DYNAMICAL SCHWINGER EFFECT AT LASER FACILITIES

David Blaschke (Univ. Wroclaw, Poland & JINR Dubna, Russia)

- Introduction: Schwinger Effect
- Kinetic formulation of pair production
- Discussion of the landscape: E_0 and λ dependence
- \bullet Experimental verification of e^+e^- pair density
- Astra-Gemini Laser experiment: below the Schwinger limit
- ELI: towards the Schwinger limit and beyond QED

Recent paper: Phys. Rev. D 84, 085028 (2011)

Collaboration:

Burkhard Kämpfer (Dresden University & HZ Dresden-Rossendorf, Germany) Gerd Röpke (Rostock University, Germany) Gianluca Gregori (Univ. Oxford & Rutherford Appleton Lab, UK) Craig Roberts (Argonne National Laboratory, USA) Sebastian Schmidt (Forschungszentrum Jülich, Germany) Alexander Prozorkevich, Stanislav Smolyansky, Alexander Panferov (Saratov Univ., Russia)

PAIR CREATION IN STRONG ELECTROMAGNETIC FIELDS

- Magnetars: $B \sim 10^{15} G \implies$ Problem: unclear conditions!
- Ultra-Peripheral Heavy Ion Coll.

ARTIST VIEW OF A MAGNETAR (NASA)

- ELI: Optical \rightarrow X-Ray @ 1 EW: $I_0 \sim 10^{25} \text{ W/cm}^2 \rightarrow I_{CHF} \sim 10^{36} \text{ W/cm}^2$
 - + Long lifetime: $\tau \sim 10^{-15} \dots 10^{-18} \text{ s} \gg 10^{-22} \text{ s}$
 - + Condition for pair creation: $E^2 - B^2 \neq 0$, (crossed lasers)

SCHWINGER EFFECT: PAIR CREATION IN STRONG FIELDS

Pair creation as barrier penetration in a strong constant field

Schwinger result (rate for pair production)

$$\frac{dN}{d^3xdt} = \frac{(eE)^2}{4\pi^3} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-n\pi \frac{E_{\text{crit}}}{E}\right)$$

• To "materialize" a virtual e⁺e⁻ pair in a constant electric field *E* the separation *d* must be sufficiently large

$$eEd = 2mc^2$$

 \bullet Probability for separation d as quantum fluctuation

$$P \propto \exp\left(-\frac{d}{\lambda_c}\right) = \exp\left(-\frac{2m^2c^3}{e\hbar E}\right) = \exp\left(-\frac{2E_{\text{crit}}}{E}\right)$$

• Emission sufficient for observation when $E \sim E_{\rm crit}$

$$E_{\rm crit} \equiv \frac{m^2 c^3}{e\hbar} \simeq 1.3 \times 10^{18} {\rm V/m}$$

• For time-dependent fields: Kinetic Equation approach from Quantum Field Theory

J. Schwinger: "On Gauge Invariance and Vacuum Polarization", Phys. Rev. 82 (1951) 664

KINETIC FORMULATION OF PAIR PRODUCTION

Kinetic equation for the single particle distribution function $f(\bar{P},t) = \langle 0|a^{\dagger}_{\bar{P}}(t)a_{\bar{P}}(t)|0 > 0$

 $\frac{df_{\pm}(\bar{P},t)}{dt} = \frac{\partial f_{\pm}(\bar{P},t)}{\partial t} + eE(t)\frac{\partial f_{\pm}(\bar{P},t)}{\partial P_{\parallel}(t)}$ $= \frac{1}{2}\mathcal{W}_{\pm}(t)\int_{-\infty}^{t} dt'\mathcal{W}_{\pm}(t')[1\pm 2f_{\pm}(\bar{P},t')]\cos[x(t',t)]$

Kinematic momentum $\bar{P} = (p_1, p_2, p_3 - eA(t))$,

$$\mathcal{W}_{-}(t) = \frac{eE(t)\varepsilon_{\perp}}{\omega^2(t)} ,$$

where $\omega(t) = \sqrt{\varepsilon_{\perp}^2 + P_{\parallel}^2(t)}$, with $\varepsilon_{\perp} = \sqrt{m^2 + \bar{p}_{\perp}^2}$ and $x(t', t) = 2[\Theta(t) - \Theta(t')]$.

$$\Theta(t) = \int_{-\infty}^{t} dt' \omega(t')$$

Schmidt, Blaschke, Röpke, et al: Non-Markovian effects in strong-field pair creation Phys. Rev. D 59 (1999) 094005 Constant field: Schwinger limit reproduced

$$f(\tau \to \infty) = \exp\left(\frac{-\pi}{E_0}\right)$$

0

$$E(t) = E_m \sin \omega t, \quad 0 \le t \le NT, \quad T = \frac{2\pi}{\omega}$$

Gaussian wave packet

$$E(t) = E_m e^{-(t/\tau_L)^2} \sin \omega t.$$

PAIR PRODUCTION IN SUBCRITICAL FIELDS (I)

Kinetic formulation for $E(t) = -\dot{A}(t)$ in the Hamiltonian gauge $A^{\mu} = (0, 0, 0, A(t))$

$$\frac{df(\mathbf{p},t)}{dt} = \frac{1}{2}\Delta(\mathbf{p},t)\int_{t_0}^t dt' \,\Delta(\mathbf{p},t') \left[1 - 2f(\mathbf{p},t')\right] \times \cos\left[2\int_{t'}^t dt_1 \,\varepsilon(\mathbf{p},t_1)\right],$$

where

$$\begin{split} \Delta(\mathbf{p},t) &= eE(t)\frac{\sqrt{m^2 + p_{\perp}^2}}{\varepsilon^2(\mathbf{p},t)}, \\ \varepsilon(\mathbf{p},t) &= \sqrt{m^2 + p_{\perp}^2 + [p_3 - eA(t)]^2} \end{split}$$

The particle number density

$$n(t) = 2 \int \frac{d\mathbf{p}}{(2\pi)^3} f(\mathbf{p}, t)$$

Number of e⁺e⁻ pairs in the volume λ^3 for a weak field (Jena Ti:AlO₃ laser, solid line) and for near-critical field $E_m/E_{\rm crit} = 0.24$, $\lambda = 0.15$ nm (X-FEL, dashed line).

D.B. et al., PRL 96 (2006) 140402

THE LANDSCAPE: FIELD STRENGTHS AND WAVELENGTHS

APPLICATION TO SUBCRITICAL LASER FIELDS

Equilibrium-like momentum distribution at the time of maximal field amplitude t = T/4.

Heinzl, et al., Opt. Commun. 267, 318 (2006)

APPLICATION TO JENA MULTI-TW LASER

Colliding laser pulses of a Ti:sapphire laser with $E_m/E_{\rm crit} \approx 3\cdot 10^{-5}$ and $\omega/m = 2.84\cdot 10^{-6}$

Laser diagnostic by nonlinear Thomson scattering off e⁻ in a He-gas jet Pulse intensity: $I = 10^{18}$ W/cm², duration: $\tau_L \sim 80 fs$, wavelength: $\lambda = 795$ nm, crosssize: $z_0 = 9 \mu m$

B. Liesfeld et al: "Single-shot autocorrelation at relativistic intensity", Jena Preprint (2004)

Wavelength dependence of the mean density of e^+e^- pairs (solid line) and their annihilation rate (dotted line). $E = 3 \times 10^{-5} E_{cr}$. Wavelength dependence of the mean density of e^+e^- pairs for different E/E_{cr}

Project: G. Gregori et al. (2008) at RAL Astra-Gemini Laser

THE LANDSCAPE: FIELD STRENGTHS AND WAVELENGTHS

ACCUMULATION IN WEAK-FIELD CASE (R-DOMAIN)

Accumulation in weak-field regime: transition from oscillating mode ($\lambda = 0.01$ nm) to the linearly (in the mean) growing mode ($\lambda = 0.001$ nm). Limitation of accumulation due to saturation of f(p) at large times for $\lambda = 0.001$ nm. Saturation is faster for stronger fields.

The distribution function in the strong-field accumulation case (F-domain) at t = T,

for $E_0 = 0.5 E_c$, $\lambda = 0.15$ nm. Multi-photon mechanism, simultaneous absorption from photon reservoir. Left: General view; Right: Closeup of the region $29 < p_{\parallel}[m] < 31$

Time dependence of the pair density (left) and the number of annihilations (right) in the volume λ^3 for a periodic field (T - period) with $E_m = 10^{15}$ V/cm and $\lambda = 800$ nm for the different particle species. Laser intensity $3 \cdot 10^{27}$ W/cm².

$\pi^+\pi^-$ pair production in subcritical laser fields (II)

Pion pair creation kinetics, including decay into muons:

$$\frac{\partial f_{\pi}(\mathbf{p},t)}{\partial t} = \frac{1}{2} \Delta_{\pi}(\mathbf{p},t) \int_{t_0}^t dt' \Delta_{\pi}(\mathbf{p},t') \cos \theta_{\pi}(\mathbf{p},t',t) - f_{\pi}(\mathbf{p},t) \int d\mathbf{q} d\mathbf{k} w(\mathbf{p},\mathbf{q},\mathbf{k},t),$$

$$\frac{\partial f_{\mu}(\mathbf{p},t)}{\partial t} = \frac{1}{2} \Delta_{\mu}(\mathbf{p},t) \int_{t_0}^t dt' \Delta_{\mu}(\mathbf{p},t') \cos \theta_{\mu}(\mathbf{p},t',t) + \int d\mathbf{q} d\mathbf{k} w(\mathbf{q},\mathbf{p},\mathbf{k},t) f_{\pi}(\mathbf{q},t),$$

Stochastic pion decay with rate $w(\mathbf{p},\mathbf{q},\mathbf{k},t)$.

$$w(\mathbf{p}, \mathbf{q}, \mathbf{k}, t) \approx w(\mathbf{p}, \mathbf{q}, \mathbf{k}) = \frac{1}{2} \left(\frac{Gm_{\mu}F_{\pi}}{2\pi} \right)^2 \frac{q \cdot k}{\varepsilon_p \varepsilon_q \varepsilon_k} \delta^{(4)}(p - q - k),$$

Muons seen by a detector with the time resolution δt

$$\delta n_{\mu}(t) \approx \frac{\delta t}{\tau_{\pi}} n_{\pi}(t) = \frac{\delta t}{\tau_{\pi}} \int_{t_0}^t dt' e^{(t'-t)/\tau_{\pi}} s_{\pi}(t')$$

Number of muons as a function of the laser intensity at an optical wavelength $\lambda \sim 800$ nm.

Time dependence of the number of decay

muons produced in a volume λ^3 , seen in a muon detector with time resolution $\delta t \sim 0.1$ fs

Blaschke, Prozorkevich, Roberts, Röpke, Schmidt, Smolyansky; in preparation (2010)

ACCUMULATION EFFECT IN NEAR-CRITICAL FIELDS

Particle number density $n(T; E_0) = a_0(E_0) \sin^2(2\pi T) + \rho(T, E_0)T$, $T = t/\lambda$

Results are nicely fitted with

 $\rho(T, E_0) = \rho(E_0) + \rho'(E_0)T$

For $E = 0.5 \ E_0$, $a_0 = 1.2 \times 10^{-11} \ \text{fm}^{-3}$, $\rho = 5.4 \times 10^{-12} \ \text{fm}^{-3}$ /period, $\rho'/\rho = 0.0033$ /period.

Comparison with Schwinger rate

$$\rho = a \frac{m^4 \lambda}{4\pi^3} \left[\frac{E_0}{E_{cr}}\right]^2 e^{-b\pi E_{cr}/E_0}$$

Accumulation rate $\rho(0, E_0)$ (solid), Schwinger rate a = 1, b = 1 (dashed), a = 0.305, b = 1.06 (dot-dashed) Attention:

 $E_0 \sim 0.35 \ E_{cr}$ backreactions become important!

Roberts, Schmidt, Vinnik: "Quantum effects with an X-Ray Free-Electron Laser", Phys. Rev. Lett (2002) 153901

EXPERIMENT FOR SUBCRITICAL VACUUM PAIR PRODUCTION

Project: G. Gregori et al. at the RAL Astra-Gemini laser facility \rightarrow Summer 2010

ARTICLE IN PRESS

High Energy Density Physics xxx (2009) 1-5

A proposal for testing subcritical vacuum pair production with high power lasers

101:10.1016/j.hedp.2009.11.001 G. Gregori^{a,b,*}, D.B. Blaschke^{c,d}, P.P. Rajeev^b, H. Chen^e, R.J. Clarke^b, T. Huffman^a, C.D. Murphy^a, A.V. Prozorkevich^f, C.D. Roberts^g, G. Röpke^h, S.M. Schmidt^{i,j}, S.A. Smolyansky^f, S. Wilks^e, R. Bingham^b

*Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK ^bRutherford Appleton Laboratory, Chilton, Didcot OX II 0QX, UK ^cInstitute for Theoretical Physics, University of Wroclaw, 50-204 Wrodaw, Poland ^a Bogoliubov Laboratory for Theoretical Physics, Joint Institute for Nuclear Research, RU-141980, Dubna, Russia *Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA Saratov State University, RU-410026, Saratov, Russia *Physics Division, Argonne National Laboratory, Argonne, IL 60439-4843, USA ^hInstitut f
ür Physik, Universit
ät Rostock, Universit
ätsplatz 3, 18051 Rostock, Germany Fechnische Universität Dortmund, Fakultät Physik & DELTA, 44221 Dortmund, Germany ¹Forschungszentnum Jülich GmbH, 52428 Jülich, Germany

PAIR PRODUCTION AT RAL: ASTRA GEMINI LASER

Part of an experimental campaign to explore nonperturbative and nonequilibrium QFT regimes: (1) Pair production, (2) Nonlinear mixing, (3) Unruh effect

(1-A) Pair production in high-Z foils

(1-B) Vacuum pair production with different schemes:

- vacuum polarization
- refraction index
- $\bullet \, \gamma \gamma$ coincidence
- ...

KINETICS OF THE $E^+E^-\gamma$ plasma in a strong laser field

The photon correlation function is defined as

$$F_{rr'}(\mathbf{k}, \mathbf{k}', t) = \langle A_r^+(\mathbf{k}, t) A_{r'}^-(\mathbf{k}', t) \rangle ; \quad A_\mu(\mathbf{k}, t) = A_\mu^{(+)}(\mathbf{k}, t) + A_\mu^{(-)}(-\mathbf{k}, t).$$

Lowest truncation of BBGKY hierarchy \rightarrow photon KE for zero initial condition

$$\begin{split} \dot{F}(\mathbf{k},t) \; = \; -\frac{e^2}{2(2\pi)^3 k} \int d^3p \int_{t_0}^t dt' K(\mathbf{p},\mathbf{p}-\mathbf{k};t,t') [1+F(\mathbf{k},t')] \\ & [f(\mathbf{p},t')+f(\mathbf{p}-\mathbf{k},t')-1] \cos\{\int_{t'}^t d\tau [\omega(\mathbf{p},\tau)+\omega(\mathbf{p}-\mathbf{k},\tau)-k]\}, \end{split}$$

Markovian approximation; averaging the kernel: $K(\mathbf{p}, \mathbf{p} - \mathbf{k}; t, t') \rightarrow K_0 = -5$ Subcritical field case: $E \ll E_c$, lead to ($\delta = 2m - k$, frequency mismatch)

$$F(\mathbf{k},t) = \frac{5e^2n(t)}{2k\delta^2} \ , \ n(t) = 2\int d^3p f(\mathbf{p},t)/(2\pi)^3$$

Photon distribution in the optical region $k \ll m$ is characteristic for the flicker noise $\boxed{F(k) \sim 1/k}$

D.B. Blaschke et al., Contr. Plasma Phys. 49, 602 (2009); Phys. Rev. D 84, 085028 (2012).

CHALLENGES OF FUTURE LASERS FOR THE SCHWINGER EFFECT

- First experimental tests to theories of pair production, e.g. kinetic approach
- Simplest laser field model predicts production of dense electron-positron plasma in the focus of counter-propagating laser fields
- Observable manifestations testable, e.g., at ASTRA-Gemini:
 - several gamma-pairs per laser pulse
 - refraction index measurable by intereference with test beam
 - higher harmonics generation, in particular 3^{rd}
- Towards/Beyond Schwinger limit, e.g., at ELI:
 - Quantum statistics: Pauli-Blocking/ Bose Condensation; Backreactions
 - Pion production limit: signalled by muons
 - Pion condensation (?) and quark-gluon-plasma formation ...
- Laser acceleration of ion beams (see arxiv:0811.3570 [physics.plasm-ph])

Thanks to: D. Habs (Munich), G. Mourou (Paris), R. Sauerbrey (Rossendorf)

INTENSE THEORY-EXPERIMENT INTERACTION ...

Astra Collaboration Meeting, Juelich 2009

INTENSE THEORY-EXPERIMENT INTERACTION ...

MORE BRAINSTORMING WORKSHOPS NEEDED ...

D.B., Smolyansky, Nikishov in ITEP Moscow (2009)