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Introduction

Aims:

Generating an exact solution of the Einstein's equations for

interstellar gas clouds that is compatible with and results of

astronomical measurements

Describe the distribution of pressure and density, the energy,

speed, trajectory, and further relevant physical features of the

cloud's particles

Further possibilities of study:

Generalization of the model to warm and ionized matter by

the consideration of GR thermodynamics and EM �elds

Application:

Provide a proper background in general relativity to investigate

the interaction of gravitational waves and matter
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Basic properties of the cloud

Properties of the spherically symmetric static cloudes:

Spherically symmetry in the self-gravitating system

The hydrostatic pressure is balanced by the cloud's self-gravitation

Cold, dense and heavy giant molecular clouds ⇒ rare and weak collisions
between low-energy particles ⇒ ideal gas equation of state: p = c2s ρ

The following criteria must be met:

1 MR ≤ MBE , where MBE refers to the Bonnor�Ebert mass given by

MBE = cBE
c4s√
p
, cBE ' 1.18. (1)

2 ρ(r), p(r) > 0 and dρ/dr , dp/dr < 0 everywhere in the cloud, the
maximum of the density and pressure are in r = 0. Boundary conditions:

lim
r→R

ρ(r) = lim
r→R

p(r) = 0, lim
r→R

dρ

dr
= lim

r→R

dp

dr
= 0. (2)

3 The speed of sound cs in the medium must be less than the speed of
light, that is

c
2
s =

dp

dρ
< 1. (3)
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Field equations for the compact gas cloud

In Einstein's equations we use:

Schwarzschild metric

Stress-energy tensor for perfect �uids

Isotropic con�guration of the system

Let's introduce a pair of new variables: α = −λ′e−λβ2 and β =
rν′

2
+ 1

⇒ The �eld equation reduces to a second order algebric equation in β:

r(rν′ + 2)
d

dr
e
−λ + (2r2ν′′ + r

2
ν
′2 − rν

′ − 4)e−λ + 4 = 0| {z }
ODE

=⇒ 2(α + 1)β2 + (rα′ + 8α)β + 4α = 0| {z }
Quadratic algebric equation

For any function α the quadratic equation is solved by the real roots

β± = 4−1(α+ 1)−1
“
8α− rα′ ±

p
(rα′ + 8α)2 − 32α(α+ 1)

”
⇒ We can calculate the metric functions distribution belonging to β!

λ = ln

„
β2

α

«
ν =

Z
r

0

2(β − 1)

r
dr + ν0

ρ =
1− (rα/β2)′

8πr2
p =

(2β − 1)α− β2

8πβ2r2

Dániel Barta Relativistic model for cold spherical interstellar gas clouds



Field equations for the compact gas cloud

Generating function: The simple, but still realistic choice for α is the ratio of
two polynomials of the radial coordinate r :

α = 1 +
A2r2

1 + Br2
← the lowest degree form which is physically valid

A and B are positive constants

It is advisable to introduce C 2 = 2B/A2 − 2 and use it in place of B

The centre gets into ξc = arcsinh(2C/3), and the spatial in�nity ξ∞ =
arcsinh(C/2), and the new variable is restricted by 0 < ξ∞ ≤ ξ ≤ ξc .

α =
(C 2 − 4) sinh ξ + 4C

(C 2 + 2) sinh ξ
, β =

(C coth ξ
2
− 2) cosh ξ

2

cosh ξ
2

+ C sinh ξ
2

The inner Schwartzchild metric appears to be

ds
2 = −eνdt2 + e

λ C 2 cosh2 ξdξ2

4A2(C 2 + 2)(2C − 3 sinh ξ)(2 sinh ξ − C)3

+
2C − 3 sinh ξ

A2(C 2 + 2)(2 sinh ξ − C)
(dϑ2 + sin2 ϑdϕ2)

A corresponds to a constant conformal transformation of the metric
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Field equations for the compact gas cloud

Restrictions on the constants:

1 Moving away from the centre of the cloud, p → 0 on the boundary

2 Any choice of constants A and C satis�es the restriction on the speed of
sound in the medium.

Assuming B � 1� C , then one sees that p and ρ vanish simultaneously at
r = R if and only if B = 4/R2 ⇒ A = 8c2s

Functions of state: by eliminating the variable ξ

ρ =
(4Br2 − 1)(8Br2 − 3)

4πC
, p =

(4Br2 − 1)(2Br2 − 1)

4πC 2

If B � 1� C , the equation of state is nearly linear for every r ≤ R

⇒ p

ρ
=

1

C

2Br2 − 1

8Br2 − 3
= c

2
s < 1 (as we required)

This �xes the last unknown constant as

C = 4/c2s
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Distributions and metric functions

Consequently, ρ and p di�er from one another only by a constant factor, thus
verifying the legitimacy of the isothermal equation of state.

e
ν =

c2s
4

„
1 +

c2s
4

r2

R2

«
, e

λ = exp

„
−c2s

2

r2

R2

«
.

The pressure and density distribution correspond with the classical results of
[Bohigas (1988)] and [Kritsuk et al (2011)], hence the metric functions
consistent with the distributions must be valid.

Figure: The normalized density and pressure pro�le. The evolution of the normalized
metric functions exp ν and expλ within a fraction of distance R.
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Lagrangian function and geodetics of the particles

The relativistic Lagrangian function of the particles in the investigated
spacetime is

L = −eν ṫ2 + e
λ
ṙ
2 + r

2(ϑ̇2 + sin2 ϑϕ̇2)

Euler�Lagrange equations provide the geodetic equations:

eν ṫ = Lt

r̈ +
1

2

dλ

dr
ṙ
2 +

1

2

dν

dr
e
ν−λ

ṫ
2 − re

−λϕ̇2 = 0

r2ϕ̇ = Lϕ

The appearing constants Lt and Lϕ proportional to the total energy and
the angular momentum of the particles.

Energy equation:

Inside Outside

ṙ
2 +

L2ϕ

r2
e
−λ =

`
L
2
t e
−ν − 1

´
e
−λ

ṙ
2 +

L2ϕ

r2

„
1− 2M

r

«
− 2M

r| {z }
classical potential

= Lt|{z}
∝E

2 − 1

Orbit for a particle in the equatorial plane ϑ = π/2:„
dr̃

dϕ

«2

+ r̃
2
e
−λ =

1

L2ϕ

`
L
2
t e
−ν − 1

´
e
−λ, r̃ ≡ 1/r
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Circular motion on stabil orbits, velocity of the gas particles

In the equatorial plain for circular motion: r = constant, and thus ṙ = r̈ = 0.
This restriction imposes r̃ ′ = ˙̃r/Lϕ r̃

2 = 0; consequently r̃ ′′ is zero too. Utilizing
the

1 Metric functions

2 Energy equations

one can identify the constants of motion as

Lt =
cs

2

„
1 +

c2s r
2

4R2

«
and Lϕ =

cs

2

r2

R
.

The components of 4-velocity of a particle:

[uµ] =

»
2

cs
, 0, 0, cs

r

2R
sinϑ

–
Bounded orbits:

For a bounded orbit E < m0 is required, so as long as Lt = 1, the limits on r

for the orbit to be bound are given by 1 =
cs

2

„
1 +

c2s r
2

4R2

«
which is satis�ed

when r =
2R

cs

r
2

cs
− 1.
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Conclusions

Conclusions:

1 The density and pressure distribution can expressed by a decreasing
function of radius in terms of only the speed of sound in the medium and
the size of the cloud. The pro�ls correspond with astrophysical
measurments.

2 All the circular orbits are stable, thus the cloud rotate rigidly and
theoretically it remains stable permanently.

3 The value of the four-velocity of a particle slightly di�ers from the one
observed in an ordinary Schwartzschild spacetime, but the angular
velocity is inversely proportional to the radius.
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Thank you for your attention!

Questions now or later.

e-mail: bartolomeus@ludens.elte.hu
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