# The modified Picard iteration and its applications 

Renáta Pintér-Rajnai Hungary, Eötvös University, Budapest

## The Picard iteration

- A process to solve differential equations

Consider the following initial value problem:

$$
\frac{d y}{d x}=f(x, y) \quad y\left(x_{0}\right)=y_{0}
$$

The general solution:

$$
y(x)=y_{0}+\int_{x_{0}}^{x} f(X, y) d X
$$

The Picard iterative process:

$$
y_{n+1}(x)=y_{0}+\int_{x_{0}}^{x} f\left(X, y_{n}\right) d X \quad y\left(x_{0}\right)=y_{0}
$$

If " $f$ " is analytical, the sequence of Taylor polynomials also converge to " $y$ "

## The modified Picard iteration

## (The Parker-Sochacki method)

- The Picard iteration is not so practical - "...lt is impossible to compute explicitly more than a few members of the sequence, so the limit function can only be found in rare cases..."
- G. E Parker \& J. S. Sochacki - Implementing the Picard iteration
$\Rightarrow$ generate or approximate the Taylor series solutions to any ODE, that has a polynomial generator


## The Parker-Sochacki method

- Equations of motions:

$$
\begin{gathered}
\frac{d x}{d t}=v \\
\frac{d v}{d t}=f(x, t)
\end{gathered}
$$

- Assume that $x$ and $v$ can be expressed as a truncated Taylor series in time:

$$
\begin{gathered}
x:=x_{0}+x_{1} t+x_{2} t^{2}+\ldots+x_{n} t^{n}=\sum_{j=0}^{n} x_{n} t^{n} \\
v:=v_{0}+v_{1} t+v_{2} t^{2}+\ldots+v_{n} t^{n}=\sum_{j=0}^{n} v_{n} t^{n} \\
x_{1}+2 x_{2} t+\ldots+n x_{n} t^{n-1}=v_{0}+v_{1} t+v_{2} t^{2}+\ldots+v_{n} t^{n} \\
\rightarrow \quad x_{n+1}=v_{n} /(n+1) \\
v_{n+1}=k_{n}(x) /(n+1)
\end{gathered}
$$

## The N -body problem

- Equations of motions:

$$
\begin{aligned}
& \text { s: } \quad \frac{d x_{i l}}{d t}=v_{i l} \\
& \frac{d v_{i l}}{d t}=\sum_{k=1}^{N} G m_{k} \frac{\left(x_{i k}-x_{i l}\right)}{\rho_{l k}^{3}}
\end{aligned}
$$

$$
\rho_{l k}=\left(\sum_{i=1}^{3}\left[x_{i l}-x_{i k}\right]^{2}\right)^{1 / 2}
$$

- The separation in the denominator makes it analytically unsolvable
- The key of the modified Picard iteration: to replace these factors with a polynomial approximation: $\quad \xi_{l k}:=1 / \rho_{l k}$
- The modified equations:

$$
\begin{gathered}
\frac{d x_{i l}}{d t}=v_{i l} \\
\frac{d v_{i l}}{d t}=\sum_{k=1}^{N} G m_{k}\left(x_{i k}-x_{i l}\right) \xi_{k k}^{3} \\
\frac{d \xi_{k k}}{d t}=-\xi_{l k}^{3}\left[\sum_{i=1}^{3}\left(x_{i l}-x_{i k}\right)\left(v_{i l}-v_{i k}\right)\right]
\end{gathered}
$$

The modified Picard iteration and its applications

## The N -body problem <br> $$
\begin{aligned} & \frac{d x_{i l}}{d t}=v_{i l} \\ & \frac{d v_{i l}}{d t}=\sum_{k=1}^{N} G m_{k}\left(x_{i k}-x_{i l}\right) \xi_{l k}^{3} \\ & \frac{d \xi_{l k}}{d t}=-\xi_{l k}^{3}\left[\sum_{i=1}^{3}\left(x_{i l}-x_{i k}\right)\left(v_{i l}-v_{i k}\right)\right] \end{aligned}
$$

$$
x:=\sum_{j=0}^{p} x_{p} d t^{p} ; \quad v:=\sum_{j=0}^{p} v_{p} d t^{p} ; \quad \xi:=\sum_{j=0}^{p} \xi_{p} d t^{p}
$$

$$
\mathrm{x}_{\mathrm{i}, \mathrm{l}, \mathrm{p}+1}=\mathrm{v}_{\mathrm{ilp}} /(\mathrm{p}+1)
$$

$$
\mathbf{v}_{\mathrm{i}, \mathrm{l}, \mathrm{p}+1}=\left[\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{Gm}_{\mathrm{k}} \sum_{\mathrm{j}=0}^{\mathrm{p}}\left(\mathrm{x}_{\mathrm{ikj}}-\mathrm{x}_{\mathrm{ilj}}\right)\left(\xi_{\mathrm{lk}}^{3}\right)_{\mathrm{p}-\mathrm{j}}\right] /(\mathrm{p}+1)
$$

$$
\xi_{l, k, \mathbf{p}+1}-\left[\sum_{\mathbf{j}=0}^{\mathrm{p}}\left(\xi_{\mathrm{lk}}^{3}\right)_{\mathrm{j}} \alpha_{1, \mathbf{k}, \mathbf{p}-\mathbf{j}}\right] /(\mathbf{p}+\mathbf{1})
$$

ahol

$$
\begin{aligned}
& \alpha_{\mathbf{l k p}}=\sum_{\mathrm{j}=0}^{\mathrm{p}} \sum_{\mathrm{i}=\mathbf{1}}^{3}\left(\mathbf{x}_{\mathrm{ilj}}-\mathbf{x}_{\mathbf{i k j}}\right)\left(\mathbf{v}_{\mathbf{i}, \mathrm{l}, \mathrm{p}-\mathbf{j}}-\mathbf{v}_{\mathbf{i}, \mathbf{k}, \mathbf{p}-\mathrm{j}}\right) \\
& \left(\xi_{\text {lk }}^{3}\right)_{\mathrm{p}}=\sum_{\mathrm{j}=0}^{\mathrm{p}}\left(\xi_{\mathrm{lk}}^{2}\right)_{\mathrm{j}} \xi_{\mathrm{l}, \mathrm{k}, \mathrm{p}-\mathrm{j}} \quad\left(\xi_{\mathrm{lk}}^{2}\right)_{\mathrm{p}}=\sum_{\mathrm{j}=0}^{\mathrm{p}} \xi_{\mathrm{lk},} \xi_{\mathrm{l}, \mathrm{k}, \mathrm{p}-\mathrm{j}}
\end{aligned}
$$

## The motions of satellites - The Gravitational potential

- Equations of motions of satellites:

$$
\begin{aligned}
\underline{\mathbf{\mathrm { n }}}=\frac{\mathrm{dU}}{\mathrm{~d} \underline{\mathbf{r}}} \quad \mathrm{U}=\mathrm{GM} & \sum_{\mathrm{l}=0}^{\infty} \sum_{\mathrm{m}=0}^{1}\left[\frac{\overline{\mathbf{r}}_{\oplus}^{1}}{\mathrm{r}^{+1+1}} \cdot \mathrm{P}_{\mathbf{1}}^{\mathrm{m}}(\sin \varphi) \cdot\left(\mathrm{C}_{\operatorname{lm}} \cos (\mathrm{m} \lambda)+\mathrm{S}_{\operatorname{lm}} \sin (\mathrm{m} \lambda)\right)\right] \\
C_{l m} & =\frac{1}{M \bar{r}_{\oplus}^{l}} \frac{2(l-m)!}{\delta_{m}(l+m)!} \int_{V} r^{\prime} P_{l}^{m}\left(\sin \varphi^{\prime}\right) \cos \left(m \lambda^{\prime}\right) \varrho d \tau, \\
S_{l m} & =\frac{1}{M \bar{T}_{\oplus}^{l}} \frac{2(l-m)!}{\delta_{m}(l+m)!} \int_{V} r^{\prime l} P_{l}^{m}\left(\sin \varphi^{\prime}\right) \sin \left(m \lambda^{\prime}\right) \varrho d \tau,
\end{aligned}
$$

- Changing the coordinate system:

$$
\begin{gathered}
\mathrm{U}=\sum_{\mathrm{l}=0}^{\infty} \sum_{\mathrm{m}=0}^{1} \sum_{\mathrm{k}=0}^{\mathrm{m}}\left[\frac{\beta_{\mathrm{lmk}}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{\frac{+4}{2}}} \cdot \mathrm{P}_{\mathrm{l}}^{\mathrm{m}}\left(\frac{\mathrm{z}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{1 / 2}}\right) \cdot \frac{\mathrm{x}^{\mathrm{k}} \mathrm{y}^{\mathrm{m}-\mathrm{k}}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{\mathrm{m} / 2}}\right] \\
\beta_{\mathrm{lmk}}=\operatorname{GMr}_{\oplus}^{-1}\binom{\mathrm{~m}}{\mathrm{k}}\left[\mathrm{C}_{\mathrm{lm}} \cos \left(\frac{1}{2}(\mathrm{~m}-\mathrm{k}) \cdot \pi\right)+\mathrm{S}_{\mathrm{lm}} \sin \left(\frac{1}{2}(\mathrm{~m}-\mathrm{k}) \cdot \pi\right)\right]
\end{gathered}
$$

The modified Picard iteration and its applications

## The Gravitational potential

- Equations of motions:

$$
\begin{aligned}
& \begin{array}{l}
\frac{d x}{d t}=v_{x} \\
\frac{d y}{d t}=v_{y} \quad \frac{d z}{d t}=v_{z} \\
\frac{d v_{x}}{d t}=\sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{k=0}^{m} \frac{\beta_{l m k} \cdot x^{k-1} y^{m-k}}{\left.\left(x^{2}+y^{2}\right)^{\frac{m+2}{2}} x^{2}+y^{2}+z^{2}\right)^{l+2}} \cdot \\
\cdot\left[P_{l}^{m}\left(\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}\right)\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \cdot\left[k y^{2}+x^{2}(k-m-l-1)\right]+P_{l+1}^{m}\left(\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}\right) x^{2} z(l-m+1)\right] \\
\frac{d v_{y}}{d t}=\sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{k=0}^{m} \frac{\beta_{l m k} \cdot x^{k} y^{m-k-1}}{\left(x^{2}+y^{2}\right)^{\frac{m+2}{2}}\left(x^{2}+y^{2}+z^{2}\right)^{l+2} \frac{2}{2}} \cdot \\
\cdot \\
\cdot\left[-P_{l}^{m}\left(\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}\right)\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \cdot\left[y^{2}(k+l+1)+x^{2}(k-m)\right]+P_{l+1}^{m}\left(\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}\right) y^{2} z(l-m+1)\right] \\
\frac{d v_{z}}{d t}=\sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{k=0}^{m} \frac{\beta_{l m k} \cdot x^{k} y^{m-k}}{\left(x^{2}+y^{2}\right)^{\frac{m+2}{2}}\left(x^{2}+y^{2}+z^{2}\right)^{l+2}} \cdot\left[P_{l+1}^{m}\left(\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}\right)\left(x^{2}+y^{2}\right)(l-m+1)\right]
\end{array}
\end{aligned}
$$

- Using additional variables:

$$
r:=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \quad s:=1 / r ; \quad u:=\left(x^{2}+y^{2}\right)^{1 / 2} \quad w:=1 / u ;
$$

Oth Workshop of Young Researchers in Astronomy and Astrophysics

## The Gravitational potential

- Equations of motions:

$$
\begin{aligned}
& \frac{d x}{d t}=v_{x} \\
& \frac{d y}{d t}=v_{y} \\
& \frac{d z}{d t}=v_{z} \\
& \frac{d v_{x}}{d t}=\sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{k=0}^{m} \beta_{l m k} x^{k-1} y^{(m-k)} w^{(m+2)} s^{(l+2)}\left[P_{l}^{m}(s \cdot z) r\left\{k y^{2}+(k-m-l-1) x^{2}\right\}+P_{l+1}^{m}(s \cdot z) x^{2} z(l-m+1)\right] \\
& \frac{d v_{y}}{d t}=\sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{k=0}^{m} \beta_{l m k} x^{k} y^{(m-k-1)} w^{(m+2)} s^{(l+2)}\left[-P_{l}^{m}(s \cdot z) r\left\{(k+l+1) y^{2}+(k-m) x^{2}\right\}+P_{l+1}^{m}(s \cdot z) y^{2} z(l-m+1)\right] \\
& \frac{d v_{z}}{d t}=\sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{k=0}^{m} \beta_{l m k} x^{k} y^{(m-k)} w^{(m+2)} s^{(l+2)}\left[P_{l+1}^{m}(s \cdot z)\left(x^{2}+y^{2}\right)(l-m+1)\right] \\
& \frac{d r}{d t}=s\left(x v_{x}+y v_{y}+z v_{z}\right) \\
& \frac{d s}{d t}=-s^{3}\left(x v_{x}+y v_{y}+z v_{z}\right) \\
& \frac{d w}{d t}=-w^{3}\left(x v_{x}+y v_{y}\right)
\end{aligned}
$$

The modified Picard iteration and its applications

## The Gravitational potential

(1) $\quad \mathbf{x}_{\mathbf{n + 1}}=\mathbf{v}_{\mathbf{x}, \mathbf{n}} /(\mathbf{n}+\mathbf{1}) \rightarrow\left(x^{2}\right)_{n}=\sum_{j=0}^{n}\left(x^{2}\right)_{j} x_{n-j}, \quad \ldots, \quad\left(x^{(k-1)}\right)_{n}=\sum_{j=0}^{n}\left(x^{(k-2)}\right)_{j} x_{n-j}, \quad\left(x^{k}\right)_{n}=\sum_{j=0}^{n}\left(x^{(k-1)}\right)_{j} x_{n-j}$
(2) $\mathbf{y}_{\mathbf{n}+1}=\mathbf{v}_{\mathbf{y}, \mathbf{n}} /(\mathbf{n}+\mathbf{1}) \rightarrow\left(y^{2}\right)_{n}=\sum_{j=0}^{n}\left(y^{2}\right)_{j} y_{n-j}, \quad \cdots, \quad\left(y^{(m-k-1)}\right)_{n}=\sum_{j=0}^{n}\left(y^{(m-k-2)}\right)_{j} y_{n-j}, \quad\left(y^{(m-k)}\right)_{n}=\sum_{j=0}^{n}\left(y^{(m-k-1)}\right)_{j} y_{n-j}$
(3) $\mathrm{z}_{\mathrm{n}+1}=\mathrm{v}_{\mathrm{z}, \mathrm{n}} /(\mathrm{n}+\mathbf{1})$
(7) $\mathbf{r}_{\mathbf{n}+\mathbf{1}}=\left[\sum_{\mathbf{j}=0}^{\mathbf{n}} \mathrm{s}_{\mathbf{j}}\left(\mathbf{r}^{*}\right)_{\mathbf{n}-\mathrm{j}}\right] /(\mathbf{n}+\mathbf{1}) \Leftarrow\left(r^{*}\right)_{n}=\sum_{j=0}^{n}\left(x_{j} v_{x, n-j}+y_{j} v_{y, n-j}+z_{j} v_{z, n-j}\right)$
(8) $\quad \mathbf{s}_{\mathbf{n}+1}=-\left[\sum_{\mathbf{j}=\mathbf{0}}^{\mathbf{n}}\left(\mathbf{s}^{\mathbf{3}}\right)_{\mathbf{j}}\left(\mathbf{r}^{\star}\right)_{\mathbf{n - j}}\right] /(\mathbf{n}+\mathbf{1}) \Leftarrow\left(s^{2}\right)_{n}=\sum_{j=0}^{n} s_{j} s_{n-j}, \quad\left(s^{3}\right)_{n}=\sum_{j=0}^{n}\left(s^{2}\right)_{j} s_{n-j}, \quad \ldots, \quad\left(s^{(l+2)}\right)_{n}=\sum_{j=0}^{n}\left(s^{(l+1)}\right)_{j} s_{n-j}$
(9) $\quad \mathbf{w}_{\mathbf{n + 1}}=-\left[\sum_{\mathbf{j}=0}^{\mathbf{n}}\left(\mathbf{w}^{3}\right)_{\mathbf{j}}\left(\mathbf{w}^{\star}\right)_{\mathbf{n - j}}\right] /(\mathbf{n}+\mathbf{1}) \Leftarrow\left(w^{\star}\right)_{n}=\sum_{j=0}^{n}\left(x_{j} v_{x, n-j}+y_{j} v_{y, n-j}\right)$

$$
\left(w^{2}\right)_{n}=\sum_{j=0}^{n} w_{j} w_{n-j}, \quad\left(w^{3}\right)_{n}=\sum_{j=0}^{n}\left(w^{2}\right)_{j} w_{n-j}, \quad \cdots, \quad\left(w^{(m+2)}\right)_{n}=\sum_{j=0}^{n}\left(w^{(m+1)}\right)_{j} w_{n-j}
$$

(4) $\mathbf{v}_{\mathbf{x}, \mathrm{n}+\mathrm{l}} \cdot(\mathrm{n}+1)=\sum_{\mathrm{l}=0}^{\infty} \sum_{\mathrm{m}=0}^{\mathrm{l}} \sum_{\mathrm{k}=0}^{\mathrm{m}} \beta_{\mathrm{lmk}} \sum_{\mathrm{j}=0}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{lmk}}\right)_{\mathrm{j}}\left[(\mathrm{k}-\mathrm{m}-\mathbf{1 - 1})\left(\mathbf{e}_{\mathrm{lm}}\right)_{\mathrm{n}-\mathrm{j}}+\mathbf{k}\left(\mathrm{f}_{\mathrm{lm}}\right)_{\mathrm{n}-\mathrm{j}}+(\mathbf{1}-\mathrm{m}+\mathbf{1})\left(\mathrm{g}_{\mathrm{lm}}\right)_{\mathrm{n}-\mathrm{j}}\right]$

(6) $\mathbf{v}_{\mathbf{z}, \mathrm{n}+1} \cdot(\mathbf{n}+1)=\sum_{\mathrm{l}=0}^{\infty} \sum_{\mathrm{m}=0}^{\mathrm{l}} \sum_{\mathrm{k}=0}^{\mathrm{m}} \beta_{\mathrm{lmk}}(\mathbf{1}-\mathrm{m}+1) \sum_{\mathrm{j}=0}^{\mathrm{n}}\left(\mathbf{c}_{\mathrm{lmk}}\right)_{\mathrm{j}}\left[\left(\mathbf{G}_{\mathrm{lm}}\right)_{\mathrm{n}-\mathrm{j}}+\left(\mathbf{H}_{\mathrm{lm}}\right)_{\mathrm{n}-\mathrm{j}}\right](1-\mathbf{m}+1)$
$\omega$

$$
\mathbf{a}_{l m k}=A_{k m} D_{l m} \quad \mathbf{b}_{l m k}=B_{k m} D_{l m} \quad \mathbf{c}_{l m k}=C_{k m} D_{l m} \quad \mathbf{f}_{l m}=r F_{l m} \quad \mathbf{e}_{l m}=r E_{l m} \quad \mathbf{g}_{l m}=z G_{l m} \quad \mathbf{h}_{l m}=z H_{l m}
$$

$$
\begin{aligned}
& A_{k m}=x^{k-1} y^{m-k} \quad B_{k m}=x^{k} y^{m-k-1} \quad C_{k m}=x^{k} y^{m-k} \quad D_{l m}=w^{m+2} s^{l+2} \\
& E_{l m}=P_{l}^{m}(s \cdot z) x^{2} \quad F_{l m}=P_{l}^{m}(s \cdot z) y^{2} \quad G_{l m}=P_{l+1}^{m}(s \cdot z) x^{2} \quad H_{l m}=P_{l+1}^{m}(s \cdot z) y^{2}
\end{aligned}
$$

## The motions of satellites:

Additional forces:
Additional terms in the equations of motions

- Inertial Forces:

Centrifugal force, Coriolis force, Euler force

- N-body problem (+ Moon, +Sun)
- Air Friction force

