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α → 0 |α → iα |ω′ → i∞
ω → π/2α

c → ∞

~ → 0

lim
c→∞

(Hrel −Nmc2) = Hnr
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Compactified Trigonometric RS Model

Classical Case



Obtained from the traditional trigonometric RS model via β → iβ.
The 2-particle Hamiltonian reads

H(x1, x2, p1, p2) = (cos(βp1) + cos(βp2))

√

√

√

√1 −
sin2(αβg

2
)

sin2 α
2
(x1 − x2)

.

The center-of-mass phase space is the cylinder (βg, 2π
α − βg) × S

1 locally.

What is the completed phase space?
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The N -particle Hamiltonian can be written in terms of particle-positions
x = (x1, . . . , xN ) and momenta p = (p1, . . . , pN ) as

H(x,p) =
N

∑

j=1

cos(βpj)

√

√

√

√

∏

k 6=j

(

1 −
sin2

(αβg
2

)

sin2 α
2
(xj − xk)

)

with scale (α), deformation (β), and coupling (g) parameters subject to

α > 0, β > 0, 0 < g <
2π

αβ
.

Integrability: A complete set of independent first integrals in involution

Hr(x,p) =
∑

J⊂{1,...,N}
|J |=r

cos(β
∑

j∈J pj)

√

√

√

√

√

∏

j∈J
k /∈J

(

1 −
sin2

(αβg
2

)

sin2 α
2
(xj − xk)

)

.

The model was introduced by Ruijsenaars (’90), who imposed that 0 < g < 2π/αβN ,
henceforth referred to as the standard case, and considered the thick-walled Weyl alcove

Σg = {x ∈ E | xj − xj+1 > βg (j = 1, . . . , N − 1), x1 − xN < 2π/α − βg},

sitting in the center-of-mass hyperplane E : x1 + · · · + xN = 0, as configuration space.

Quantised and solved for N = 2 by Ruijsenaars (’90), N > 2 by van Diejen-Vinet (’98).



Fehér and Kluck (’13) showed that the center-of-mass configuration space
has drastically different shapes depending on the value of the parameter g.
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Figure: The range of αβg/π for N = 4, 5, 6, 7. The numbers displayed are excluded.
Admissible values of g form intervals of type (i) (solid) and type (ii) (dashed) couplings.



Here we consider the case of type (i) couplings. They form punctured intervals
around the points 2πp/αβN , labelled by the coprimes p ∈ {1, . . . , N} of N .
The parameter

M =
2π

α
p− βNg

helps to distinguish between couplings less/greater than 2πp/αβN .

The standard interval 0 < g < 2π/αβN becomes the special case p = 1, M > 0.

Figure: The 3-particle configuration space Σg for p = 1.
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The configuration space Σg,p

For any fixed p ∈ {1, . . . , N} with gcd(N, p) = 1 the local configuration space is
a simplex determined by lower/upper bounds on p-nearest neighbour distances:

Σg,p = {x ∈ E | sgn(M)(xj − xj+p − βg) > 0, j = 1, . . . , N}.

Here we extended the indices in a periodic manner: xN+k = xk − 2π/α.

Figure: Possible configurations for N = 3, p = 1.



The configuration space Σg,p

For any fixed p ∈ {1, . . . , N} with gcd(N, p) = 1 the local configuration space is
a simplex determined by lower/upper bounds on p-nearest neighbour distances:

Σg,p = {x ∈ E | sgn(M)(xj − xj+p − βg) > 0, j = 1, . . . , N}.

Here we extended the indices in a periodic manner: xN+k = xk − 2π/α.

Figure: Possible configurations for N = 3, p = 1.



The configuration space Σg,p

For any fixed p ∈ {1, . . . , N} with gcd(N, p) = 1 the local configuration space is
a simplex determined by lower/upper bounds on p-nearest neighbour distances:

Σg,p = {x ∈ E | sgn(M)(xj − xj+p − βg) > 0, j = 1, . . . , N}.

Here we extended the indices in a periodic manner: xN+k = xk − 2π/α.

Figure: Possible configurations for N = 3, p = 1.



Root system notation

Consider the standard basis {e1, . . . , eN } ⊂ RN and the usual inner product 〈·, ·〉
on R

N , i.e. 〈ej , ek〉 = δjk. Let us focus on the root system

AN−1 = {ej − ek | j, k = 1, . . . , N, j 6= k} ⊂ E.

For any p ∈ {1, . . . , N} relative prime to N we introduce the p-dependent base
{a1,p, . . . ,aN−1,p} of AN−1 consisting of the simple roots

aj,p = ej − ej+p, j = 1, . . . , N − 1,

where we employ the periodicity convention ej+N = ej . Let {ω1,p, . . . ,ωN−1,p}
denote the corresponding fundamental weights defined via

〈aj,p,ωk,p〉 = δjk, j, k = 1, . . . , N − 1.

We drop the subscript p in the p = 1 case.

a1

a2

ω1

ω2

Figure: Simple roots and fundamental weights for N = 3, p = 1.



Root system notation

Introduce the following weighted sum of fundamental weights

ρp = βg(ω1,p + · · · + ωN−p,p) +

(

βg −
2π

α

)

(ωN−p+1,p + · · · + ωN−1,p).

Then the configuration space Σg,p is the simplex consisting of points of the form

x = ρp + sgn(M)

N−1
∑

j=1

mjωj,p, with mj > 0,

N−1
∑

j=1

mj < |M |.

Let us also introduce the functions

Vν(x) =
∏

a∈AN−1

〈a,ν〉=1

sin α
2 (〈a,x〉 + βg)

sin α
2 〈a,x〉

.

Then the Hamiltonians can be written (in the center-of-mass frame E) as

Hr(x,p) =
∑

ν∈SN (ωr)

cos(β〈ν,p〉)
√

Vν(x)Vν(−x), r = 1, . . . , N − 1.

The products Vν(x)Vν(−x) are positive in Σg,p and vanish at certain boundary points.



Compactified Trigonometric RS Model

Quantum Case



The Hilbert space of lattice functions

Consider the uniform lattice Λp,M consisting of points

x = ρp + sgn(M)

N−1
∑

j=1

mjωj,p, with mj ∈ N0,

N−1
∑

j=1

mj ≤ |M |.

ρ

ω2

ω1

Figure: The 3-particle lattice Λ1,4.

This lattice fits the classical configuration space Σg,p iff the following
quantisation condition is satisfied

M =
2π

α
p−Ng ∈ Z \ {0}.

Let L2(Λp,M ) denote the finite-dimensional
vector space of lattice functions

φ : Λp,M → C,

equipped with the inner product

(φ, ψ)p,M =
∑

x∈Λp,M

φ(x)ψ(x).

Its dimension equals the cardinality of Λp,M , which is
(N−1+|M|

|M|

)

.



The quantum Hamiltonians

The following difference operators commute [Ruijsenaars ’87]:

Ĥr =
∑

ν∈SN (ωr)

V 1/2
ν (x)T̂νV

1/2
ν (−x), r = 1, . . . , N − 1,

where T̂ν = exp(〈ν , ∂/∂x〉) is the translation operator acting on φ as

(

T̂νφ
)

(x) = φ(x + ν).

Let us introduce the operators

Ĥr,M ≡
∑

ν∈SN (ωr)

V 1/2
ν (x)T̂sgn(M)νV

1/2
ν (−x).

Proposition. 1. ĤN−r,M is the formal adjoint of Ĥr,M . 2. The operators

Ĥr,M =
1

2
(Ĥr,M + ĤN−r,M ), r = 1, . . . , N − 1

are well-defined and self-adjoint on the Hilbert space L2(Λp,M ).



A factorised joint eigenfunction

Consider the lattice function ∆p : Λp,M → R given by

∆p(x) =
∏

a∈A+

N−1,p

sin α
2 〈a,x〉

sin α
2 〈a,ρp〉

(〈a,ρp〉 + sgn(M)g : sinα)〈a,x−ρp〉

(〈a,ρp〉 + 1 − sgn(M)g : sinα)〈a,x−ρp〉
,

where (z : sinα)m stands for the trigonometric Pochhammer symbol

(z : sinα)m =



















1, if m = 0,

sin α
2 (z) . . . sin α

2 (z +m− 1), if m = 1, 2, . . .

1

sin α
2 (z − 1) . . . sin α

2 (z +m)
, if m = −1,−2, . . .

Recurrence relations. For any x ∈ Λp,M and ν ∈ SN (ωr), r = 1, . . . , N − 1
satisfying x + sgn(M)ν ∈ Λp,M , we have

∆p(x + sgn(M)ν)

∆p(x)
=

Vν(x)

Vν(−x − sgn(M)ν)
.

Corollary. ∆p(x)1/2 is a joint eigenfunction of the quantum Hamiltonians Ĥr,M .



Joint eigenfunctions

We define the lattice functions Ψy,p : Λp,M → C by letting

Ψy,p(x) =
1

N
1/2
0

∆p(x)1/2∆p(y)1/2Pσp(y)(x̌),

where x̌ = sgn(M)(x − 2π
α

∑N−1
j=1 ωj,p) and Pλ denote the self-dual AN−1

Macdonald polynomials with parameters t = eiαsgn(M)g, q = eiα.
The self-dual property of Pλ entails that for any x,y ∈ Λp,M we have

Ψy,p(x) = Ψx,p(y),

which in turn can be used to show that Ψy,p are joint eigenfunctions of the
quantum Hamiltonians:

Ĥr,M Ψy,p = Er(y)Ψy,p, r = 1, . . . , N − 1.

Finally, the orthogonality of the Macdonald polynomials implies that Ψy,p form

an orthonormal eigenbasis in L2(Λp,M ).



Summary and plans for future work

In conclusion, we considered the new compact forms of trigonometric RS
models with type (i) coupling parameters and

• defined the appropriate quantum Hamiltonians as difference
operators acting on a finite-dimensional Hilbert space of lattice
functions,

• explicitly solved the corresponding eigenvalue problem in terms of
AN−1 Macdonald polynomials.

We intend to generalise these results to

• the case of type (ii) coupling parameters (in progress),

• compactified models attached to root systems other than AN−1,

• finite-dimensional representations of SL(2,Z),

• new quantum elliptic models?




