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Obtained from the traditional trigonometric RS model via § — if3.
The 2-particle Hamiltonian reads

sin?(259)

2 a

H(z1,22,p1,p2) = (cos(Bp1) + COS(ﬁm)w 1= sin? § (w1 — a2)’

The center-of-mass phase space is the cylinder (g, %“ — Bg) x St locally.

What is the completed phase space?




Obtained from the traditional trigonometric RS model via § — if3.
The 2-particle Hamiltonian reads

sin?(

B sin2 %(331 — .1‘2) '

afg
H (w1, 29,p1,p2) = (cos(Bp1) + Cos(ﬁpz)w 1 2 )

The center-of-mass phase space is the cylinder (g, %“ — Bg) x St locally.

What is the completed phase space?




The N-particle Hamiltonian can be written in terms of particle-positions
x = (r1,...,oy) and momenta p = (p1,...,pN) as

= sin? (%8¢
H(x,p) = Zcos(ﬁpj) H (1 _ #)
j=1

sin® §(z; — xp)

oy
with scale («), deformation (), and coupling (g) parameters subject to
2
a >0, 08>0, O<g<—7T.
o

Integrability: A complete set of independent first integrals in involution

H@p)= ¥ cos(3Tem) |I1(1 sin” (237 )
r\&,P) = COS . D 27
Jc{1,..,N} eI y Slnzg(xj—;rk)
|J|=r kg J

The model was introduced by Ruijsenaars ('90), who imposed that 0 < g < 27/afN,
henceforth referred to as the standard case, and considered the thick-walled Weyl alcove

Yg={z€E|zj—x;41>Pg (j=1,...,N—1), 21 — oy < 27/a — B9},
sitting in the center-of-mass hyperplane E': 1 + --- 4+ xn = 0, as configuration space.
Quantised and solved for N = 2 by Ruijsenaars ('90), N > 2 by van Diejen-Vinet ('98).



Fehér and Kluck ('13) showed that the center-of-mass configuration space
has drastically different shapes depending on the value of the parameter g.
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Figure: The range of af8g/m for N = 4,5,6,7. The numbers displayed are excluded.
Admissible values of g form intervals of type (i) (solid) and type (ii) (dashed) couplings.



Here we consider the case of type (i) couplings. They form punctured intervals
around the points 27p/a8N, labelled by the coprimes p € {1,..., N} of N.
The parameter

27
M = Ep — BNy
helps to distinguish between couplings less/greater than 27p/aSN.
The standard interval 0 < g < 2w /afN becomes the special case p =1, M > 0.

Figure: The 3-particle configuration space ¥, for p = 1.
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The configuration space X,

For any fixed p € {1,..., N} with gcd(NV,p) = 1 the local configuration space is
a simplex determined by lower/upper bounds on p-nearest neighbour distances:

Ygp={x € E|sgn(M)(z; —xj4p—Bg) >0, j=1,...,N}.

Here we extended the indices in a periodic manner: Ty, = zr — 27 /.

Figure: Possible configurations for N = 3,p = 1.
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Root system notation

Consider the standard basis {ej,...,ex} C RY and the usual inner product (-, -)
on RY, i.e. (e;,er) = &, Let us focus on the root system

An_1 :{ej—ek |j,/€=1,...,N, j#k} C FE.
For any p € {1,..., N} relative prime to N we introduce the p-dependent base

{a1p,...,an—1,} of Ay_1 consisting of the simple roots
aj;p, =€; —€jip, j:].,...,N—].,
where we employ the periodicity convention ey = e;. Let {wip,...,wN_1p}

denote the corresponding fundamental weights defined via
<aj,p,wk,p>: ks j,kZI,...,N—l.

We drop the subscript p in the p = 1 case.
az

w2
wi

a;

Figure: Simple roots and fundamental weights for N = 3,p = 1.



Root system notation

Introduce the following weighted sum of fundamental weights

27
pp=DB9wip+  +wnpp)+ (59 - E) (WN—pt1p+ - FwWN_1,p).

Then the configuration space X, ,, is the simplex consisting of points of the form

N-1 N-1
x = p, +sgn(M) Z miw;p, with m; >0, Z mj < |M|.
Jj=1 j=1

Let us also introduce the functions

sin £ ({a, x) + Bg
Volz) = H zi£1<9<a> x) )
acAn_-1 ; 2 ’
(a,v)=1
Then the Hamiltonians can be written (in the center-of-mass frame E) as
Hyr(x,p) = Z cos(Bv,p)VVu(x)V,(—x), r=1,...,.N—1.

veSn(w)

The products V,, () V., (—x) are positive in X4, and vanish at certain boundary points.






The Hilbert space of lattice functions

Consider the uniform lattice A, as consisting of points

N-1 N-1
x = p, +sgn(M) Z mjw;p, with m; € Ny, Z m; < |M|.
j=1 j=1

This lattice fits the classical configuration space X, ,, iff the following
quantisation condition is satisfied

2
Mzgp—NgeZ\{O}.

Let L2(A, ar) denote the finite-dimensional
vector space of lattice functions

¢: Ap’]yj — C,
equipped with the inner product

G )prr = Y dl@)d(w).

TEAp, M Figure: The 3-particle lattice A; 4.
Its dimension equals the cardinality of A, a7, which is (N_‘ll;lrl‘Ml).



The quantum Hamiltonians

The following difference operators commute [Ruijsenaars '87]:

Heo= Y V@TV}P(-x), r=1,...,N-1,

veSN (wy)
where T}, = exp((v,d/8x)) is the translation operator acting on ¢ as
(T,.0)(2) = ¢(z +v).

Let us introduce the operators

ﬁrJVI = Z Vl}/2(m)f%gn(M)uVVl/2(_m)'

veSn (wr)

Proposition. 1. 7—ALN_T,M is the formal adjoint of ﬁT,M. 2. The operators

—_

N

Hyp= —(ﬁnM-i-ﬁNfr,M), r=1,....N—1

\V]

are well-defined and self-adjoint on the Hilbert space L?(Ap ar).



A factorised joint eigenfunction

Consider the lattice function A,: Ap, pr — R given by

Ay(z) = H sin 5 (a, x) ((a, p,) +sgn(M)g : Sina)(a,m—pp)
b v sin §(a, p,) (@, pp) +1 —sgn(M)g : sina)(a,e—p,)

where (z : sing )m stands for the trigonometric Pochhammer symbol

1, if m=0,
(2 : sing)m = sin§(z)...sing(z+m—1), ifm=12,...
Cifm=—1,-2 ...

sin§(z —1)...sin §(z+m)
Recurrence relations. For any x € A, yr and v € Sy(w,), r=1,...,N -1
satisfying @ + sgn(M)v € A, ar, we have

Ap(x +sgn(M)v) Vo ()
5@ Vulz—se(Dn)

Corollary. A,(x)'/? is a joint eigenfunction of the quantum Hamiltonians H, .



Joint eigenfunctions

We define the lattice functions Wy ,: Ap pr — C by letting

1 .
Uy p(z) = WAP(m)1/2AP(y)1/2PUp(y)(m)v
0

where & = sgn(M)(x — 2= Ej 1 wjp) and Py denote the self-dual Ay_;
Macdonald polynomlals with parameters ¢t = el@sgn(M)g g — el
The self-dual property of Py entails that for any x,y € A, s we have

Uy p(@) = Vg p(y),

which in turn can be used to show that ¥, ,, are joint eigenfunctions of the
quantum Hamiltonians:

HoyUy,=En(y)¥y,, r=1,....N—1

geeey

Finally, the orthogonality of the Macdonald polynomials implies that ¥, ,, form
an orthonormal eigenbasis in L%(A, ar).



Summary and plans for future work

In conclusion, we considered the new compact forms of trigonometric RS
models with type (i) coupling parameters and

e defined the appropriate quantum Hamiltonians as difference
operators acting on a finite-dimensional Hilbert space of lattice
functions,

o explicitly solved the corresponding eigenvalue problem in terms of
Apn_1 Macdonald polynomials.

We intend to generalise these results to

the case of type (ii) coupling parameters (in progress),

compactified models attached to root systems other than An_1,

finite-dimensional representations of SL(2,Z),

e new quantum elliptic models?





