Stability of the spatial restricted threebody problem & secondary resonances

Bazsó Ákos Schwarz Richard Érdi Bálint Funk Barbara

6th workshop of Young Researchers in Astronomy & Astrophysics Budapest, 2012

Schwarz et al., 2012, MNRAS (in press)

Outline

- Introduction
 - Restricted 3-Body-Problem (R3BP)
 - Applications
- Stability
 - CR3BP
 - ER3BP
- Resonances
- Summary

Configuration of R3BP

- 2 massive objects
 - Primary P
 - Secondary S
 - massless Trojan T
- circular (CR3BP) or elliptic (ER3BP) motion of S
- libration of T around Lagrange point L₄/L₅

Szebehely, 1967

Applications of R3BP

- Trojans in the Solar System
 - Earth: 1 (2010TK7)
 - Mars: 3
 - Jupiter: > 5200
 - Neptune: 8

minorplanetcenter.net, Aug 2012

Applications of R3BP

- Extrasolar planetary systems
- ~70% of stars in solar neighborhood in binary/multiple star systems
- wide range of masses
- T-type motion

Stability

Stability depending on 3 parameters

• mass ratio S/(P+S), $\mu \leq 1/25$ (Gascheau, 1843)

$$\mu = \frac{m_2}{m_1 + m_2}$$

- inclination *i* of T, $i < 61.5^{\circ}$ (Brasser et al., 2004)
- eccentricity e of S

Methods

Numerical integration of equations of motion

- mass ratio $0.0005 \le \mu \le 0.05$
- inclination $0 \le i \le 90^\circ$
- eccentricity $0 \le e \le 0.99$
- integration time 10⁶ periods

DFT / FFT analysis – Laplace-Lagrange variables

$h = e\cos(\omega + \Omega)$	$p = \sin i \cos \Omega$
$k = e\sin(\omega + \Omega)$	$q = \sin i \sin \Omega$

Secondary resonances

- librational frequencies:
 - short period comp. n_s
 - long period comp. n_l
- orbital frequency of S:
 n = 1
- resonances for integer combinations of freq.

Érdi et al., 2007

Stability maps for CR3BP

Zhou et al., 2009

Stability maps for CR3BP

Location of resonances

Location of resonances

Stability maps for ER3BP

Érdi et al., 2009, Schwarz et al., 2012

Stability maps for ER3BP

ER3BP at high inclination

Stability summary

Summary

- Circular R3BP
 - stable orbits at high inclinations
 - long-time stability for $> 10^6$ periods
 - secondary resonances related to chaotic regions
- Elliptic R3BP
 - stability region shrinks strongly with increasing inclination
 - model for possible exoplanetary systems