Dust formation in supernovae - type II-P SNe with the eyes of Spitzer

Tamás Szalai

predoctoral fellow

Dept. of Optics & Quantum Electronics, University of Szeged, Hungary

6th Workshop of Young Researchers in Astronomy and Astrophysics The Multi-wavelength Universe from Starbirth to Star Death 3-6 September 2012 – Budapest, Hungary

Supernova research at the University of Szeged

 Astrophysics Group at University of Szeged (since 1998, leader: Dr. József Vinkó)

Collaborations:

- Konkoly Observatory (Schmidt + RCC)
- Baja Observatory (BART)
 - → photometric follow-up of SNe

- University of Texas (J. C. Wheeler) + McDonald Observatory (HET)
 - → optical spectroscopy, HETDEX survey (from 2013)
- SALT (opt. spectroscopy), CfA Supernova Group
- Public data of space telescopes (Swift, Spitzer, HST)

About the origin of the interstellar dust

 Grain condensation works only in special cases

Possible sources:

- Stellar winds of AGB stars (intensive convection)
- Quasar winds
- Core-collapse supernovae
 - IR excess after explosion (first: SN 1987A)
 - Sub-mm excess and strong polarisation by older SNRs
 - Isotopic anomalies in meteorites
 - Large dust amount of high-redshift galaxies

What do we see in mid-infrared?

- Thermal radiation of pre-existing
 CSM re-heated by the SN (IR echo)
- Newly-formed, warm dust in the ejecta (~3-500 days after explosion)
- Grain condensation in a cool dense shell (CDS) between forward and reverse shock waves

Other evidences of fresh dust:

- Strong decrease of optical fluxes and increase of MIR fluxes in the same time
- Attenuation / blueshift of optical emission lines

Core-collapse SNe and dust formation

- Evidences of dust-formation only by a few SNe (long-term MIR observations are necessary), mostly by Type II-P ones (smaller v_{eiect} of C, O, Si layers)
- Amount and size-distribution of grains depend on the environment (type) of the SN

http://en.wikipedia.org

- Observed dust masses (< 0.02 M_{sin}) are much lower than predictions of models (0.1-1 $M_{s_{in}}$) \rightarrow other sources of dust in the early Universe?
 - Note 1: difficulties by dust mass calculations (model dependencies, clumps, grain parameters, very cold dust)
 - Note 2: other possibilities (larger contribution of AGBs, topheavy IMF, grain growth in the ISM)

Mid-IR Spitzer data of Type II-P SNe

- Public data from Spitzer database:
 - Mid-IR photometric data: IRAC (3.6, 4.5, 5.8, 8.0 μm), MIPS (24 μm)
 - + broadband photometry (IRS/PUI, 13.5-18 μm), IRS spectra (5-30 μm)
- Study of 13 Type II-P SNe → successful identification in 10 cases
- Aperture (and sometimes PSF) photometry (IRAF, MOPEX)
- IRS spectra: reduction with SPICE and IRAF (checking: CASSIUS)
- Outputs: light curves, flux-calibrated spectra, dereddened mid-IR SEDs

First step: temporal changes of the mid-IR SEDs of the studied SNe

Direct signs of dust formation

SN 2004dj

Disappearing of nebular lines (left) and a "bump" on the mid-IR light curves (right) after +300 days.

Analytic models for dust

Analytic model (Meikle et al. 2007)

$$L_{\nu} = 2\pi^{2} R^{2} B_{\nu}(T) \left[\tau_{\nu}^{-2} (2\tau_{\nu}^{2} - 1 + (2\tau_{\nu} + 1)e^{-2\tau_{\nu}})\right]$$

$$\tau_{\nu} = \frac{4}{3}\pi k \rho \kappa_{\nu} R_{\frac{1}{4-m}} [a_{max}^{4-m} - a_{min}^{4-m}]$$

- Grain types: AC, C-Si-PAH
- m = 3.5, $a_{min} = 0.005 \mu m$; $a_{max} = 0.05 \mu m$
- Dust formation within a spherical shell
- Fitted parameters: T, R, k
- Total mass of dust:

$$M_d = \frac{4\pi R^2 \tau_v}{3\kappa_v}$$

MRN-distribution (Mathis et al. 1977)

(Lucy et al. 1989)

Components of mid-IR radiation:

- "warm" dust (~250 1000 K): AC or C-Si-PAH
- "cold" dust (< 250 K): blackbody → excess at 24 µm
- hot (gas) component (>3000 K): blackbody → excess at 3.6 µm
 - → complementing optical data are necessary

Output parameters could be limits for the presence of newly-formed dust:

- varying (cooling) temperatures
- v_{eiecta} < 5000 km s⁻¹ (upper limit for inner layers)

AC dust (SN 2003J)

(SN 2004A)

AC dust + hot component Si dust + cold component (SN 2006my)

MOCASSIN 3D radiative transfer code

(Ercolano et al. 2003, 2005, 2007)

- Ray-tracing of energy packets in a shell containing specified medium (interactions)
- Cartesian grid

Inputs:

- Parameters of illuminating source
- Parameters of the shell (R_{in}, R_{out})
- Grain-size distribution (MRN, 0.005, 0.05, 0.1 μm)
- Average number density and density profile (homogenous, power-law)

Outputs:

- SED
- Total mass of dust

Conclusions

- Detectable, mainly newly-formed local dust by 3 SNe: 2004dj, 2005af, 2005ad
- Detectable, maybe partly newly-formed local dust (varying SEDs, but to large v_{eiecta}) by 3 SNe: 2003J, 2004A, 2007oc
- No detectable local dust (not varying SEDs) by 4 SNe: 2003ie, 2006bp, 2006my, 2006ov
- 16 II-P SNe with analysed and published Spitzer-data in all
 - → 10 of them were analysed and published by our group
- Dust masses $(10^{-5} 10^{-3} M_{sol})$ are too low (<< 0.1 M_{sol})
 - → other cosmic dust sources?
- Herschel may reveal much more cold dust in SNRs

Szalai T., Vinkó J., Balog Z. et al. 2011, A&A, 527, A61 Szalai T. & Vinkó J. 2012, Proceedings of the IAU, IAU Symposium 279, accepted Szalai T. & Vinkó J. 2012, A&A, submitted

