continues!

LCROSS Lunar CRater Observation and Sensing Satellite

What kind of phase transition one can expect in high- T_high-P complex plasma? SiO₂ + FeO + Al₂O₃ + CaO $T \sim eV \& P \sim GPa$

The question is open

<u>NB</u> !

Phase transition in each constituent (SiO₂, FeO, Al₂O₃, CaO...) must be *non-congruent* !

Phase transitions in the mixture ¹¹ must be *non-congruent* moreover !

) // Impact – 9 October 2009 12:30 a.m[.]! 0 km/h ⇔ Impact plume ~ 50 km high

Impact and Fireball hydrodynamics in HIC

Hypothetical non-congruent phase transitions (*short list*)

Terrestrial applications:

- Uranium- and Plutonium-bearing compounds:
 - UO₂, PuO₂, UC, UN, ... ets.,
- Metallic alloys: (Li-K-Na,...etc.)
- **Oxides:** $(SiO_2...etc.)$
- Hydrides of metals (LiH,... etc.)
- Ionic liquids and molten salts:
 alkali halides (NaCl, ... etc.), ammonium halides (NH₄Cl ... etc.)
 - *"Dusty"* and *Colloid plasmas:* (*Coulomb system of macro-ions +Z and micro-ions: +1, −1*)

Non-Congruence in Cosmic Matter:

- Plasma Phase Transitions in mixture: H₂/ He /H₂0 / NH₃ / CH₄ in Giant Planets, Brown Dwarfs and Extra-Solar Planets,
- Phase Transitions in White Dwarfs,
- Phase Transitions in Neutron Stars,
- Phase Transitions in "Strange" Stars (quark-hadron transition ... ets.)

Iosilevskiy I. / Int. Congress on Plasma Physics / Fukuoka, Japan, 2008 (J. of Plasma and Fusion Research, 2009)

Non-congruence in complex (dusty) plasma?

Primitive model

(*non-Coulomb*) Hamaguchi S. et al., *Phys. Rev. E* **56**, 4671 (1997)

Phase Diagram in Yukawa system (on rigid compensating background)

$$U(r) = \frac{Z^2 e^2}{r} \exp(-\kappa r)$$

No density gap! *All phase boundaries are one-dimensional curves.*

Two-dimensional system All phase transitions **must be non-congruent** (there must be density gap) All phase boundaries are **two-dimensional stripes** (not curves!)

Non-congruence in exotic situations

Nuclear Defragmentation in High Energy Collisions

 $(Berceley \Leftrightarrow GSI \Leftrightarrow \ldots \ldots)$

Constructing the phase diagram of finite neutral nuclear matter arXiv: nucl-ex/0205004 v1 8 May 2002 J. B. Elliott¹, L. G. Moretto¹, L. Phair¹, G. J. Wozniak¹, S. Albergo², F. Bieser¹, F. P. Brady³, Z. Caccia², D. A. Cebra³, A. D. Chacon⁴, J. L. Chance³, Y. Choi⁵, S. Costa², M. L. Gilkes⁵, J. A. Hauger⁵, A. S. Hirsch⁵, E. L. Hjort⁵, A. Insolia², M. Justice⁶, D. Keane⁶, J. C. Kintner³, V. Lindenstruth⁷, M. A. Lisa¹, H. S. Matis¹, M. McMahan¹, C. McParland¹, W. F. J. Müller⁷, D. L. Olson¹, M. D. Partlan³, N. T. Porile⁵, R. Potenza², G. Rai¹ J. Rasmussen¹, H. G. Ritter¹, J. Romanski², J. L. Romero³, G. V. Russo², H. Sann⁷, R. P. Scharenberg⁵, A. Scott⁶, Y. Shao⁶, B. K. Srivastava⁵, T. J. M. Symons¹, M. Tincknell⁵, C. Tuvé², S. Wang⁶, P. Warren⁵, H. H. Wieman¹, ¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 ² Universitá di Catania and Istituto Nazionale di Fisica Nucleare-Sezione di Catania, 95129 Catania, Italy ³University of California, Davis, CA 95616 ⁴Texas A&M University, College Station, TX 77843 ⁵Purdue University, West Lafayette, IN 47907 ⁶Kent State University, Kent, OH 44242 ⁷GSI, D-64220 Darmstadt, Germany (June 15, 2006)

Elliott J.B., Moretto L.G. Phair L., Wozniak G.J., Bugaev K. *et al.*, *Phys. Rev. C* (1999 - 2006) // *Nuclear Phys. A* (2001) // <u>arXiv:nucl-th/0012037</u> // arXiv:hep-ph/0511180v1 2005 // arXiv: nucl-ex/0205004 v1 //

Thermodynamics of Nuclear Multifragmentation Phase Diagram of Nuclear Matter Liquid to Vapor Phase Transition in Excited Nuclei First-order Phase Transitions in Nuclei and other Mesoscopic Systems Nuclear Decay and the Liquid-Vapor Phase Transition: A Physical Picture

.

 $= = \langle \langle \rangle \rangle = =$

Nuclear Multifragmentation in High Energy Collisions

Basic idea:

- equivalence of collision products ensemble to:

Hypothetical phase coexistence of *infinite* nuclear liquid ("caviar") and

"vapor" of de-fragmentation <u>clusters</u>

 $N_0(A, Z) \Leftrightarrow \{N_i(A_i, Z_i)\}$

"Gas-Liquid" coexistence in nuclear collision products

This "Saturation Curve" *P*-*T* proved to be *linear* in *Arrenius* coordinates: $\ln P \Leftrightarrow 1/T$

- Standard "saturation curve" {P_S-T_S}
- Standard Van der Waals cupola (p -T)
- Standard Critical Point

This *Van der Waals cupola* (ρ -*T*) proved to be matched by *Guggenhiem's* equations: ρ (*T*)

(Guggenhiem's eqn.)
$$\frac{\rho_{l,v}}{\rho_c} = 1 + b_1 (1 - \frac{T}{T_c}) \pm b_2 (1 - \frac{T}{T_c})^{\beta}$$

arXiv:nucl-ex/0205004 v1 8 May 2002

FIG. 2: Pressure p as a function temperature T.

FIG. 6. The points are calculations performed at the excitation energies below the critical point and the lines are a fit to and reflection of Guggenheim's equation.

Hypothetical phase coexistence in multi-fragmentation of nuclear matter: is it <u>CONGRUENT</u> or <u>NON-CONGRUENT</u> ?

Non-congruence in exotic situations

Non-congruence in compact stars and supernova explosion

The New Physics of Compact Stars

<u>Compact stars</u>

White dwarfs, Neutron stars, "Strange" (quark) stars, Hybrid stars

Рис. 65. Массы планет (в единицах массы Земли) и их среднее расстояние от Солнца [371]

Hybrid ("strange") white dwarfs

Mathews G., Weber F. et al. J. Phys. G, 32, (2006) - White dwarfs with strange-matter cores

Hypothetical non-congruence for phase transitions in high density matter

(di scussi on)

- "Gas-Liquid" phase transitions
- Quark-Hadron phase transitions

Non-congruence in exotic situations (di scussi on)

Supernova Collapse in the Phase Diagram

(after D. Blaschke, "Extreme Matter", Elbrus-2010)

Hypothetical phase transitions in interior of compact stars: are they <u>CONGRUENT</u> or <u>NON-CONGRUENT</u> ?

Figure 2: Schematic image of structured mixed phase.

1	Endo T., Maruyama T., Chiba S., Tatsumi T.
	arXiv:astro-ph/0601017v1/ 2006 /

in hadron matter \bigcirc

First quark droplets Last hadron bubbles in quark matter

"Dew" point

"Bubble" point

Structured Mixed Phase Concept \Leftrightarrow "Pasta"

Schematic picture of pasta structures. Phase transition from blue phase (left-bottom) to red phase (right-bottom) is considered.

Pasta structures in compact stars /arXiv:nucl-th/0605075v2 /2006/

Maruyama T., Tatsumi T., Endo T., Chiba S.

Non-congruence in exotic situations (di scussi on)

Quark-Hadron *and* **Gas-Liquid** phase transitions via "mixed-phase" scenario have the same features as non-congruent PT !

Hypothetical phase transitions in ultra-dense matter: are they <u>CONGRUENT</u> or <u>NON-CONGRUENT</u> ?

Phase diagram of quark-hadron matter 200 UO, Critical Point. 175 Quark-gluon plasma 150 emperature [MeV] BC PRESSURE, GPa 125 SC 100 Non-congruent phase boundaries 75 Hadron phase CP? Double-tangent construction 50 Cold quark matter CP (standard procedure) 25 CFL Atomic nucleus Melting point Neutron stars 500 1250 1500 1750 2000 0 250 750 1000 Τ, Κ 205000 7000 8000 10000 11000 3000 4000 6000 9000 After Fridoli 006 After David 007 [MeV] 15 F temperature 10- Forced-congruent phase transition Non-congruent phase transition S. Typel, G. Roepke, D. Blaschke et al /arXiv:0908.2344v1/2009 Iosilevskiy I. **910** 915 920 925

Hypothetical phase transitions in ultra-dense matter:

Hypothetical phase transitions in ultra-dense matter: are they <u>CONGRUENT</u> or NON-CONGRUENT?

Hypothetical phase transitions in ultra-dense matter:
are they CONGRUENT or NON-CONGRUENT ?

What is this – Triple and Quadruple points of Non-Congruent phase transition?

"Gas-liquid" PT in "low-density" nuclear matter

"Gas-liquid" PT in "low-density" nuclear matter

Macroscopic phases

(1) **Ensemble**: p + n + N(A,Z) **Equilibrium**: N(A,Z) = Zp + (A - Z)n

No electrons No Coulomb effects

- (2) **Ensemble**: p + n + N(A,Z) + e **Equilibrium**: N(A,Z) = Zp + (A Z)n // electroneutrality
- (3) **Ensemble**: p + n + N(A,Z) + e **Equilibrium**: $N(A,Z) = Zp + (A Z)n // \beta$ equilibrium

"Gas-liquid" PT in "low-density" nuclear matter

Macroscopic phases

No electrons

No Coulomb effects

GC

(1) **Ensemble**: p + n + N(A,Z) **Equilibrium**: N(A,Z) = Zp + (A - Z)n

2-dimensional system $\{p+n\}$ **> Non-congruent PT**

(2) **Ensemble**: p + n + N(A,Z) + e **Equilibrium**: N(A,Z) = Zp + (A - Z)n // electroneutrality

2-dimensional system $\{p+n\}$ \longrightarrow **Non-congruent PT GGC**

(3) Ensemble: p + n + N(A,Z) + e Equilibrium: $N(A,Z) = Zp + (A - Z)n // \beta$ – equilibrium 1-dimensional system $\{p = e\}$ Forced-congruent PT GGC <u>NB</u>! Independently on symmetry (Y)

"Gas-liquid" PT of "low-density" nuclear matter

Phase diagram of (neutral) **symmetric** *p*-*n*-*N*(*A*,*Z*) nuclear matter with light clusters

S. Typel, G. Roepke, D. Blaschke et al. Phys. Rev. C, 81 (2010)

Phase diagram of (neutral) **non-symmetric** *p*-*n*-*N*(*A*,*Z*) nuclear matter with light clusters

Muller H., Serot B., Phys. Rev. C, 52, 2072 (1995)

Non-congruence in exotic situations (di scussi on)

(after S. Typel, HIC for FAIR, Prerow-2009)

Quark-Hadron PT in ultra-high-density matter

Macroscopic phases (Gibbs-Guggenheim conditions)1-dimensional system $\{\mu_b\}$ Forced-congruent PT

A Separate EOS-s for quark and hadron phases

No critical point !

Quark-Hadron PT in ultra-high-density matter

 ▲ Separate EOS-s for quark and hadron phases –

 -2-dim. zone in PT
 No critical point !

B Unique EOS for quark and hadron phases (like in U-O) Non-congruent critical point could exist ! ↓ ↓ ↓ ↓

Quark-Hadron PT in ultra-high-density matter

Structured Mixed Phase Scenario

highly dispersive mixture for mini-fragments of both phases with optimal form, size and charge

[for example: Maruyama T., Tatsumi T., Voskresenskiy D., Tanigava T., Chiba S., Phys. Rev. C (2005)]

The question is open !

It looks as if we deal with not one, but several mini-phase transitions

Uniform (nucleons) → **Drops** → **Rods** → **Slabs** → **Bubbles** → **Uniform** (quarks)

Hypothetical phase transitions in ultra-dense matter

are they <u>CONGRUENT</u> or <u>NON-CONGRUENT</u> ?

The problem of non-congruence for Quark-Hadron phase transition is relevant to physics of super-colliders!

Iosilevskiy I. / Int. Workshop "Physics of HEDM", JINR, Dubna, Russia, 2008, 2009

KFKI Institute for Particle and Nuclear Physics Theoretical Physics Department, April, 2010

Conclusions and **Perspectives**

- Non-congruent phase transition is general phenomenon.

- Non-congruent phase transition is universal phenomenon.

- If one takes into account hypothetical **non-congruence** of **phase transitions** in **cosmic matter** objects (*planets, compact stars, supernova etc.*) he should **revise** totally the **scenario** of all **phase transformations** in these objects.
- We have good enough reason to expect anomalous features for hydrodynamics of isentropic expansion for QGP fireball when thermodynamic trajectory crosses the Q-H phase boundary (congruent or non-congruent)
- We have good enough reason to expect anomalous features for hydrodynamics of expansion and compression for supernova when thermodynamic trajectory crosses the G-L phase boundary (congruent or non-congruent)

Non-congruent phase transitions in cosmic matter and laboratory

Thank you!

<u>Support</u>: INTAS 93-66 // ISTC 3755 // CRDF № MO-011-0 // RFBR 06-08-01166, and by **RAS Scientific Programs**

"Physics and Chemistry of Extreme States of Matter" and "Physics of Compressed Matter and Interiors of Planets"

There will be enough challenges

to keep us all happily occupied for years to come.

Hugh Van Horn (1990) (*Phase Transitions in Dense Astrophysical Plasmas*)

Acknowledgements

<u>Support</u> Vladimir Fortov (*Russia*) Claudio Ronchi (*Germany*) Boris Sharkov (*Russia*) Dieter Hoffmann (*Germany*)

<u>Research Program of</u> <u>Russian Academy of Science:</u>

"Physics and Chemistry of Extreme States of Matter"

MIPT Research & Educational Center "High Energy Density Physics" **Cooperation**

Victor Gryaznov (*Russia*) Eugene Yakub (*Ukraine*) Alexander Semenov (Russia) Vladimir Youngman (="=) Lev Gorokhov (=''=)Michael Brykin (=''=)Andrew Basharin (=''=)Michael Zhernokletov (="=) Michael Mochalov (=''=)Temur Salikhov (*Uzbekistan*) Claudio Ronchi (*JRC*, *Karlsruhe*) Gerard J. Hyland (Warwick, UK)

INTAS 93-66 // ISTC 2107 // CRDF MO-011