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Abstract

The aim of the dissertation is to investigate and demonstrate the physical role of
boundary conditions (contact, reflection and connection conditions) in quantum mechan-
ics. To this end, three prototype models, a quantum particle moving on a half line with
a reflecting wall, on a line under the action of a pointlike singularity, and on a circle with
a pointlike singularity, respectively, are considered. Various properties are examined to
present how considerably the physical properties depend on the free parameters that char-
acterize the different possible contact conditions. Based on the results, two case studies
are also provided as applications and demonstrations of the role of boundary conditions:
one showing the difference in the quantum statistical behaviour for boxes with distinct
boundary conditions, and another to describe the deuteron and proton-neutron scattering
in terms of appropriate connection conditions. The general message of the study is that
actions and interactions can be expressed in quantum mechanics in two ways, through
potentials and via boundary conditions, and it may depend on the physical situation that
which description is more appropriate.
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Chapter 1

Introduction

Quantum systems with boundary conditions — which term covers contact, reflection
and connection (i.e., two-sided boundary) conditions each — enjoy an increasing inter-
est recently. Pointlike interactions, zero-range potentials, point defects and scatterers,
junctions, reflecting boundaries, walls and egdes, and singularities of potentials find a
convenient and appropriate description in terms of boundary conditions. Starting histor-
ically from the Kronig-Penney model of a crystal lattice1 in solid state physics and the
Dirac delta-like Fermi pseudopotential in nuclear physics, the subsequent improvements
made by Bethe, Peierls, Thomas, and the formulation in terms of boundary condition and
self-adjointness by Berezin and Faddeev gradually clarified the initially heuristic content
of these considerations. More and more authors followed the pioneers, and recently it
would be hard to list all the relevant and influential researchers on the field.2 Having said
that, the recognization of boundary conditions is still underdeveloped, as most physicists
still believe that the boundary condition at a reflecting wall can be Dirichlet only, that
the Coulomb problem is uniquely defined, etc.

Two obvious advantages favour for the systems related to boundary conditions. The
first is their simplicity, a powerful ability to model only some essential, relevant aspects
of probably highly (or, typically, too highly) complicated objects. With the aid of con-
tact conditions, one can reduce the description to a few free parameters, the essentially
characteristic ones, which makes the system comprehensible and intellectually attractive.
The second advantage is solvability. Most of these systems admit exact solutions and
analytical calculations, contrary to potential-based problems where perturbation theory
and other approximations are required in almost all realistic cases.

Getting gradually acquainted with systems with boundary conditions, a number of
further benefits have turned out. These systems exhibit a number of intriguing features,
many of which have been seen before only in connection with quantum field theories.
Examples include renormalization [2, 3, 4, 5, 6], Landau poles [7], anomalous symmetry
breaking [6], duality [8, 9, 10], supersymmetry [10] and spectral anholonomy [10, 11, 12].
Another important aspect has become stressed on the experimental side, caused the rapid

1the version with a periodic sequence of Dirac delta potentials
2A best monograph attempting to give a thorough overview on the subject is [1].
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developments of nanotechnology. Nanowires, quantum dots, nanorings and other similar
objects have been manufactured and experimentally studied. Now, for most of these
systems boundary conditions play a relevant role: the reflecting boundaries, the magnetic
flux driven through a ring, the junctions etc. are all such aspects that admit a convenient
formulation in terms of boundary conditions. Therefore, the interest in contact conditions
comes recently not only from theoretical points of view but also because of their possible
usefulness for experimental settings.

In the first decades of quantum mechanics, the difference between a symmetric and
a self-adjoint Hamiltonian operator has typically been considered a mathematical aspect
only, without physical relevance. Now that we understand that the difference is the
possible nonuniqueness of the contact conditions that arise at boundaries, local objects
and places where a potential diverges, and especially that different contact conditions lead
to different, sometimes strikingly different physical consequences, this picture gradually
changes. The aim of the author of the present work and of his collaborators has been
to present various illustrations and possible physical applications concerning the physical
role of boundary conditions.

Chapter 2 provides the necessary mathematical background for the study of systems
with boundary conditions. The existence of multiple possible boundary conditions for
a quantum system is connected to that the Hamiltonian admits more than one possible
self-adjoint domains within the Hilbert space. Each self-adjoint domain is characterized
by a boundary condition, and vice versa. After reviewing the physical importance of self-
adjointness and the classic characterization of the family of self-adjoint domains worked
out by Neumann, a more recent development, the approach of boundary value space
is explained. This latter method is especially convenient for differential operators, and
is used throughout the thesis. Chapter 2 also discusses the physical interpretation of
the mathematically found family of boundary conditions. For some systems we can be
practically sure that all the found possible boundary conditions describe physically allowed
possibilities, for some others it can be shown that only some of the boundary parameters
express different physics, and in a number of cases the decision is the competence of
experimental investigation. Chapter 2 is assisted by Appendix A, where all the necessary
mathematical definitions and theorems are collected.

In Chapter 3, the concrete investigations start, with the discussion of the systems
where a spinless nonrelativistic particle moves freely on a half line and is perfectly reflected
from the wall where the half line ends. Half line systems are characterized with a free
length parameter L, and are found to preserve the classically valid scale invariance only
for the two cases when L is zero (Dirichlet condition) or infinity (Neumann condition).
For the other cases, WKB exactness also breaks and a nonzero time delay is observed to
emerge for a reflected wave packet. It is investigated whether such a time delay can be
reproduced by a classical counterpart, with some reflecting potential shape. For positive
L, this potential is found while, for negative L, it is proved that the time delay can not
be classically reproduced, only in a weak sense. Quantum realizations are also performed,
where any reflecting wall system is approached by sequences of steplike potentials.

Chapter 4 considers the systems where a free particle moves on a line that hosts a
pointlike singular object. Here the family of all possible connection conditions is char-
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acterized by distinct U(2) matrices. From the corresponding four free parameters, two
prove to be two independent length scales, a third one measures the mixing between the
two sides of the point singularity, and the fourth - the phase jump at the place of the sin-
gularity - is found to be an unphysical gauge freedom. Similarly to the half line systems,
which admit one bound state in the cases of positive L, line systems can have maximally
two bound states, when both length scales are positive. The family of possible point
singularities possesses various subfamilies distinguished by certain symmetry properties
(scale invariance, parity invariance, time reversal invariance, etc.) and a continuous gen-
eralization of duality-type relationships connecting different line systems. An extensive
treatment of these generalized symmetries, via boundary transformations, is provided in
Appendix C.

In Chapter 5, the linelike configuration space is changed to a circular one. It is shown
how the entering additional length scale, the circumference, reduces the symmetry and
generalized symmetry properties, and how the closed topology makes the phase jump
parameter physical, gaining interpretation as the magnetic flux driven through the circle.
The finite configuration space also makes the energy spectrum discrete; all possible spectra
are determined. The family of circle systems still possesses subfamilies admitting certain
symmetries. Two supersymmetric cases are also identified, where supersymmetry is shown
to be present in the strict sense where the supersymmetry algebra is valid not only in the
sense of differential operators but also in the sense of operator domains. WKB exactness
is investigated as well.

In Chapters 6 and 7, two case studies are presented, as applications of the previ-
ous results and for illustrating the role of boundary conditions. In Chapter 6, a box with
Dirichlet outer walls is considered, into which a thin separating wall is placed with Dirich-
let boundary condition on one of its sides and with Neumann condition at the other. The
two half boxes are of the same length, and are considered to contain the same number
of identical noninteracting particles, kept at the same temperature. The difference of the
quantum statistically emerging pressure (or force) on the two sides is calculated. The net
force acting on the separating wall is found nonzero at zero temperature, to gradually
decrease for increasing temperature but, after reaching a nonzero minimum, to increase
again and to diverge as temperature tends to infinity. This qualitative behaviour is valid
both for bosonic and fermionic particles but with quantitative differences. Since the aris-
ing infinite sums are not exactly summable, the force is determined both numerically
and via analytical approximations performed in the various temperature domains (low,
medium, high).

Chapter 7 reports about a work that exhibits the power of description by boundary
conditions. Here, we give an approximate model of the deuteron and proton-neutron
scattering where the nuclear interaction between the two particles is expressed not in
terms of some potential but by some connection condition. The nuclear force is a short-
range interaction, and our presented approach generalizes Fermi’s historical delta-like
pseudopotential model, containing one free parameter, to a four-parameter one. Thus even
the experimentally observed weak but nonzero coupling between two angular momentum
channels (which expresses the spin dependence of the nuclear force) may be effectively
characterized. The bound state and the scattering states are calculated in this framework.
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Some of the free parameters are adjusted via certain experimentally known quantities of
the deuteron, and the remaining ones are to be fitted using the scattering data. The
comparison of the prediction of the model with the experimental results shows a good
agreement.

Since the three discussed prototype systems are seemingly so innocent and simple,
one might get the feeling that these studies are more for textbook examples than for deep
scientific research. Such an opinion would be a superficial mistake.

The first highly nontrivial question is the approach to use for deriving the possible
boundary conditions (cf. Sect. 2.2). One might try the method of regularizing potential
sequences or the functional integral approach, or work from the eigenfunctions directly,
each of which contains a number of principal and practical difficulties. For the best choice
available, the boundary space value description of self-adjoint extensions, one needs to
be familiar with the fine mathematical aspects at least at a level that the method can be
used safely as a routine.

Even the next step, the parametrization of the found family of self-adjoint domains is
to be done with care. In the literature, a number of papers use some obscure, inconvenient
and sometimes even incomplete parametrizations, which make it hard for them to perceive
many generally valid nice physical properties (like symmetries, dualities, etc. ) and to
present the results in simple enough form.

Then comes a relatively easy step, solving the eigenvalue problem taking into account
the boundary conditions. However, the physical discussion does not stop here. On the
contrary, it only starts here.

Many good physical questions are to be asked and answered to obtain a good under-
standing of the systems in question. There are numerous aspects that can help in the
physical interpretion of the possible singular and boundary objects, or can find important
practical applications. This is how we can reach connections with experiments (in solid
state physics or nuclear physics) and technology (say, nanotechnology).

Answering such questions may also involve unexpectedly hard technical problems in
the calculations. For example, the investigation presented in Chapter 6 requires such cal-
culational techniques that are beyond the standard toolkit of quantum statistical physics.
Finding a good approach may also simplify a calculation and decrease the amount of
needed numerical work considerably, as shown in the example of Chapter 7.

At last, it is a very important general conclusion to be drawn and to be advertised that
actions and interactions can be expressed in quantum mechanics in two ways, through
potentials and via boundary conditions. It may depend on the physical situation that
which description is more appropriate. Therefore, in every concrete situation one should
be aware of both possibilities and choose the one that seems more adequate for the
discussion of the given physical problem.

Except from some more-or-less elementary formulas concerning the half line, line and
circle systems, all the presented calculations have been done by the author (or in a col-
laboration where the author played a leading or dominant role). Many of the results
have been published in [13, 14, 15]. The author has participated in other collaborations
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[16, 17, 18, 19] as well, where further aspects of boundary conditions have been studied,
about singular potentials, the three-body Calogero problem, and a qubit suggestion based
on tunable point interaction. Those works can also be viewed as applications of the ideas
presented here.
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Chapter 2

On self-adjoint operators

In this part, a general overview is given about the arising mathematical aspects concerning
boundary conditions. After reviewing these principal and general technical questions, in
the subsequent sections we will need to concentrate only on the actual concrete technical
calculations for the physical systems considered in turn.

For all the necessary mathematical definitions and theorems that will arise here as
directly related to self-adjointness, see Appendix A. For further prerequisites, and general,
introductory, basic and/or useful material on Hilbert space operators, one may consider
[20, 21, 22, 23, 24].

2.1 The domain(s)

In quantum mechanical systems that contain boundaries, pointlike defects, pointlike scat-
terers, Dirac delta-like pointlike singular objects, or certain potentials that diverge at
infinity like V (x) = −const. xc (c > 2) or at a finite location like the Coulomb potential,
after solving the energy eigenvalue problem we can find that the found eigenfunctions are
in general not pairwise orthogonal. We can also observe that the symmetricity property
(Hψ1, ψ2) − (ψ1, Hψ2) = 0 does not hold, since, after integration by parts, the surface
terms generated at these problematic locations do not generally vanish. Both phenom-
ena indicate that, for such systems, the self-adjointness of the Hamiltonian is challenged.
Consequently, we have to enter the problem how in such cases self-adjointness can be
ensured.

In quantum mechanics, physical quantities are represented by self-adjoint operators.
The representation happens via the spectral theorem.1 The possible values of many
physical quantities (e.g., position, momentum, energy etc. of a point particle) run in
an infinite range, thus the corresponding operator is unbounded. Now, unbounded self-

1In more details: physical quantities themselves can be formulated as event valued measures on the
space of possible values of the given physical quantity. The event space is the Hilbert lattice, in which
the events are the projection operators of the Hilbert space. Via the spectral theorem, these projection
valued measures (PVM-s) are in a one-to-one correspondence with a self-adjoint operator. See [25] for a
comprehensive treatment.
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adjoint operators cannot be defined on the whole Hilbert space. Therefore, we have to
bother with their domain of definition.2

Actually, in practice, it may not be easy to immediately give the self-adjoint domain
for an operator. First, for differential operators, we must not confine ourselves to smooth
or some finitely many times differentiable wave functions. The proper level of smooth-
ness property is absolute continuity (in one dimensional problems, and its correspond-
ing Sobolev space-like notion for wave functions on a higher dimensional space). Next,
the bigger difficulty comes for systems with singular/problematic locations as mentioned
above. The differential operator is not defined at these points, and if we simply ignore
this fact then we will run into the problem that the operator is not self-adjoint on this
domain of wave functions. This domain is too large and needs some restriction to obtain
a self-adjoint result. The suggested method is to impose the further requirement that
the wave function should vanish when approaching any of these problematic locations,
to vanish such strongly that all the mentioned surface terms are guaranteed to be zero.
Then we will reach a safe domain on which, however, the operator will be found only to
be symmetric but not self-adjoint. The distinction between these two notions becomes
important here. The reason is that when we try to extend this minimal domain back a
bit to obtain a self-adjoint domain, we will find that we can do it in more than one way.
The minimal operator admits multiple self-adjoint extensions, corresponding to multiple
possibilities for a self-adjoint domain.3

To have an operator with more than one possible self-adjoint domain is not only a
technical question but an essential one. That operator is “really” different on its different
domains. Indeed, its spectrum and eigenfunctions will be different. A Hamiltonian may
have two bound states on some of its possible domains, one on some others and none
but only scattering states on the remaining possible domains. The scattering properties
will also depend on the domain: an obstacle can act as a low-energy-pass filter with
some domains and as a high-energy-pass filter for some other ones. An incoming wave
packet may be reflected from a boundary with a considerably large time delay for some
domains (so to say, for some types of boundaries), with no time delay for some others, and

2It is not a principal problem that the operator cannot act on all elements of the Hilbert space, so
to say, on all pure states. The PVM assings a probability distribution/measure on the possible values
of the physical quantity to all states, including all pure states, and this is enough for the satisfactory
physical interpretation. An explanation of the situation is that not all probability distributions have a
finite expectation value, or uncertainty. For example, we can think of a probability distribution on a real
line with such a power-like fall at infinity that is fast enough to ensure the finite normalizability of the
distribution but is slow enough that the expectation value, adding one to the power of the “tail”, gives
an infinite integral.

3One may suspect that symmetricity could be enough for the purposes of physics. Indeed, there
are certain indications that the formulation of physical quantities should allow positive operator valued
measures (POVM-s), not only PVM-s. (Here we are not speaking about the usage of positive operators as
“fuzzy events” corresponding to imprecise measurement but about ordinary, “precise”, “sharp” events.)
For example, the momentum of a particle moving on a half line [26], or position in relativistic quantum
mechanics [27] may force us to allow this generalization. However, the corresponding generalization of the
spectral theorem [28] relates a POVM to a maximal symmetric operator, which is still such a symmetric
operator whose domain cannot be extended to a larger symmetric domain. In addition, quantities that
are the generators of some symmetry, and especially the Hamiltonian, which must provide unitary time
evolution of initial states, must be self-adjoint and not only maximal symmetric.
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with a considerably large time advance(!) for still other cases. The existence of multiple
self-adjoint domains is not only an aspect for mathematicians. Instead, it describes the
physical nonuniqueness of such a system. Exploring all the possible self-adjoint domains
for a Hamiltonian means to explore all the physically possible — or, in a more careful
wording: all the quantum mechanically allowed — types of boundaries, singularities and
contact interactions. These entities cannot be modelled via regular potentials. (They can
be given as a limit of a sequence of regular potentials — this approach will be discussed
later.)

2.2 How to find the domains

In the pioneering and classic method by Neumann, the possible self-adjoint extensions of
a symmetric operator can be found via the eigenfunctions of the adjoint operator (in our
case, the Hamiltonian on the maximal domain) corresponding to a nonreal eigenvalue.
This approach is definitely of much importance in mathematics, but for practical appli-
cations it involves the difficulty that we need to determine all these eigenfunctions and
check their square integrability typically by hand.

To circumvent this problem, another method has been developed, which is especially
convenient for differential operators.4 In this approach, the concept of boundary value
space is introduced and utilized. For our purposes of differential operators, it practically
means that if we are able to express our problematic surface terms in a given standard
form (A.5) then the method provides for us all the possible self-adjoint domains, in terms
of a boundary (surface/contact/reflecting/connection) condition (A.7) that contains an
arbitrary unitary operator (or matrix). Each self-adjoint domain is in a one-to-one cor-
respondence with one such unitary operator. For reflecting walls, and pointlike singular
objects and potentials, the required standard form will contain simply the limiting values
of the wave function and its derivative when approaching such a location. For singu-
lar potentials, the wave functions will diverge but there is a systematic method how the
diverging behaviour of the wave functions can be characterized with some finite limit num-
bers, and then these finite numbers can be used for the boundary value space approach.
For this, we will need to know only the approximate behaviour of the eigenfunctions
near the singular locations, and only for an arbitrary real eigenvalue (e.g., for the zero
eigenvalue).

Throughout the dissertation, we will call the unitary operator that characterizes a
given self-adjoint domain the characteristic operator (actually, in all cases discussed here-
after, it will be a matrix, the characteristic matrix).

While Appendix A contains all the mathematical details, one thing to mention here
is that, in physics, the space coordinate is not a real number but a quantity with the
dimension of length. Since the two maps Γ1, Γ2 needed in the boundary value space
approach must be of the same dimension by construction, and because the limit numbers
combine the wave function ψ and its space derivative ψ′, ψ and ψ′ must be brought into

4Nevertheless, it works at the completely general level as well.
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the same dimension, with the aid of an auxiliary nonzero constant length L0. This L0 does
not play any deeper principal role than this, and a change of it can be compensated by an
appropriate change of the characteristic operator U so that the same self-adjoint domain
is assigned.5 From conditions that do not mix the wave function with its derivative, like
the Dirichlet or the Neumann boundary condition (vanishing of the wave function, resp.
its derivative), L0 drops out, indicating the possibility of scale invariance for the given
self-adjoint system. For the other cases, scale invariance is broken, even if it was present at
the classical level. We will see examples for this scale anomaly in the subsequent chapters.

A common multiplier of Γ1 and Γ2 can be dropped since (A.7) is linear in them.
Therefore, we don’t have to bother with the dimension of the Hamiltonian, as its effect
on the Γs can be changed by such an appropriate overall factor in (A.7).

Experience shows that the boundary value space approach is a very convenient and
generally applicable method to determine the possible self-adjoint domains. Nevertheless,
it is worth commenting some alternative ways how this task can be completed.

First, we may, by hand, form complete orthogonal systems from the eigenfunctions,
and each determined complete orthogonal system will correspond to one self-adjoint do-
main. (See [30] for such a treatment.) The technical difficulty here is that we will need
to solve the eigenvalue problem for all eigenvalues, and then to calculate the scalar prod-
uct of any pair of eigenfunctions, and to prove that any orthogonal system that we can
form is really complete (probably involving infinite sums and integrals that must lead to
Kronecker or Dirac delta). Another disadvantage is that we may reach the result in a
parametrization in which some general features (e.g., symmetries) are hard to perceive.

Another possibility is to give the possible self-adjoint Hamiltonians as a limit of a
sequence of Hamiltonians where the singularities and sharp objects a regularized via some
everywhere regular potentials. We will also provide such a scheme (Sect. 3.2). However,
we will do this already knowing what the possible boundary conditions are, and this will
make our work much easier. If one does not know in advance what the general form of
the possible boundary conditions will be then it is hard to ensure that all the possibilities
have been produced. One may also choose too general forms of potentials that are hard to
work with, or too restricted ones with which it is not possible to reach all possibilities. It
is especially easy to miss many of the possible self-adjoint cases since a general practical
observation is that most boundary conditions require a fine tuning. It is not the leading
form but some fine-tuned subleading behaviour of the potential sequences that will provide
the required boundary condition.

In principle, it is also possible to find the possible self-adjoint domains via the path
integral representation. There, the different boundary conditions may be achieved by a
nontrivial action contribution applied when the path bounces on a reflecting or singular
point. The failure of complete WKB exactness discussed later in this dissertation suggests
that it may be hard to find the appropriate bounce action contributions with which all the

5Apart from L0, we will not need to deal with that mathematics usually restricts itself to dimensionless
quantities while most quantities used in physics are dimensionful. Nevertheless, it is worth mentioning
that in [25] quantum mechanics is treated in a mathematical form that fully gives account of the physical
dimensions of operators and all other quantities involved. For a “reader-friendly” introduction to the
mathematical description of physical dimensions, see [29].
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boundary conditions can be reproduced — especially if those are not known in advance.

2.3 How to solve the eigenproblem for such a domain

While some authors make a talented use of functional analysis — such as Krein’s formula
for resolvents — for solving the eigenproblem of a differential Hamiltonian operator, for
our purposes the simple approach of solving the differential equation plus the boundary
conditions will be enough. In addition, for cases when one needs confirmation of that the
given self-adjoint operator does not admit a continuous singular spectrum, or about where
the continuous spectrum lies, or about some similar other information, many criterions
are available in the mathematical literature. See Appendix A for more details.

There is another question that may arise concerning the eigenfunctions: the physicist’s
intuitive expectation is that scattering states also have to fulfil the boundary conditions
that characterize a given self-adjoint domain. However, scattering states are not normal-
izable and are not in the domain so it is a question whether they really should share
the same conditions as the normalizable eigenfunctions. Fortunately, the mathematical
literature provides an affirmative answer, at least for the one dimensional systems we will
encounter.6 Therefore, in the subsequent paragraphs we won’t need to worry about this
question.

2.4 The physical interpretation of multiple self-adjo-

int domains

We may be able to determine the mathematically possible self-adjoint domains for a
given Hamiltonian differential operator, and this operator has different eigenvalues and
eigenfunctions for different domains, but do these different cases really express a variety of
physically allowed possibilities or are just a technical artifact, a situation which probably
needs to be cured by some additional principle for quantum mechanics in general or for
each such concrete system done case by case? The answer is: it depends.

The first thing to tell is that there has not been wide enough experimental work done
for investigating this question. The free parameter of the three dimensional Dirac delta-
like “potential”, the so-called Fermi potential is a widely accepted physical parameter for
experimental fits in nuclear physics and condensed matter physics. The Aharonov-Bohm
flux driven through a ring and felt by the quantum particles propagating in the ring is
an experimentally verified effect [32, 33, 34]. There is much less knowledge about the free
parameters that parametrize the family of possible self-adjoint domains for other systems
like reflecting walls, point-sized singularities (Dirac delta, delta-prime = epsilon, etc. )
in one dimension, or the singular centre of a Coulomb or 1/x2 potential. Even when a

6It is also probable that a completely general proof can be given, along the lines of the generalized
eigenstate expansion in the rigged Hilbert space approach by Gelfand (for a first consultation and further
literature, see [31]).
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measurement happens (e.g., [35] on a reflecting wall), it is evaluated assuming some model
potentials. For walls of boxes and boundaries of space regions, the textbook paradigm
of Dirichlet condition, the vanishing of the wave function itself, is the only case that is
widely believed to be possible quantum mechanically, hence the only case considered. It
is interesting that many physicists do not get suspicious that, if the physical properties
of a boundary or edge of a material are different — say, its small-length-scale surface
roughness, a very thin oxide layer that covers it from the outside, or some inhomogeneity as
approaching the outmost atomic layer —, then for quantum particles in states with much
larger length scale these differences should effectively manifest themselves as differences
in a reflecting parameter of the boundary. This should rather be an experimental question
to test than a belief in the textbook standard condition. The theoretical aspects seem to
restrict the physical thinking of many physicists. Even the Neumann condition, vanishing
of the derivative of the wave function, which is a well-known other type of boundary
condition from classical electrodynamics, is mostly neglected to be a possible alternative.

The fact that such singular, contact objects (effectively, the various self-adjoint do-
mains) can be expressed as a limit of a diverging sequence of finite potentials (see Sect. 3.2,
as well as [3, 4, 5, 6]) may help in physically accepting the existence of the other possibil-
ities. These sequence-of-potentials realization can also serve as a guide how an approxi-
mate experimental setup can be designed for such cases. It can also be fruitful to think
of the arising open parameters as some analogue of other well-known nontrivial degrees
of freedom of pointlike objects: mass, charge and especially spin of a point particle, or
the multipole moments that can be attributed to (effectively) pointlike electrodynamical
or gravitational objects.

For the Coulomb problem (both the nonrelativistic and the special relativistic one),
careful enough treatments observe the nonuniqueness of self-adjoint domain, at least in
some form. There the typical attitude is to (do handwaving, or) work out some argument
why the usual choice, the least singular (Dirichlet) one should only be accepted. Dirac,
at the time when neither the mathematical aspects nor the quantum mechanical role of
distributions were clear, imposed the condition that the eigenfunctions must be eigen-
functions in the distribution derivative sense. The same opinion is shared, later, in [22].
The problem with this is that, according to our present knowledge, it is not necesary to
impose this requirement. Neither does mathematics restrict us to do so, nor can we tell
what is present physically at the centre of an otherwise Coulomb potential. Maybe some
short-range nontrivial richness exists there, which cannot effectively be observed outside
locally but manifests itself when the particle is near enough to it. For example, when we
use the Coulomb problem as a model for the hydrogen atom, the short-sized charge dis-
tribution of the proton may appear from the outside as a deviation from the historically
used self-adjoint domain for the electron. In case of two oppositely charged, and strongly
also interacting particles, such a scenario is even more plausible. It may cause a rather
big error to neglect that short-range but strong interaction from the quantum mechanical
description. And if it is not neglected then it is fairly logical to try to describe it first as
a pointlike effect, via a non-Dirichlet boundary condition for the relative wave function
at the centre. (Repeating the idea how the Fermi potential was introduced.)

Furthermore, the distributional argument may be carried out for a relatively mild
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singularity (like 1/r in three dimensions) but not for stronger ones (stronger power, fewer
dimensions). Namely, a stronger singularity may not be a locally integrable function and
then the multiplication of it with a wave function (the term V ψ in a Schrödinger equation

ih̄∂tψ = − h̄2

2m
4ψ + V ψ ) may be ill-defined in the distribution sense, especially since

the energy eigenfunctions and, actually, all functions in the maximal domain will also be
singular where the potential is singular. Thus the method for such cases should include
a regularization or other manipulation, but with such mathematics we may get more and
more distant from the physical situation.

Two more arguments are also usually applied for excluding the historically nonstan-
dard cases in the Coulomb problem. For example, both are used in [36]. One of them
is that the domain of the total energy operator should be a domain for the kinetic and
the potential energy terms separately as well. This condition sounds nice but, as far
as our present physical knowledge is concerned, this is not a physical requirement. On
similar ground, we could impose that momentum, and/or position should also admit the
same self-adjoint domain as kinetic energy but we know that both unavoidably have some
different domains. As mentioned above, the domains themselves mean no problem for
the physical interpretation of a self-adjoint operator as a physical quantity. Hence, this
requirement does not seem physically satisfactory.

The other argument shows that, if the singular centre is regularized and a limiting
procedure is performed then the limit leads to the standard self-adjoint operator. This
really can be an acceptable argument for charges that are known to be smeared out to
some extent.7 Nevertheless, it may not be a universally acceptable principle – let us think
again of the two oppositely charged particles that interact strongly as well.

To summarize, principal considerations may not be enough to choose a self-adjoint
domain for a given system: this question is to be investigated by experiments. Potentials
are determined and/or checked experimentally; similarly, the boundary type properties
of a system are also to be explored and fixed by experiments.

As an independent physical aspect of multiple self-adjoint domains, it is interesting to
remark that, according to Koshmanenko [37], in interacting and self-interacting quantum
field theories, the Hamiltonian (after an infrared cutoff imposed) admits multiple self-
adjoint extensions (with infinite deficiency indices). The challenge there is thus to choose
a possibly distinguished one and to give the domain and the operator on it explicitly.
He actually presents such a choice, which is similar to the procedure when a quantum
mechanical pointlike or contact object is given as a limit of diverging regular potentials.
Those diverging quantities may be interpeted as the ultraviolet divergences of field theory.
Therefore, it is a nice pedagogical possibility to explain the ultraviolet divergences via the
much simpler, finite degree-of-freedom example of, say, a delta “potential” (renormalized
Dirac delta, see [1]) in three dimensions, or the even simpler case of a one dimensional
half line system with a reflecting wall (Sec. 3).

7However, the result might depend on the way of regularization, like in Sect. 3.2. It may happen that,
similarly as L = 0 walls are realized most easily and with least “tricky” sequences, the Dirichlet case is
similarly distinguished in the Coulomb problem. Even then, that property should be proved.
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Chapter 3

Reflecting walls: the half line
systems

In this chapter, a free particle is considered moving on a half line x ≥ 0, along the lines
of [13] but also adding some new components. This model is a simple prototype of the
systems with contact condition. It also appears as a special case of various more compli-
cated settings, and as the radial part of any higher dimensional system of a delta-type
point interaction [1]. The family of quantum mechanically allowed impenetrable reflecting
walls at x = 0 is parametrized by an arbitrary real length parameter L. After discussing
the basic properties of these systems — including the spectrum and eigenfunctions, scale
(non)invariance and the time delay of a reflected wave packet —, realizations are provided
for all these walls as limits of sequences of regular, steplike, potentials. Then we then
study the classical analogues of the quantum walls, by seeking a classical counterpart
which admits the same time delay in scattering from the quantum wall, and the semiclas-
sical aspects by examining the WKB-exactness of the transition kernel, incorporating the
found potential realizations as well.

3.1 Basic properties of the wall systems

For our present Hamiltonian, H = −h̄2/(2m) d2/dx2 , the infinity is limit-point, and thus
the lhs difference in (A.5) evaluates, by partial integration, to

(ψ∗
1ψ

′
2 − ψ∗

1
′ψ2)(0) = W [ψ∗

1 , ψ2](0) , (3.1)

up to a constant that is irrelevant for our present purposes (see Sect. 2.2). As has also
been mentioned in Sect. 2.2, with such a regular potential all wave functions of any self-
adjoint domain are also regular at x = 0 . Hence, the identification of Γ1, Γ2 is very
simple here: we can choose

Γ1ψ = ψ(0) , Γ2ψ = L0ψ
′(0) (3.2)
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(see Sect. 2.2 concerning L0). Then, using (A.5), the possible self-adjoint domains are
given by the condition

(eiϑ − 1)ψ(0) + i(eiϑ + 1)L0ψ
′(0) = 0 , (3.3)

where the characteristic matrix U is now simply the U(1) complex phase factor e
iϑ, with

ϑ ∈ [0, 2π) . We can rearrange this condition in a simpler form,

ψ(0) + Lψ′(0) = 0 , (3.4)

where, consequently,

L = L0 cot
ϑ

2
∈ (−∞,∞) ∪ {∞} (3.5)

is an arbitrary real length parameter. L = 0 gives the most well-known case, the Dirichlet
boundary condition while “L = ∞” (ϑ = 0) represents the Neumann boundary condition.1

Under the boundary condition (3.4) the positive energy eigenfunctions are

ϕk(x) =
1√
2π

(
e
−ikx − 1 − ikL

1 + ikL
e
ikx
)
, (3.6)

or, in a form that displays the scattering phase,

ϕk(x) = 1√
2π

(
e
−ikx + e

iδke
ikx
)

(3.7)

with δk = 2arccot kL . In addition, for L > 0, we also have one negative energy state,

ϕbound(x) =
√

2
L

e
− x

L (L > 0) , (3.8)

which is a bound state localized at the wall with its characteristic size L. The existence
of this bound state is indicated also by the pole of the reflection coefficient −1−ikL

1+ikL
on

the complex k-plane, kpole = i 1
L
, which lies on the positive half of the imaginary axis for

L ∈ (0,∞), predicting a bound state of energy h̄2

2m
k2

pole = − h̄2

2mL2 . From (3.8) we can see
that this bound state is localized at the wall, at the edge of the system. Its characteristic
size is just the parameter L itself.

One may find it strange that, although apparently there is no negative potential present
in the system, the energy is allowed to be negative for the L ∈ (0,∞) systems. This
suspicion is based on that, for any usual system on the whole line with Hamiltonian
− h̄2

2m
d2

dx2 + V (x) , the minimal value of the potential V (x) provides a lower bound for the
energy,2

(ψ,Hψ) ≥ Vmin . (3.9)

1Why self-adjointness excludes a condition like ψ(0) = c 6= 0 is easy to understand based on that
a domain must be a linear subspace in the Hilbert space i.e., to satisfy the superposition principle.
Why a nonreal L is not allowed in (3.4) can also be understood in a simple way, since the wall does
not allow a probability flux through x = 0 , and rearranging the vanishing of the probability current
j(0) = h̄

2im
(ψ∗ψ′ − ψψ∗′)(0) = 0 gives ψ(0)/ψ′(0) = [ψ(0)/ψ′(0)]∗ . For more complicated systems, it

gets less apparent which boundary conditions are admitted by self-adjointness so in general it is better
to apply the general result (A.5).

2This statement is valid in higher space dimensions, too. For our purposes we quote it in its one
dimensional form.
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However, if we apply the argument that yields this inequality for our system on the half
line, now the boundary condition produces an additional term on the rhs of (3.9). More
closely, we find

(ψ,Hψ) =

∞∫

0

dxψ∗
(
− h̄2

2m
ψ′′
)

=
h̄2

2m

∞∫

0

dx |ψ′|2 − h̄2

2m

1

L
|ψ(0)|2 ≥ − h̄2

2m

1

L
|ψ(0)|2 (3.10)

by partial integration and using the boundary condition (3.4) (and supposing that ψ and
its derivative tend to zero for x → ∞ ), which lower bound is negative for L ∈ (0,∞).
Further, observing that the expectation value of the Hamiltonian can be expressed as

(ψ,Hψ) =
h̄2

2m

1

L2

∫ ∞

0
dx |ψ(x) + Lψ′(x)|2 − h̄2

2m

1

L2 (3.11)

for a state normalized to one, we obtain that the lower bound of the energy is − h̄2

2m
1

L2 if
the system admits a state that possesses the property ψ(x) + Lψ′(x) = 0 (∀x) . Now,
this property is fulfilled by the function ψ(x) = const. · e−x/L , which is normalizable iff
L ∈ (0,∞). This way we actually recovered the bound state (3.8).

For the other Ls, this property cannot hold for any normalizable state, and actually,
the extra term on the rhs of (3.10) is non-negative, showing that for these systems the
lower bound of the energy is zero.

The phenomenon that the energy can be negative in a half line system can be further
understood through the physical picture provided by the realizations of the reflecting wall
by potential sequences with thin potentials located at x = 0, as discussed in Sect. 3.2.

The appearance of a length parameter in the physical properties of the quantum wall
systems shows that scale invariance, which is present at the classical level, is broken
quantum mechanically. Indeed, the wave function and its derivative are transformed in
a different way under scale transformation. Hence, their ratio, and thus L, does not
remain invariant. This scale anomaly is a nice and simple example for the phenomenon
of quantum breaking of a continuous classical symmetry, which was historically observed
first in quantum field theory. Scale invariance remains present only in the two cases L = 0
and L = ∞ , the Dirichlet and Neumann cases.

Another apparent role of the parameter L in the physical behaviour of half line systems
is played in the time delay that occurs when an incoming particle is reflected from the wall.
The time delay in quantum scattering processes has been studied extensively (see, e.g.,

[31, 38] and references therein), but is not solely a quantum phenomenon but a generic
wave property: the time shift between the instant when the peak of an incoming wave
packet arrives at the scattering object and the instant when the peak of the scattered wave
packet leaves it. This quantity provides an interesting characterization of the scattering
process. Its definition and calculation are given for our simple system as follows.3 Let us
consider a wave packet formed out of the positive energy states (3.7),

ψ(x, t)=
∫ ∞

0
dk f(k) e

ikx0
e
− ih̄k2

2m
tϕk(x)

= 1√
2π

∫ ∞

0
dk f(k) e

ikx0
e
− ih̄k2

2m
t
e
−ikx + 1√

2π

∫ ∞

0
dk f(k) e

ikx0
e
iδke

− ih̄k2

2m
t
e
ikx(3.12)

3Compare this with the classical mechanical definition of time delay, presented in Sect. 3.3.
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where f(k) is a real function peaked at k0 > 0. The first term describes the incident packet
whose maximum starts from x0 at t = 0 and moves to the left with velocity magnitude
v0 = h̄k0/m , as can be seen from a stationary phase argument,

d/dk
(
−h̄k2/(2m) t+ kx0 − kx

)∣∣∣
k=k0

= 0 ⇒ x(1)
max(t) = x0 − (h̄k0/m) t . (3.13)

Similarly, the reflected packet given by the second term moves as

x(2)
max(t) = −x0 + (h̄k0/m) t+ 2L/[1 + (k0L)2] . (3.14)

As t increases, the first packet moves towards the wall at x = 0, and its maximum reaches
it at t1 = x0/v0 . Meanwhile, the second packet comes from the left (if we allow x < 0 as
well) moving to the right and arrives at the wall at t2 = (x0− 2L

1+(k0L)2
)/v0. The difference

between the two instants gives the time delay,

τ = t2 − t1 = − 2mL

h̄k0[1 + (k0L)2]
. (3.15)

For L = 0 and L = ∞, this time delay is zero, as one would expect on the ground that
for such cases there is no parameter in the system possessing the dimension of time. Note
that for negative L the time delay is positive, whereas for positive L it is negative.

3.2 Wall realizations by potential sequences

Now let’s study how the possible walls can be realized as a limit of finite (regularizing)
potentials. The potentials we consider are step-like and may be manufactured using,
e.g., thin layers of different types of semiconductors in the future. Naturally, such an
experimental realization would provide only one such potential and not the limiting case
but it may provide a very good approximation to the theoretical model. We shall show
that it is indeed possible to realize any wall out of the step-like potentials if we fine-tune
the limiting procedure. Our regularization method will be analogous to those used earlier
for point singularities [1, 5].

We extend the space to the entire line −∞ < x < ∞ and seek a potential V (x) with
finite support such that, in the limit of vanishing support, the boundary condition (3.4)
at x = 0 can be realized. Obviously, since no probability flow is admitted through the
wall at x = 0, such a regularized potential has to become infinitely high for x < 0 in the
limit. A simple choice for the potential fulfilling the demand is

V (x) =






V1 , x < −d (domain I)
V2 , −d < x < 0 (domain II)
0 , x > 0 (domain III)

(3.16)

with constants V1 > 0 and V2 < 0. Here, the scale of the support is given by the
regularization parameter d, and V1 and V2 are assumed to be functions of d such that
V1, |V2| → ∞ as d→ 0.

18



��

��

�� �

�

�� �

	 
 		 
 			 


Figure 3.1: The regularized potential (3.16) and the eigenfunction (3.17).

To find the appropriate dependence of V1(d) and V2(d), let us consider an energy
eigenstate ϕ in the potential (3.16) with energy E < V1 (see Fig. 3.1):

ϕ(x) =






ϕI(x) = Ne
κx, x < −d , κ =

√
2m
h̄2 (V1 −E) ,

ϕII(x) = Ae
ik̃x +Be

−ik̃x, −d < x < 0 , k̃ =
√

2m
h̄2 (|V2| + E) ,

ϕIII(x) = Ce
ikx +De

−ikx, x > 0 , k =
√

2mE
h̄2

(3.17)

(for E < 0 , ϕIII(x) = Me
−
√

2m|E|

h̄2 x
). Under such finite potentials (i.e., without infinity

or singularity), the wave function and its derivative are required to be continuous. The
condition which is dynamically important is provided by the continuity of the ratio ϕ′/ϕ
which is free from the ambiguity of overall normalization. From this continuity condition,
we obtain

κ =
ik̃(Ae

−ik̃d −Be
ik̃d)

Ae−ik̃d +Beik̃d
,

ϕ′
III

ϕIII
(0) =

ik̃(A− B)

A +B
(3.18)

at x = −d and x = 0. Note that both k̃ and κ are d-dependent k̃ = k̃(d), κ = κ(d)
through V1(d) and V2(d) and so are the two ratios in (3.18). If we introduce

R(d) =
ϕ′

III

ϕIII
(0) , α = arctan

κ

k̃
, β = k̃d , (3.19)

then from (3.18) we find

R(d) = k̃
(Ae

−iβ − Be
iβ) cosβ − i(Ae

−iβ +Be
iβ) sin β

(Ae−iβ +Beiβ) cosβ − i(Ae−iβ −Beiβ) sin β
= k̃ tan(α− β) . (3.20)

The boundary condition (3.4) is realized if

R(d) → − 1
L

as d→ 0 , (3.21)
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independently of the energy E. In what follows we present a set of regularized potentials
fulfilling this requirement.

To this end, we first define

α0 = lim
d→0

α , β0 = lim
d→0

β , (3.22)

and note that, since V1(d) → ∞ as d → 0, we always have κ → ∞ , whereas since
0 < α < π/2 by definition, we have 0 ≤ α0 ≤ π/2. Note also that, if V2(d) used in our
regularization is such that β → ∞ , then tan(α − β) will oscillate between −∞ and
∞ so R(d) will not have a limit. We therefore confine ourselves to cases in which β
has a finite (zero or nonzero) limit β0. Now, let us suppose β0 6= α0 (mod π), that is,
tan(α− β) → tan(α0 − β0) 6= 0. Then, if |V2| → ∞ we have k̃ → ∞ and, consequently,
R(d) → ±∞ . If |V2| remains finite, on the other hand, then we find α0 = π/2 and
β0 = 0 and hence R(d) → ∞ . We thus see that these regularizations yield necessarily
the standard wall L = 0 .

The foregoing argument shows that nonstandard walls with L 6= 0 can be realized
only by such realizations in which V1 and V2 are fine-tuned as

β0 = α0 (mod π) . (3.23)

We shall suppose (3.23) from now on, and consider the limit of R(d) for the cases α0 = 0 ,
0 < α0 < π/2 and α0 = π/2 , separately.

(i) case α0 = 0(i) case α0 = 0(i) case α0 = 0(i) case α0 = 0 :

We then have, as d → 0, α ≈ tanα = κ/k̃ → 0 and β − β0 → 0 and hence
tan(α− β) = tan(α− β + β0) ≈ κ/k̃ − β + β0 . Thus the ratio is approximated as

R(d) ≈ κ− k̃(β − β0) . (3.24)

Now, if β0 = 0 then the rhs reads κ − k̃2d . Hence, to get a finite R(d) , k̃2d has to
compensate the divergence of κ . This can be done if κ and k̃ behave as

κ ∼ cdν − 1
L
, k̃ ∼ c

1
2 d

ν−1
2 (−1 < ν < 0) , (3.25)

which is realized if, for instance, we put

V1(d) = h̄2

2m

(
c2d2ν − 2c

L
dν
)
, V2(d) = − h̄2

2m
c dν−1 , (3.26)

with a constant c > 0. It is then readily confirmed that this regularized potential (3.26)
does lead to R(d) fulfilling (3.21) for all E > 0. If β0 > 0 , on the other hand, then
β0d

−1(β − β0) on the rhs of (3.24) has to cancel the divergence of κ . This means k̃ ∼
β0d

−1+(1/β0)κ . The needed finite term − 1
L

can be provided again by κ if κ ∼ c1d
ν− 1

L
.

This is achieved, for example, by

V1(d) = h̄2

2m

(
c2d2ν − 2c

L
dν
)
, V2(d) = − h̄2

2m

(
β2

0 d
−2 + 2cdν−1

)
. (3.27)

It is again easy to confirm that (3.27) yields R(d) fulfilling (3.21) for ν > −1/2 .
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(ii) case 0 < α0 < π/2(ii) case 0 < α0 < π/2(ii) case 0 < α0 < π/2(ii) case 0 < α0 < π/2 :

In this case, we have k̃ ∼ β0d
−1 and κ ∼ (β0 tan β0)d

−1 . Using the Taylor expansion,

α = arctan(κ/k̃) ≈ α0 + cos2α0 ((((κ/k̃ − tanα0)))) , (3.28)

we find

R(d) ≈ k̃ tan [[[[α0 − β0 + cos2α0 (κ/k̃ − tanα0)]]]] ≈ cos2α0 (κ− k̃ tanα0 ) . (3.29)

Hence the choice,
κ ∼ (β0 tan β0)d

−1 − (1/cos2β0)
1
L

(3.30)

may lead to (3.21). A possible regularized potential realizing (3.30) is

V1(d) = h̄2

2m

[
(β2

0 tan2β0) d
−2 − 2

L
(β0 tanβ0/cos2β0) d

−1
]
, V2(d) = − h̄2

2m
β2

0 d
−2 , (3.31)

which can be shown to give R(d) satisfying (3.21).

(iii) case α0 = π/2(iii) case α0 = π/2(iii) case α0 = π/2(iii) case α0 = π/2 :

We still have k̃ ∼ β0d
−1 but now κ/k̃ → ∞ so α ≈ π/2 − k̃/κ , and therefore

R(d) ≈ k̃ tan
[
π

2
− k̃

κ
− (β − β0) − β0

]
≈ k̃

[
− k̃

κ
− (β − β0)

]
. (3.32)

The realization (3.21) will be attained if, for example, we have κ/k̃2 → ∞ and provide
− 1

L
through k̃ by assuming k̃ ∼ β0d

−1 + 1
L

1
β0

. This is the case with the regularization,

V1(d) = h̄2

2m
c21 d

2ν (ν < −2) , V2(d) = − h̄2

2m

(
β2

0 d
−2 + 2

L
d−1

)
. (3.33)

To summarize, the regularization by means of the step-like potential (3.16) leads gener-
ically to the standard wall L = 0 . It can also lead to nonstandard walls L 6= 0 but only
as exceptional cases under the fine-tuning (3.23). It is worth emphasizing that the crucial
factor in determining the limit of R(d), i.e., the boundary condition at x = 0, is not
the leading asymptotic behaviour of V1 and V2 in d → 0 but always a subleading term.
A similar phenomenon has been observed for the regularization of the Dirac delta point
interactions in higher space dimensions [1].

The regularizations we used are based on a step-like potential. Needless to say, other
types of potentials can also be used for realizing the walls. It is possible, for instance,
to use a sequence of steeper and steeper slopes. Since such a sequence itself leads again
necessarily to the Dirichlet wall4 similarly to when we have only one higher and higher
steplike potential, again one would need some additional well-like structure to provide the
other cases. One can also look for a potential which leads to the realization for any L
without involving the mass parameter m. Such a regularization may be more desirable
than that we constructed — where the potentials turned out to be m-dependent — for
the reason that potentials should be independent of the particle. Nonetheless, our simple

4The details of this result are not included here.
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regularization can well exhibit universal features of the realization of the (standard and
nonstandard) walls, as we can see, for example, the bound state being accommodated in
the negative middle part of the step-like potential we used.

It also deserves discussion that, while we can choose rather arbitrary regularizing
potential shapes governed by many free parameters, surprisingly, the limit of any such
sequence will be dependent on only one parameter, L. Apparently, what happens is that
any sequence falls into one universality class, the classes indexed by the limiting property
L. Similarly, potential sequences that realize a pointlike singularity on a line will fall
into university classes indexed by finitely many — four — parameters. It seems a general
rule that the possible richness becomes restricted as we reach the limit of an exactly
pointlike contact interaction. It is physically not obvious why this should be the case:
for example, the infinitely many multipole moments of an electric charge distribution
all survive the pointlike limit. The situation seems more similar to another (unrelated)
analogue: classical [25] as well as quantum mechanics allows only finitely many parameters
for a free pointlike particle: the mass and the spin.

Some closer simple understanding of this restrictedness of contact interactions can be
achieved for one dimensional cases as follows. Any self-adjoint domain / physically con-
sistent system is fully determined by the solution of the energy eigenvalue problem. The
energy eigenvalue equation is a second order linear differential equation so the connection
or boundary conditions at the place of a contact interaction can only contain the wave
function and its first derivative (at both sides of the contact interaction, if applies) and
only in some linear combination. Therefore, the linear coefficients are clearly only finitely
many in number.5

In higher dimensions, a pointlike singularity is even more “lost” (less freedom) than in
one dimension. However, a linelike singularity in a plane, for example, has infinitely many
free parameters. Intuitively, it has finitely many at each point of the line, but because
of some regularity properties of the wave function along the direction of the line, only a
discretely infinite freedom results.6

3.3 Classical counterparts of quantum walls

We then turn to the question whether the quantum walls admit classical analouges, at
least from some specific points of view. This will be examined by looking at the time
delay of the particle in scattering, which is the time difference between the moments of
incidence and reflection at the wall. It will be shown that quantum walls with L < 0,
which are characterized by positive time delay, have no classical counterpart possessing
the same time delay. Such classical equivalents are possible only in some weaker sense.

What we ask is whether there is a classical system with some appropriate potential
V (x) which can account for the same amounts of time delay as those observed under

5In fact, self-adjointness imposes some further restriction on even this limited freedom.
6Square integrable functions form a separable Hilbert space so the deficiency index can also be only

countably infinite.
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the walls. Note that systems with the regularized potentials discussed above are not
applicable for this purpose, because in those systems the time a classical particle spends
in a potential (3.16) tends necessarily to zero as d→ 0 (since, as V2 → −∞, the distance
run by the particle becomes zero while its velocity becomes infinity).

To find a potential for the classical particle that reproduces the quantum time delay,
we shall first consider the walls with L > 0. In this case the time delay (3.15) is negative,
and if the classical picture is available, the incident particle with velocity magnitude
v = h̄k

m
must return earlier by

|τ | =
2L

v

1

1 +
(

mL
h̄
v
)2 (3.34)

than we would expect when it collided with the wall at x = 0. Observe that, for small v
the time advance |τ | approaches 2L

v
. This suggests that a slow particle sees the wall at

(around) x = L, not x = 0. Consequently, the reflecting potential V (x) is expected to
begin to grow at x = L. For definiteness, let us search for the potential in the qualitative
form as shown in Fig. 3.2. (This fixes an arbitrariness in the choice of the potential.
As we will see, demanding a positive, monotonically decreasing potential determines the
potential uniquely.) Now, let us introduce

τ̃ =
2L

v
+ τ =

√
2mL2E

/(
h̄2

2mL2 + E
)
, (3.35)

(where E = 1
2
mv2 is the incoming energy) which is the time spent by the particle in the

region left to the point x = L . Our problem is then an inverse problem: Determine a
potential V (x) from a given τ̃ (E) as a function of E. This can be answered if we follow
the well-known argument of Landau and Lifshitz [39] used for the problem of determining
a well-shaped potential from the period time with which a particle moves.
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Figure 3.2: The realizing potential (3.39) is shown by the solid line for L > 0. For L < 0
the obtained potential becomes the dotted line and is unphysical.
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We start by writing the relationship between the potential and τ̃ as

τ̃(E) =
√

2m
∫ L

x(E)

dx
√
E − V (x)

=
√

2m
∫ E

0

(
−dx(V )

dV

)
dV√
E − V

. (3.36)

Dividing by
√
W −E with W being an auxiliary parameter, and integrating with respect

to E from 0 to W leads to

∫ W

0

τ̃ (E) dE√
W − E

=
√

2m
∫ W

0
dV

(
− dx

dV

) ∫ W

V

dE
√

(W −E)(E − V )
. (3.37)

The inner integral (the one with respect to E) gives π, while on the lhs we can evaluate
the integral explicitly [cf. (3.35)]. From the result,

π
√

2mL

(
1 − 1

/√
1 + 2mL2

h̄2 W

)
= π

√
2m [L− x(W )] , (3.38)

we obtain x(W ) = L[1 + 2mL2

h̄2 W ]−
1
2, inverting which yields7

V (x) = h̄2

2mL2

(
L2

x2 − 1
)
. (3.39)

We can see that this wall-realizing potential sits on the positive half line. This is
unavoidable: Indeed, if a potential is identically zero on the whole positive half line and is
nonzero only on the negative half line then the time delay is necessarily non-negative. The
most we can reach is that the penetration of the wall-realizing potential to the positive
half line is finite. (3.39) presents such a solution. We will see that, for L < 0 , we have
to pay more.

For L < 0, the time delay is positive, i.e., the quantum wave packet returns later than
expected:

τ =
2|L|
v

1

1 + (m|L|
h̄
v)2

=
√

2m|L| 1√
E
(
1 + 2mL2

h̄2 E
) . (3.40)

This is the time delay we try to reproduce with the corresponding classical particle as its
classical time delay

τcl, x0(E) =
√

2m
∫ x0

x(E)

dx
√
E − V (x)

− 2x0√
2E/m

, (3.41)

where x0 is the initial position of the particle. For small v, (3.40) becomes 2|L|
v

, which
suggests that a slow particle enters the x < 0 region and sees the wall near x = −|L| .
For this, the realizing potential V (x) is expected to start to increase at x = −|L|, and
to keep increasing for smaller x. However, if one repeats the same argument used for the
L > 0 case, one ends up with (3.39) again, with now the left branch of this function (see
Fig. 3.2).

7We remark that, while this potential reproduces the time delay classically, it does not reproduce the
boundary condition (3.4) and hence cannot serve as a potential to realize the walls quantum mechanically.
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The obvious problem with this branch, i.e., it increases for x to the right of −|L| and
is unphysical, can be understood intuitively as follows. For high energies E, the particle
is expected to move approximately freely, and since the particle travels at least until
x = −|L| , the E → ∞ asymptotics of the time delay would be at least 2|L|

v
. However,

the time delay we have to reproduce has only a v−3 asymptotic behaviour. This means
that the coefficient of the v−1 term must vanish for E → ∞ , imlplying that in the limit
the particle reaches only until x = 0 .

The situation cannot be helped with any additional potential in −|L| < x < 0 or
in 0 < x , nor by any other modification. Actually, it can be proven that no classically
acceptable reflecting potential can fulfil the requirement that the time delay (3.40) be
reproduced exactly for all x0 > xthresh , that is, for all initial positions of the incoming
particle above a finite, possibly positive threshold position xthresh . To see this, let us
consider an arbitrary piecewise differentiable potential, even possibly diverging at the dis-
continuity points. Then the classical force −V ′(x) exists everywhere except for finitely
many points, while at a discontinuity point an incoming classical trajectory can be con-
tinued with the outgoing trajectory that has the same energy E as the incoming one.
The potential is further required to act as a completely reflecting wall, that is, for every
positive energy E, there has to be a turning point x(E) (like in Fig. 3.2). Note that
then the function x(E) is necessarily nonincreasing, and its inverse is V (x) locally, i.e.,

it reproduces at least parts of the function V (x).

First let us discuss the case when V is differentiable (and hence continuous) every-
where. The x0-independence of the time delay τcl, x0(E) [cf. (3.41)] implies

d

dx0

τcl, x0(E) =
√

2m

[
1√

E − V (x0)
− 1√

E

]
= 0 (3.42)

and thus that V = 0 above xthresh . Let xpos denote the lowest x above which the potential
is nonpositive. Naturally, one has xpos ≤ xthresh and can write xpos = sup{x |V (x) >
0} , from which one finds xpos = limE↘0 x(E) , that is, xpos is the “turning point for
zero energy”.

If there exists an energy E∗ with a turning point on the negative half line, x(E∗) < 0 ,
then for larger energies E the time delay is at least

√
2m

∫ x0

x(E∗)

dx√
E − V

−
√

2m
x0√
E

(3.43)

which is obtained by omitting the time of travelling through the interval [x(E), x(E∗)] .
Since V is continuous on the interval [x(E∗), x0 ] , it is bounded and hence the high-energy
asymptotics of (3.43) is

√
2m

x0 − x(E∗)√
E

−
√

2m
x0√
E

=
√

2m
|x(E∗)|√

E
∼ 1√

E
. (3.44)

This is in contradiction with the asymptotics E−3/2 of the demanded time delay (3.40).
Consequently, all turning points have to be on the non-negative half line,

x(E) ≥ lim
E′→∞

x(E ′) =: x∞ ≥ 0 . (3.45)
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Next we prove that in (x∞, xpos ] the potential V decreases strictly. Namely, if we
assume the contrary then there will be at least one point x1 in this interval that is not
a turning point [see Fig. 3.3(a)]. Within [x1, xpos ], let x2 denote the turning point with
the highest energy E2. Then, in the function τcl, x0(E) there will be a discontinuity at
E = E2 :

1√
2m

[
lim

E↘E2

τcl, x0(E) − lim
E↗E2

τcl, x0(E)
]

= lim
E↘E2

∫ x0

x(E)

dx√
E − V

− lim
E↗E2

∫ x0

x(E)

dx√
E − V

(3.46)

= lim
E↘E2

[∫ x2

x(E)

dx√
E − V

+
∫ x0

x2

dx√
E − V

]
− lim

E↗E2

∫ x0

x(E)

dx√
E − V

(3.47)

= lim
E↘E2

∫ x2

x(E)

dx√
E − V

> lim
E↘E2

∫ x2

x1

dx√
E − V

=
∫ x2

x1

dx√
E2 − V

> 0 . (3.48)

However, the required quantum time delay, (3.40), is a continuous function everywhere.
This result tells us that on the region (x∞, xpos ] x(E) is the inverse of V (x) and is
differentiable. We have also obtained the qualitative behaviour of the candidate potential
function [see Fig. 3.3(b)]: Coming from the right, it is zero above xthresh, nonpositive in
xpos < x < xthresh , and is positive and increasing in x∞ < x ≤ xpos , diverging to +∞ at
x∞ .
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Figure 3.3: Left: A nondecreasing part in the potential in (x∞, xpos ] causes a disconti-
nuity in the time delay. Right: The obtained qualitative shape of the potential.

Now we are ready to investigate the requirement 1√
2m
τ(E) = 1√

2m
τcl, x0(E) :

|L|√
E
(
1 + 2mL2

h̄2 E
) =

∫ xpos

x(E)

dx√
E − V

+
∫ x0

xpos

dx√
E − V

− x0√
E
. (3.49)

Observe that the second integral is bounded from above by x0−xpos√
E

, since the potential
is nonpositive on that interval. Employing again the ‘Landau trick’ to the first integral
(i.e., changing the variable from x to V , dividing by

√
W −E , and integrating between

0 and W ), we find

π|L|
/√

1 + 2mL2

h̄2 W ≤ −πx(W ) , (3.50)
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or

x(W ) ≤ −|L|
/√

1 + 2mL2

h̄2 W < 0 . (3.51)

This, however, contradicts our previous result that all turning points have to be on the
non-negative half line, showing that the requirement (3.49) cannot be fulfilled.

We can show that the preceding argument remains valid even if we allow discontinuity
points in the potential — only slight modifications are necessary. The x0-independence
of the time delay implies V = 0 at all continuity points, and hence everywhere, above
xthresh. xpos is introduced in the same way and with the same properties as before. (3.45)
also remains valid: When assuming x(E∗) < 0 , the possible discontinuity points falling
between x(E∗) and x0 can be covered by intervals of a total length less than, say, 1

2
|x(E∗)| .

We omit even these covering intervals from the time delay, and on the remaining intervals
the potential is continuous and has overall upper and lower bounds. Consequently, the
high-energy asymptotics of the time delay is still at least ∼ 1/

√
E .

The proof of the strict decreasing of V in (x∞, xpos ] holds, too. This also rules out
discontinuity points xdisc in (x∞, xpos ] with V (xdisc − 0) < V (xdisc + 0) . Others are
allowed but do not cause any trouble in the behaviour of x(E) because, for energies E ∈
[V (xdisc + 0), V (xdisc − 0) ] , we then have x(E) = xdisc = const. and d

dE
x(E) = 0 . The

transformation of the integration variable in the first integral in (3.49) remains applicable,
while the second integral can also be estimated as before, in spite of any discontinuity
points in (xpos, xthresh ] . Therefore, we reach the same contradictory result (3.50) again.

Hence, interestingly enough, the walls with negative L do not admit a classical coun-
terpart, so to say, they are genuinely quantum. We can help the situation only partially:
if we demand only that the quantum time delay be reproduced in the x0 → ∞ limit of
τcl, x0(E) , then the required realization can be achieved. See Appendix B for how this
can be done.

3.4 Semiclassical aspects

From the eigenfunctions (3.7) and (3.8) the Feynman kernel describing the transition of
the particle from x = a at t = 0 to x = b at t = T can be calculated (see [40, 41, 42]).
The result is

K(b, T ; a, 0) =
√

m
2πih̄T

[
e

im
2h̄T

(b−a)2 ∓ e
im
2h̄T

(b+a)2
]
, (3.52)

for L = 0 (“−”-sign) and L = ∞ (“+”-sign). For L < 0 the kernel is given by

√
m

2πih̄T

[
e

im
2h̄T

(b−a)2 + e
im
2h̄T

(b+a)2 − 2
|L|

∫ ∞

0
dz e

−z/|L|
e

im
2h̄T

(b+a+z)2
]
, (3.53)

and for L > 0 by

√
m

2πih̄T

[
e

im
2h̄T

(b−a)2 + e
im
2h̄T

(b+a)2 − 2
L

∫ ∞

0
dz e

−z/L
e

im
2h̄T

(b+a−z)2
]

+ 2
L
e

ih̄T

2mL2 e
− b+a

L . (3.54)

The salient feature of the result is that, for L = 0 and L = ∞, the kernel (3.52) almost
coincides with that obtained by WKB semiclassical approximation, because the two terms
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in (3.52) correspond to the free kernels for the direct path from (a, 0) to (b, T ) and for
the bounce path which hits the wall once during the transition, respectively. The only
problem for the complete WKB-exactness is the appearance of the ∓ sign factor attached
to the contribution from the bounce path. We shall show here that this sign factor can
be attributed to the classical action ∆Sbounce = h̄π gained by the bounce effect at the
wall so that e

i
h̄
∆Sbounce = ∓1 . On the other hand, it will be proved here that, for other

Ls, the WKB-exactness cannot hold.

What we wish to see is whether the sum of amplitudes along the classical two paths,
the direct world line from (x, t) = (a, 0) to (b, T ) and the bouncing path which hits the
wall x = 0 before arriving at (b, T ), give the exact result (see Fig. 3.4). The question,
therefore, is if the kernels (3.52), (3.53) and (3.54) can be rewritten in the form of a sum
of the corresponding two terms as

K(b, T ; a, 0) =

√
m

2πih̄T
e

im
2h̄T

(b−a)2 +

√
1

2πih̄

∂2Sbounce

∂a∂b
e

i
h̄

Sbounce(b,T ;a,0) , (3.55)

where Sbounce(b, T ; a, 0) is the classical action for the bounce path, and the factor before
the second exponential term comprises the van Vleck determinant and the Maslov phase
factor corresponding to the turning point (see [43] for the details). In the spirit of the
preceding sections, here again the wall is considered not necessarily to be simply the
infinitely high vertical potential wall at the origin but to be realized by some sequence of
more general reflecting potentials. What we require is that the potential sequence must
converge uniformly to zero for all x ≥ xwall with some xwall which may be positive,
and that, for any a, b > xwall, the bounce path tends to the standard bounce world line
depicted on Fig. 3.4, at least on the spacetime region x > xwall . Otherwise we let the
reflecting potential sequence be arbitrary to the left of xwall and, therefore, at the limit

of the sequence, the resultant action Sbounce can differ from the action S
(0)
bounce = m(a+b)2

2T

that corresponds to the simplest case of the infinitely high vertical potential wall with no
extra action contribution caused by the wall.

Even these very mild assumptions allow us to observe some important, generally valid,
properties. The first one is that, although the direct path is also influenced by a non-

vanishing potential, its WKB contribution
√

i
2πh̄

∂2Sdirect

∂a ∂b
e

i
h̄

Sdirect will still reduce to the
first term of (3.55). Indeed, since in the limit we have V → 0 and hence the velocity

of the particle tends uniformly to b−a
T

, we trivially find E → E
(0)
direct = m

2
(b−a)2

T 2 and

Sdirect → S
(0)
direct = m

2
(b−a)2

T
. The nontrivial question that remains to be shown concerns

with the property of the derivative,
∂2S

direct

∂a ∂b
→ ∂2S

(0)
direct

∂a ∂b
, but this can be seen by writing

the action as

Sdirect =
∫ T

0
dt (E−2V ) = −TE+2

∫ T

0
dt (E−V ) = −TE+

√
2m

∫ b

a
dx

√
E − V (3.56)

which is valid for a, b > xwall, and evaluating

∂2Sdirect

∂a∂b
= −

√
m/2

√
E − V (a)

∂E

∂b
= −

√
2m

[√
E − V (a)

√
E − V (b)

∫ b

a

dx
√
E − V

3

]−1

. (3.57)
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Figure 3.4: Left: The direct and the bounce paths. Right: The bounce path under a
wall-realizing potential.

Here, the energy E of the direct path is determined by the condition

√
m
2

∫ b

a

dx√
E − V

= T (3.58)

which is used to evaluate ∂2Sdirect

∂a ∂b
in (3.57). Plugging the limiting values for the energies

and the potential in (3.57), we find the required property.

Second, we make the observation that the energy of the bounce path converges to

E
(0)
bounce = m

2
(a+b)2

T 2 . This follows from our requirement that the bounce path must tend
to the standard bounce world line outside xwall because then the velocity of the particle
tends uniformly to a+b

T
under the vanishing potential. In addition, we find that, although

∆Sbounce = Sbounce − S
(0)
bounce does not necessarily tend to zero, in the limit it becomes

independent of a and b. This can be seen as follows:

Sbounce = −TE +
√

2m
∫ a

x(E)
dx

√
E − V +

√
2m

∫ b

x(E)
dx

√
E − V (3.59)

and
∂Sbounce/∂a =

√
2m

√
E − V (a) , (3.60)

where now the energy of the bounce path is determined by

√
m
2

∫ a

x(E)

dx√
E − V

+
√

m
2

∫ b

x(E)

dx√
E − V

= T (3.61)

[again, (3.61) is used also for the result (3.60)]. Since now E → E
(0)
bounce , it follows that

∂Sbounce/∂a → m(a + b)/T = ∂S
(0)
bounce/∂a (3.62)
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so ∂∆Sbounce/∂a→ 0 . The b-independence of ∆Sbounce is proven analogously.

Third, if we restrict ourselves to the potential sequences of the type (3.16) then (3.59)
and (3.61) read

Sbounce = −TE +
√

2m (a+ b)
√
E + 2

√
2md

√
E + |V2| (3.63)

and √
m/2

a+ b√
E

+
√
m/2

d
√
E + |V2|

= T . (3.64)

From (3.63) we have that

lim
d→0

∆Sbounce = lim
d→0

(
2
√

2md
√
|V2|

)
. (3.65)

In parallel, ∂2Sbounce/(∂a∂b) can be computed by differentiating (3.60), and using ∂E/∂b ,
the latter obtained by expressing b = b(E) from (3.64) and applying ∂E/∂b = 1/[∂b/∂E] .
Taking the limit of the result gives m/T so we find that, in the limit, the square root
factors in the two terms of (3.55) equal each other for these step-like potential sequences.

By virtue of these properties, we are able to discuss the question of complete WKB-
exactness. In the cases L = 0 and L = ∞, it is possible to reproduce the required action
contribution ∆Sbounce = πh̄ and ∆Sbounce = 0 , respectively, for example with the
step-like potential sequences (3.16). In fact, choosing for L = 0

V1(d) = const. d−1 , V2(d) = − h̄2

2m

(
π
2

)2
d−2 (3.66)

(a potential sequence with α0 = 0 and β0 = π/2 ), and for L = ∞

V1(d) = h̄2

2m
c2 d−1 , V2(d) = − h̄2

2m
c d−

3
2 , (3.67)

which is the case ν = −1/2 of (3.26), provides just these needed action contributions [cf.
(3.65)]. Note that these potential sequences are, at the same time, correct realizations of
the quantum boundary condition with L = 0 , respectively L = ∞ , as well. Nevertheless,
they are not unique even among the step-like realizations with these properties, and
presumably other potential shapes can also serve as examples for even both the complete
WKB-exactness and realizing the quantum boundary condition.

On the other side, for the other walls L 6= 0,∞ , one can prove that no potential
sequence can account for the kernels (3.53) and (3.54) irrespective of whether the potential
sequence reproduces the correct quantum boundary condition or not. To see this, let us
write these kernels in the form

√
m

2πih̄T

[
e

im
2h̄T

(b−a)2 + AL(a, b, T ) e
i
h̄

S
(0)
bounce

]
. (3.68)

If the complete WKB-exactness holds then argAL(a, b, T ) should correspond to the limit
of ∆Sbounce/h̄ , which we know is unavoidably independent of a and b. However, actually
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argAL(a, b, T ) does depend on a and b, as can be checked simply for example, on the
large-T asymptotics of AL(a, b, T ) ,

AL(a, b, T ) ≈






−
√

m
2πih̄T

e
− 2imL

h̄T
(a+b−L) , L < 0 ,

2
L

e
− a+b

L e
− im

2h̄T

[
(a+b)2−( h̄T

mL)
2
]

, L > 0 ,

(3.69)

as one finds from (3.53) and (3.54).

We thus learn that the quantum walls with L = 0 and L = ∞, which correspond to
the Dirichlet and the Neumann boundary condition, respectively, are distinguished in the
U(1) family of walls with respect to the WKB-exactness. We can observe that these two
cases are the ones distinguished by their scale invariance, too. The relationship between
the two, the WKB-exactness and scale invariance, is however unclear yet.
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Chapter 4

Free motion on a line with a point
interaction (defect, scatterer)

Next, we consider the basic properties of systems where a free particle moves on a full line,
with a point interaction / pointlike disturbance at x = 0. Basically, this short chapter
reviews results [9, 10, 12] which are included here because they will be utilized and referred
at various places in the subsequent chapters. Furthermore, this discussion also serves to
put the new results, a fuller treatment of generalized symmetries (Appendix C), into
context.

For earlier results on ‘point interaction on a line’ systems, see, e.g., [7, 44, 45, 46, 47].

4.1 Characterization of the line systems

With the two infinities being limit-point-type, the surface term regarding (A.5) is now

W [ψ∗
1, ψ2](+0) −W [ψ∗

1 , ψ2](−0) (4.1)

(again up to an irrelevant overall factor). We can identify Γ1, Γ2 as

Γ1ψ := Ψ ≡
(
ψ(+0)
ψ(−0)

)
, Γ2ψ := L0Ψ

′ ≡ L0

(
ψ′(+0)
−ψ′(−0)

)
. (4.2)

Note the minus sign in the second component of Ψ′, which is actually connected to the
fact that, on the negative half line, the coordinate x runs with inward orientation. If an
outward-oriented coordinate x− = −x ∈ [0,∞) is introduced there then the symmetric
arrangement can be achieved. It is worth mentioning that it is this latter symmetric form
how it is practical to generalize these formulas for an arbitrary star graph system, where
a general n number of half-line “legs” are running out from a common junction, with
outward-oriented coordinates xi ∈ [0,∞) , i = 1, . . . n .

The condition determining the self-adjoint domains for our present line systems is

(U − I)Ψ + i(U + I)L0Ψ
′ = 0 , (4.3)
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with the characteristic operator U being an arbitrary U(2) matrix. We note that, similarly
to the half line systems, the presence of the length L0 again indicates an inherent scale
dependence, broken scale invariance for generic self-adjoint domains. It is only a lower
dimensional subfamily of U(2) where L0 actually drops out from the connection condition
and which, consequently, are scale invariant.

A practical parametrization for U is given by

U = e
iξ
(

α β
−β∗ α∗

)
= e

iξ
(
αR + iαI βR + iβI

−βR + iβI αR − iαI

)
, (4.4)

where ξ ∈ [0, π) and α, β are complex parameters satisfying

|α|2 + |β|2 = α2
R + α2

I + β2
R + β2

I = 1 . (4.5)

The diagonalized form of U = V −1DV and the eigenvalues e
iθ+ , e

iθ− (θ± ∈ [0, 2π)) play
an important role for the spectral and other physical aspects. Hence, we also introduce
the parameters1

{(L+, L−, µ, ν) |L± ∈ (−∞,∞) ∪ {∞}, µ ∈ [0, π], ν ∈ [0, 2π)} , (4.6)

where the two length scales appear as

D =
(

e
iθ+ 0
0 e

iθ−

)
, L± := L0 cot

θ±
2

(4.7)

and the two angle parameters as the Euler angles of V

V = e
iχσ3

e
i µ
2
σ2

e
i ν
2
σ3 , µ ∈ [0, π], ν ∈ [0, 2π) , (4.8)

(the first factor e
iχσ3 being irrelevant since it is cancelled in the product U = V −1DV ). As

we will see, these parameters carry more direct physical meaning for the point interaction
systems.

In the case of the so-called separating connection conditions ( β = 0 ), when the point
interaction is not transparent and the two half line configuration subspaces decouple, L±
become the parameters of the resulting two half line systems. For the other, nonseparat-
ing, cases the connection conditions can be written in another useful form,

Λ
(
ψ(−0)
ψ′(−0)

)
=
(
ψ(+0)
ψ′(+0)

)
(4.9)

where the transit matrix Λ takes the form

Λ = e
iζ
(
a b
c d

)
, ζ ∈ [0, π), a, L−1

0 b, L0c, d ∈ IR, ad− bc = 1 . (4.10)

This shows that the family of nonseparating systems is topologically U(1) × SL(2, IR).
The phase jump ζ is essentially equivalent to ν as well as with arg β. Further relationship
with the generally valid parametrization (4.4) is provided by

Λ =
i

βR − iβI

(
sin ξ − αI −L0(cos ξ + αR)

L−1
0 (cos ξ − αR) sin ξ + αI

)
. (4.11)

1which, with these intervals running in, cover U(2) actually twice [12] so some care is needed when
using them
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4.2 Energy eigenvalues and eigenfunctions

Concerning the eigenvalue problem, the bound states allowed for a given HU are of the
form

ϕκ(x) =
{
A−

κ e
κx, x < 0

B+
κ e

−κx, x > 0
(4.12)

where κ determines the bound state energy Ebound = −h̄2κ2/(2m), and the constants A−
κ

and B+
κ are subject to the normalization condition |A−

κ |2 + |B+
κ |2 = 2κ. The connection

conditions require
(
B+

κ

A−
κ

)
to be an eigenvector of U and κ to fulfil

κ =
1

L+

or κ =
1

L−
, (4.13)

which shows that there exist two bound states if L+ > 0 and L− > 0, one if L+L− < 0,
and none if L+ < 0 and L− < 0. In terms of (4.8) the coefficients are found to be

(
B+

κ

A−
κ

)
=

√
2

L+

(
e
−iν cos µ

2

sin µ
2

)
,

(
B+

κ

A−
κ

)
=

√
2

L−

(−e
−iν sin µ

2

cos µ
2

)
, (4.14)

for κ = 1/L+ and 1/L−, respectively. Naturally, having seen the half line system,2 we
are not surprised that a naively ‘almost’ free system may possess bound states. Roughly
saying, we just expect maximally two since the point defect acts as a wall from both sides,
and one wall is known to allow (maximally) one bound state. Now this ‘point-wide’ wall
is, generically, partially transmitting, and this explains that a bound state on one half
line is partially copied to the other side.

We might nevertheless be surprised that a pointlikely “wide” potential well admits
only maximally two bound states while potential wells in general can admit arbitrarily
many. A simple explanation of this may be provided by observing that, on the two semi-
infinite free sides, a bound state must be an expontentially decreasing wave function (and
with the same characteristic length on both sides). Therefore, it is only the ratio of the
weights of this exponential on the two sides in which we can have some freedom. Now,
different bound states must be mutually orthogonal to each other and this is what limits
our freedom to have only two bound states as the maximum.

The scattering states for the particle (with velocity v = h̄k/m) incident from the
negative side are

ϕ
(−)
k (x) =

1√
2π

{
e
ikx + r

(−)
k e

−ikx, x < 0,

t
(−)
k e

ikx, x > 0
, (4.15)

with the reflection and the transmission amplitudes determined by the connection condi-
tions as

r
(−)
k =

α q + α∗q−1 − (η + η∗)

η q + η∗q−1 − (α + α∗)
, t

(−)
k =

−β(q − q−1)

η q + η∗q−1 − (α + α∗)
, (4.16)

2as well as bearing in mind that “potential wells” like a Dirac delta potential is also among the possible
point intreactions
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where we have used

η = e
iξ , q =

1 − kL0

1 + kL0

. (4.17)

Similarly, the right-incoming plane wave is

ϕ
(+)
k (x) =

1√
2π

{
t(+)

e
−ikx, x < 0,

e
−ikx + r(+)

e
ikx, x > 0,

(4.18)

with

r(+) =
α∗q + α q−1 − (η + η∗)

η q + η∗q−1 − (α + α∗)
, t(+) =

β∗(q − q−1)

η q + η∗q−1 − (α + α∗)
. (4.19)

These scattering states are “orthonormalized” to δ(k − k′) . In terms of the parameters
(4.6), the amplitudes read

(
r
(±)
k

t
(±)
k

)
= − 1

(1 + ikL+)(1 + ikL−)

(
1 + k2L+L− ∓ ik(L+ − L−) cosµ

±ik(L+ − L−) sinµ e
±iν

)
. (4.20)

The amplitudes obey the unitarity conditions,

|r(−)|2 + |t(−)|2 = 1 , |r(+)|2 + |t(+)|2 = 1 , (4.21)

and
r(−)∗t(+) + t(−)∗r(+) = 0 . (4.22)

If we let k take negative values, too, and noting that k → −k implies q → q−1, we obtain
further relations among the reflection and transmission amplitudes as

r
(−)
−k = r

(−)
k

∗
, r

(+)
−k = r

(+)
k

∗
, t

(−)
−k = t

(+)
k

∗
, t

(+)
−k = t

(−)
k

∗
(4.23)

(note the relationship to time reflection).

4.3 Properties of line systems

Analysing the results we can observe that the number, the energy value and the char-
acteristic length scale of the bound states are governed by the eigenvalues of U only, in
other words, in terms of the two independent length scales L±. Remarkably, this fact
remains valid even in the case of parity invariant singular potentials,3 like V (x) ∼ 1/|x|
and V (x) ∼ 1/x2 [16]. Finite values of these length parameters again imply the quantum
breakdown of classical scale invariance.

We can also read off that the angle ν means only a phase jump when we travel from the
negative half line to the positive one. This jump is known to be related to a Dirac-delta
vector potential [5] and means only an unphysical gauge freedom, since in one dimension
a vector potential can be gauged away. Note however that this parameter may carry

3for those potentials which are limit-circle type at the location of the singularity and limit-point type
in the space infinities
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real physical information if the point defect we have is actually a small ring with an
Aharonov-Bohm magnetic flux driven through it.

At last, the other angle µ measures the extent the wave function on one side is copied
to the other side. This observation is one of the key elements in the proposal of ‘abacus
qubits’ [18]. Namely, if we have a controllable point interaction then we can govern the
rate a state is copied from one side to the other.4

The one-parameter gauge freedom is not the only connection between different self-
adjoint domains. Indeed, there is a very rich variety of symmetries, dualities and gen-
eralized duality relationships, named as generalized symmetries for the point interaction
systems. These relationships are strongly connected to the fact that the boundary trans-

formations (C.2) which linearly mix the left and right side parts of any wave function with
coefficients that are the entries of an arbitrary matrix W ∈ U(2) , map a self-adjoint do-
main with characteristic matrix U to a one with the conjugate matrix WUW−1 . These
maps leave the spectrum invariant because the spectrum depends on the diagonal part
of U only but transform the eigenfunctions nontrivially. These boundary transformations
provide not only duality, triality or higher order discrete maps among systems but a
continuous group of them. The gradually explored duality-type generalized symmetries
[9, 10] (exhibiting mappings between coupling constants of two different systems — say, a
Dirac delta potential and a so-called delta-prime or epsilon interaction — as g2 = 1/g1 )
are all covered by them. See Appendix C for a detailed introduction and investigation of
the boundary transformations.

Notably, the family of ‘point interaction on a line’ systems admits a number of further
intriguing properties, like the scale invariant subfamily, numerous other special subfami-
lies, supersymmetric cases, or energy anholonomy — the latter being the property that if
we travel along a closed curve in the family of possible self-adjoint domains with an energy
eigenstate, the energy will change gradually but, when the loop is completed, we arrive
at a higher or lower energy value. This Berry-like behaviour is not only theoretically
remarkable but, in case continuously tunable pointlike singularities are experimentally
realized, it can become important and may provide practical application as well. The
interested Reader is asked to consult [9, 10] for these details.

4The other key ingredient in the ‘abacus’ suggestion is an applied harmonic potential whose caustic
property makes states to repeat their initial form after every time unit of half period. The combination
of these two ideas provides the possibility to perform any U(2) qubit operation, within a well-defined
finite time step.
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Chapter 5

Free motion on a circle with a point
interaction (defect, scatterer)

In this chapter, we change the infinite and linelike configuration space to a finite, closed
circular one, following [14].1 The difference will cause three essential changes. The first
one is that finiteness makes all energy eigenstates normalizable and the spectrum a discrete
one. The second is that the phase jump from one side of the point interaction to the other
is here definitely physical, and corresponds to the magnetic flux that is driven through
the loop. For experiments that have measured the dependence of the energy spectrum
on the magnetic flux, see [32, 33, 34]. The third change is that finiteness brings in a
further length scale in addition to L±, which, together with the now physical phase jump,
reduces the range of available symmetries and generalized symmetries — the latter to a
U(1) group —, and, correspondingly, provides a richer variety of possible energy spectra.

Let us remark that, in case the circle is really a closed curve in a plane then the
Hamiltonian is shifted by the squared curvature of the curve, as an effective remnant from
the two dimensional Laplacian kinetic energy term, as the transversal width is contracted
to zero. Fortunately, for circles this produces only a constant shift in the Hamiltonian
which can be ignored for our purposes.

It is also worth mentioning that, in a practical realization, the width dtransversal of such
a path may also play a role. First, because the transversal motion degree of freedom
can also get excited if the energy is high enough [Etransversal ∼ h̄2/(md2

transversal) ], and,
second, because in the presence of a magnetic flux driven through the circle the nonzero
transversal width is expected to cause an additional quadratic magnetic field dependence
of the eigenenergies [50].

1For earlier results, see [48, 49].
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5.1 Spectral properties

There is no difference in the form of the connection condition from what we have seen for
the line case:

(U − I)Ψ + i(U + I)L0Ψ
′ = 0 , Ψ :=

(
ψ(+0)
ψ(l − 0)

)
, Ψ′ :=

(
ψ′(+0)

−ψ′(l − 0)

)
, (5.1)

except from some notation: the coordinate x again starts with 0 from the location of the
pointlike object but arrives at its other side at x = l , where l is the circumference of the
loop. We will also make use of the alternative formulation of (5.1) (cf. Sect. 2.2),

UΨ(+) = Ψ(−) , Ψ(±) := Ψ ± iL0Ψ
′. (5.2)

To study the spectral properties of the circle system, we first recall the energy eigen-
values and eigenfunctions for the various self-adjoint domains. The positive spectrum is
provided by the energy eigenfunctions of the form

ϕk(x) = Ak e
ikx +Bk e

−ikx , k > 0 . (5.3)

For such a wave function, the boundary vectors are

Ψ = τk

(
Ak

Bk

)
, Ψ′ = ikσ3τkσ3

(
Ak

Bk

)
, (5.4)

where σk , k = 1, 2, 3 denote the Pauli matrices and

τk :=
(

1 1
eikl e−ikl

)
. (5.5)

Then, the connection condition (5.1) reads

[(U − I)τk − kL0(U + I)σ3τkσ3 ]
(
Ak

Bk

)
= 0 , (5.6)

or, explicitly,
(

αK− + (βeikl − e−iξ)K+ αK+ + (βe−ikl − e−iξ)K−
α∗eiklK+ − (β∗ + e−iξeikl)K− α∗e−iklK− − (β∗ + e−iξe−ikl)K+

)(
Ak

Bk

)
= 0, (5.7)

with K± := 1 ± kL0. To have a nontrivial solution for the coefficients Ak, Bk, the
determinant of the matrix of the lhs of (5.7) must be zero. This gives the condition

[βI + sin ξ cos kl] +
[
(cos ξ − αR) + (cos ξ + αR) (kL0)

2
] sin kl

2kL0
= 0 (5.8)

for the wave number k. The positive spectrum is an infinite discrete series, in which,
for large k, the difference between subsequent levels is getting closer and approaches π/l
(see Appendix D). For the negative spectrum one only needs to replace ik → κ in the
formulas above to obtain the corresponding condition,

[βI + sin ξ coshκl] +
[
(cos ξ − αR) − (cos ξ + αR) (κL0)

2
] sinh κl

2κL0
= 0 . (5.9)
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From (5.9) one finds that at most two negative energy states can exist. Similarly, for
a possible zero energy state, the k → 0 limit can be used to obtain the corresponding
condition

[βI + sin ξ] + [cos ξ − αR]
l

2L0
= 0 . (5.10)

We note that, similarly to the line system, for some special U such as U = −σ1 the
ground state may be doubly degenerate. This is not in conflict with the well-known prop-
erty of nondegeneracy in energy levels of one dimensional quantum mechanics, because
the premises used to prove that property do not hold here. Indeed, at the location of the
singular object, neither the wave function nor its derivative are required to be continuous.

In fact, one can determine when an energy eigenstate (ground state or higher) becomes
doubly degenerate2 as follows. Observe first that, for states with positive energy E > 0,
degeneracy occurs when all the four elements of the matrix in (5.7) are zero. From this
one derives

αI = βR = 0 , βI 6= 0 , (5.11)

and, further, the conditions for the energy eigenvalue

βI cos kl = − sin ξ , βI kL0 sin kl = −(cos ξ − αR) , βI sin kl = −(cos ξ + αR) kL0

(5.12)
in addition to (5.8). Since (5.11) implies α2

R + β2
I = 1 , from (5.12) we find

k2L2
0(cos ξ + αR) = cos ξ − αR . (5.13)

On can obtain the conditions for states with E = 0 and E < 0 analogously, and the
result is that, in both cases, one has (5.11) and

ξ = arccot
l

2L0
(5.14)

together with (5.12) with k = 0 for E = 0 , or (5.12) with k → −iκ for E < 0 . One
then finds that degeneracy of an E ≤ 0 eigenvalue excludes any other degeneracies, and
that, unless cos ξ = −αR , (5.13) can hold for only one k. If cos ξ = −αR , one has
cos ξ = αR (see (5.13) and its E ≤ 0 variants) and, consequently, ξ = π/2 , αR = 0 and
βI = ±1 . This shows that in the SU(2) family there are only two types of singularities
specified by U = ±σ1 that admit double degeneracy with more then one energy levels.
Actually, for the cases U = ±σ1 all the positive energies prove to be doublets. Further,
the case U = σ1 possesses a singlet zero energy state as the ground state while U = −σ1

does not have any nonpositive energies. This (almost) entire degeneracy of energy levels
suggests that the system may be bestowed supersymmetry, which we shall confirm later.

Now we come to the point to discuss the spectral space of the circle system with a
point singularity, that is, we determine the entirety of distinct spectra that can arise on
the circle under the U(2) family of point interactions. From the spectral conditions (5.8)–
(5.10) we can see immediately that the spectrum depends at most on the three parameters,

2Degeneracy higher than two does not arise since the energy eigenvalue equation is a second order
differential equation.
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ξ, αR and βI, of the four of U ∈ U(2), even though the eigenstates depend on all of the
four parameters in a nontrivial way [see (5.7)]. We have also seen that the conditions for
an energy to be degenerate depend only on the same three parameters. The question is
thus whether these three parameters, ξ, αR and βI, really index different spectra. This
can be answered affirmatively by a detailed examination on the possible spectra and their
connection with the set of parameters. In fact, our argument presented in Appendix D.1
shows that the spectrum of a circle system uniquely determines the parameters ξ, αR and
βI and, consequently, the spectral space Σcircle := {Spec(HU) |U ∈ U(2)} is given by

Σcircle =
{
(ξ, αR, βI) ∈ IR2 | ξ ∈ [0, π), α2

R + β2
I ≤ 1

} ∼= S1 ×D2, (5.15)

which is topologically a filled torus. The disc D2 part of Σcircle can equally be realized by
SU(2)/U(1) ∼= S3/S1, where the SU(2) ∼= S3 given by

{(αR, αI, βR, βI) ∈ IR4 | α2
R + α2

I + β2
R + β2

I = 1} (5.16)

is factorized by the phase of αI + iβR which forms the U(1) ∼= S1 . This latter identifi-
cation is advantageous for when the system is discussed as a special case of a circle with
two singularities [14]. It is interesting to compare the spectral space (5.15) with that of
the line system which is two dimensional.

5.2 Generalized symmetries, symmetries and invari-

ant subfamilies

Before investigating various symmetries and generalized symmetries arising for the circle
systems, we start with a formula valid for a certain important class of transformations
and becomes convenient in the subsequent discussions. Suppose that a transformation W
of the wave functions, ψ

W−→ ψ̃ = Wψ , commutes with our Hamiltonian (understood on
the maximal domain) and induces transformations on the boundary vectors in (5.1) as

Ψ
W−→ Ψ̃ = MΨ , Ψ′ W−→ Ψ̃′ = NΨ′ (5.17)

with some two-by-two matrices M and N . Then, in terms of Ψ(+) and Ψ(−) = UΨ(+)

defined in (5.2) we have

Ψ̃(±) = MΨ ± iL0NΨ′ =
1

2
[[[[M(I + U) ±N(I − U)]]]]Ψ(+) , (5.18)

and hence

Ψ̃(−) = [[[[M(I + U) −N(I − U)]]]] [[[[M(I + U) +N(I − U)]]]]
−1

Ψ̃(+) (5.19)

as long as the inverse matrix in question exists. We thus see that if

UW := [[[[M(I + U) −N(I − U)]]]] [[[[M(I + U) +N(I − U)]]]]
−1

(5.20)
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is unitary and hence belongs to U(2), then W is a generalized symmetry. In particular,
when M = N ∈ U(2), which we will meet frequently below, (5.20) reduces to

UW = MUM−1 . (5.21)

Since this UW belongs to U(2), such a W commuting with H is a generalized symmetry.
If, in addition, U commutes with M , then one has UW = U and hence such W is a
symmetry.

Specializing to the circle system, the first example of symmetry transformations we
wish to mention is the parity (or space reflection), P, defined as

ψ(x)
P−→ (Pψ)(x) = ψ(l − x) . (5.22)

It clearly commutes with the Hamiltonian, and its action on the boundary vectors [see
(5.1) and (5.2)] is found readily to be of the form (5.17) with M = N = σ1 and, hence,

the parity P is a generalized symmetry. Indeed, U
P−→ UP = σ1Uσ1 implies

ξ
P−→ ξ , α

P−→ α∗ , β
P−→ −β∗ , (5.23)

and thus the spectral parameters ξ, αR and βI remain the same, as required. Since σ2
1 = I ,

the parity P induces duality in spectrum in the family Ω of singularities on a circle. Note
that for systems with U satisfying [U, σ1] = 0, the parity P is a symmetry, and that such
a U has such parameters ξ, α, β that αI = 0 and βR = 0 . The set of those U forms the
parity invariant subfamily ΩP which, in view of (4.5), reads

ΩP ∼= S1 × S1 ⊂ Ω. (5.24)

We can consider a one-parameter family (U(1) group) of generalized symmetries con-
structed from the parity P used as an infinitesimal generator,

Pϑ := e−i ϑ
2
P = cos

ϑ

2
I − i sin

ϑ

2
P , ϑ ∈ [0, 2π) . (5.25)

These transformations also commute with H and act on the boundary vectors as (5.17)

with M = N = e−i ϑ
2
σ1 , and are thus generalized symmetries. Their physical effect is

incorporated through the transformations of the U(2) parameters: ξ, αR and βI are kept
invariant, while a rotation is induced among βR and αI as

βR + iαI
Pϑ−→ eiϑ(βR + iαI) . (5.26)

This means that Pϑ furnishes a rotation among the spectrally identical point interaction
systems in the parameter space, and that systems that are invariant under Pϑ are those
with βR = αI = 0 , which, to no surprise, is the parity invariant subfamily ΩP . Now
the point is that, because of this U(1) group of generalized symmetries within the family
Ω = U(2), the spectral space is found to be the coset,

Σcircle = U(2)/U(1) = U(1) × [SU(2)/U(1)], (5.27)
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which is precisely the result (5.16).

Another important discrete transformation worth mentioning is the time reflection,

ψ
T−→ T ψ = ψ∗, (5.28)

which leaves H invariant. It transforms the boundary vectors as

Ψ
T−→ Ψ∗ , Ψ′ T−→ Ψ′∗ , Ψ(±) T−→ Ψ(∓)∗ , (5.29)

and, consequently, maps the characteristic matrix to its transposed, U
T−→ UT = UT ∈

SU(2). This shows that the time reflection T is a generalized symmetry, although it does
not belong to the class mentioned in (5.17), being actually antiunitary. In terms of the
parameters, we find

ξ
T−→ ξ , α

T−→ α , β
T−→ −β∗ , (5.30)

and hence the spectrum is preserved. Clearly, T is a duality and the time reversal invariant
subfamily ΩT consists of those U with U = UT , i.e., with βR = 0, and hence

ΩT ∼= S1 × S2 ⊂ Ω. (5.31)

We also mention that the two duality transformations, P and T , can be combined to give

the space-time reflection operator PT . On U it acts as U
PT−→ UPT = σ1U

T σ1 and hence

ξ
PT−→ ξ , α

PT−→ α∗ , β
PT−→ β . (5.32)

The subfamily ΩPT of PT -invariant U is determined by αI = 0 , and hence

ΩPT ∼= S1 × S2 ⊂ Ω. (5.33)

Clearly, from neither ΩP nor ΩPT one can define a one-parameter family of generalized
symmetries analogous to Pϑ.

5.3 Supersymmetry

We have encountered in Sect. 5.1 two cases in the Ω = U(2) family where all the positive
energy states are doubly degenerate. These cases are characterized by U = ±σ1 , and we
examine now if these can be interpreted as supersymmetric.

One might think that this is trivial, since the Hamiltonian is the same differential
operator as of the free system, and hence the supercharges,

Q1 :=
h̄

2i
√
m

d

dx
, Q2 := iPQ1, (5.34)

will clearly fulfill the algebraic relation of supersymmetry

{Qi, Qj} = HU δij , i, j = 1, 2 . (5.35)
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However, the point is that the algebra (5.35) should hold also in the sense of domains,
not just in the differential operator relation, and it is a nontrivial question if the domains
D(Qi) of the supercharges Qi for i = 1, 2 can be given so that they can meet this
demand.3 To see that this is indeed the case, we first note that, for the two cases in
question, U = εσ1 with ε = ±1 , the domains of the Hamiltonian read

D(Hεσ1) = {ψ ∈ H |ψ, ψ′ ∈ AC(0, l), ψ(l) = εψ(0), ψ′(l) = εψ′(0)}. (5.36)

Now, if we provide the domains D(Qi) as

D(Qi) = {ψ ∈ H |ψ ∈ AC(0, l), ψ(l) = εψ(0)} , (5.37)

we can readily confirm that Qi are self-adjoint on these domains. Moreover, by using the
formulae

D(A+B) = D(A) ∩ D(B), D(AB) = {ψ ∈ D(B) |Bψ ∈ D(A)}, (5.38)

for the domains of the sum and the product of any two linear operators A and B, we see
immediately that the domain of the lhs of (5.35) coincides with the domain (5.36). We
therefore conclude that the systems U = ±σ1 indeed possess an N = 2 supersymmetry.

Note that for U = σ1 the ground state is unique and hence the supersymmetry is
unbroken (or ‘good’), whereas for U = −σ1 the ground state is doubly degenerate and
supersymmetry is broken.4 Due to the topology of the circle, the possibility of supersym-
metry is limited compared to the line system where a richer variety of supersymmetric
systems have been found [51, 54], under a slightly generalized supercharges.

5.4 More subfamilies and the WKB exactness

We have seen in Sect. 5.2 that generalized symmetries can be used to define various
subfamilies, such as ΩT , ΩP , ΩPT as the set of the singularities for which the respective
generalized symmetry is actually a symmetry. There are, however, some other subfamilies
which are defined without using the generalized symmetries and admit salient properties
in the spectrum and the WKB exactness. In this section we discuss these properties in
some detail, providing a fuller account of our earlier result in [55] (from which we adopt
the notations for the subfamilies).

We begin our discussion with the separating subfamily, Ω1 ⊂ Ω = U(2), which is the
set of singular objects that prohibit the transmission of probability current. This condition
is fulfilled by diagonal Us, i.e., by those with β = 0 , and the connection conditions split
into two separate ones of half-line type, with length parameters L±. Obviously, the cutoff
of physical contact at x = 0 allows us to regard such a system effectively an interval (0, l),
in other words, a box or infinite potential well system. Among this subfamily Ω1 are four

3The question of domain in the supersymmetry algebra is a nontrivial mathematical problem and has
been answered only partially for simple systems such as lines/intervals [51, 52].

4Incidentally, we point out that here the Witten parity operator [53] is played by the parity P .
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special cases (L+, L−) = (0, 0), (∞,∞), (0,∞), (∞, 0), in which the theory is explicitly
solvable [55]. For example, the Feynman kernel is found to be

K(b, T ; a, 0) =

√
m

2πih̄T

∞∑

n=−∞
εn
(
e

i
h̄

m
2T

{(b−a)+2nl}2 ∓ e
i
h̄

m
2T

{(b+a)+2nl}2
)
, (5.39)

where the ‘−’-sign is for L− = 0 and the ‘+’-sign is for L− = ∞ , and ε is 1 for
(L+, L−) = (0, 0) and (∞,∞) , and is −1 for the two other cases. This propagator
is WKB-exact in the sense that it is a sum of free WKB amplitudes contributed by
all possible classical paths that lead from (a, 0) to (b, T ), including those that perform
bouncing motion, hitting the left wall n times and the right one n or n ± 1 times
(depending on the initial direction of the particle). Even the appearing ±1 factors allow
a WKB interpretation since one can observe that any −1 factor belongs to a bouncing on
a reflecting wall with L = 0 and the 1 ones to bouncing on a wall with L = ∞ , in view
of the fact that, based on some appropriate realizing potential sequences for a reflecting
wall, an L = 0 wall picks up a WKB factor −1 , while an L = ∞ wall has the WKB
factor 1 (Sect. 3.4)

The second subfamily we mention is the scale independent subfamily Ω2 consisting of
systems for which the coefficients A, B in the eigenfunctions [cf. (5.3)] are k-independent.
This happens for the characteristic matrices U with ξ = π

2
and αR = 0 [which form a

sphere S2 ⊂ Ω], and for U = ±I [two isolated points in Ω] (see Appendix D.2). These are
the cases where the boundary conditions do not mix the boundary values of ψ with values
of ψ′. More explicitly, in these cases L+ and L− are zero and hence the scale constant
L0 does not appear in the boundary conditions, leaving l as the only scale parameter.
One may therefore expect that, in the limit l → ∞, the system becomes a scale invariant
‘point interaction on a line’ system. Indeed, it has been known [10] that, on the line,
systems belonging to the subfamily Ω2 are those which are invariant under the dilatation
symmetry (Wλψ)(x) = λ

1
2ψ(λx) . As for Ω1, the systems belonging to Ω2 can be solved

[55],5 and the Feynman kernel can be obtained explicitly [55]. For a generic U ∈ Ω2, using
the notations

C± =
(1 + αI) + (βI − iβR)e±iθ

2
√

(1 + αI)(1 − β2
I )

, θ = arg(β) , (5.40)

one finds

K(b, T ; a, 0) =

√
m

2πih̄T

∞∑

n=−∞

{
Mne

i
h̄

m
2T

{(b−a)+nl}2 −Nne
i
h̄

m
2T

{(b+a)+nl}2
}
, (5.41)

with
Mn = |C+|2e−iθn + |C−|2eiθn, Nn = C∗

−C+e
−iθn + C∗

+C−e
iθn (5.42)

Unlike in the previous subfamily Ω1, however, the factors Mn, Nn do not admit a semi-
classical interpretation, as one can readily confirm by using (5.42) and (5.40) together

5The intersection of the subfamilies Ω1 and Ω2 consists of the two special cases U = ±σ3, which are
the box systems (L+, L−) = (0,∞), (∞, 0). Two other important special cases in Ω2 are U = ±σ1, which
have already been discussed in Sect. 5.3. Note that the energy eigenfunctions of U = σ1 provide just the
basis {cosnx, sinnx} that is used in the classic Fourier expansion.
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with |α|2 + |β|2 = 1 that, e.g., |Mn| < 1 for generic n. The situation is similar to the half
line systems with a wall that have a finite L, for which the bounce factors are not phase
factors [13]. Consequently, we can apply the result found there, that is, such bounce fac-
tors cannot be given a semiclassical realization. Hence, generically, the WKB exactness
is not perfect in the subfamily Ω2.

However, there is a subfamily within the family Ω2 where the WKB exactness holds
perfectly. It is the smooth subfamily Ω3, containing the cases in Ω2 with αI = 0 . Ω3 is
a one-parameter U(1) subfamily, parametrized solely by the θ of above. The boundary
conditions here read

ψ(0) = eiθψ(l) , ψ′(0) = eiθψ′(l) , (5.43)

which are nothing but the boundary conditions for the smooth circle [43], i.e., for the
circle with no singularity. As mentioned in sect.2, the phase parameter θ is regarded
as the flux of a magnetic field penetrating through the circle. In this subfamily, the
propagator (5.41) simplifies to the well-known kernel of the smooth circle

K(b, T ; a, 0) =

√
m

2πih̄T

∞∑

n=−∞
eiθne

i
h̄

m
2T

[(b−a)+nl]2 , (5.44)

which is readily seen to be WKB exact — the nth term belongs to a classical path on which
the particle takes n turns before reaching the point b, without acquiring any additional
action contribution each time when it crosses the point x = l ≡ 0 .

Another subfamily worth mentioning is the isospectral subfamily Ω4, comprising those
U with ξ = 0 and βI = 0 . These systems are peculiar in that they possess the same
positive energy spectrum, k = nπ/l (n = 1, 2, . . .) , independently of U , although the
possible zero or negative energy is U dependent. This subfamily admits a generalization
to the semi-isospectral subfamily Ω5, characterized by the condition sin ξ = ±βI , where
the positive spectrum consists of two infinite sequences, one that is equidistant and U -
independent and another one that is U -dependent and given by transcendental roots of
(5.8).
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Chapter 6

Quantum pressure induced by
distinct boundary conditions

Here, a case study is presented to demonstrate how remarkable differences can be caused
by having different contact conditions. We consider a box system with Dirichlet bound-
ary conditions at both ends, and place an infinitely thin still separating wall. The two
half boxes are populated by the same type and number of particles, kept at the same
temperature — the only difference is that on one side of the separating wall the boundary
condition is chosen to be Dirichlet and on the other side the Neumann one. Because of
the difference in the energy levels, the quantum statistical average pressure will be differ-
ent in the two containers and a net force acting on the separating wall will emerge. We
calculate this net force (as the function of temperature and particle number) both numer-
ically and via analytical approximations and find that this quantity illustrates nicely the
considerably different physical circumstances in the two subsystems.1

Approximately half of the results presented here have been published in [15], the other
half is later development. The paper [19] also presents an extract of the earlier findings.

6.1 The considered system

The arrangement we wish to consider is visualized and explained in Fig. 6.1. The particles
are considered identical and noninteracting, and thus to follow the Bose-Einstein or Fermi-
Dirac distribution, depending on the spin s of the particles. The number of particles on
both sides, is arbitrary, and is not necessarily macroscopically large. Our numerical results
will be presented for N = 100 particles in each spin degree of freedom, which is a realistic
population number in nanoscale quantum experiments [34].

The two half wells are two special — separating — cases of ‘circle’ systems, and admit

1We note that an investigation of quantum pressure acting on a Dirichlet boundary is presented in
[56]. The energy distribution (level occupation distribution) considered there is not a thermal one but is
concentrated on one energy level only.
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Figure 6.1: The two boxes of the same size l, with Dirichlet (D, ψ = 0) and Neumann (N,
ψ′ = 0) boundary conditions at the walls. Both sides are kept at the same temperature
T and contain particles of the same mass m, the same spin s, and the same number of
particles N in each spin degree of freedom. (The total number of particles on each side is
(2s+ 1)N .)

the energy levels En = enE , n = 1, 2, 3, . . ., with

e+n =
(
n− 1

2

)2

, e−n = n2, E =
h̄2

2m

(
π

l

)2

. (6.1)

The superscripts + and − refer to the positive and negative half wells, respectively.
Formulas in which these superscripts are omitted are valid on each side.

The equilibrium distribution of the particles, and the normalization condition for it
reads

Nn =
1

eα+ben − η
, N =

∑

n

Nn , (6.2)

where we have introduced b = 1/t = βE , the dimensionless version of the inverse temper-
ature β = 1/kT , which suits our problem conveniently, and

η = (−1)2s (6.3)

is 1 or −1 according to whether the particles are bosons or fermions, respectively. It
is this normalization condition which determines α for a given temperature and particle
number.

The force (or pressure — in one dimension, the two coincide) acting on the partition
from one side is given by

F = −(2s+ 1)
∑

n

Nn
∂En

∂l
= (2s+ 1)

2E
l

∑

n

Nnen , f =
∑

n

Nnen (6.4)
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with the similarly appropriately defined dimensionless equivalent f = 1
2s+1

l
2EF of the

force F . Our aim will be to determine

∆f = f− − f+ (6.5)

as a function of the temperature variable t. Since these sums cannot be summed up
exactly, and an analytical solution for α which has to be determined is also not available,
we are forced to apply approximations. The standard attitude, to approximate the sum
with an integral and perform the integration is unfortunately not satisfactory in the
present situation. Namely, the resulting Fermi-Dirac integral (for the fermionic case),
which is related to the Lerch transcendent, can be expressed via an asymptotic series.
This series is thus not summable but its truncations can be good approximations to the
original quantity in a given region for the temperature. Unfortunately, as we have checked,
these truncations do not provide enough preciseness for that the force difference, which,
like any difference, is rather sensitive to errors. Hence, we need to work out methods for
the present problem by ourselves. For bosons the situation is even worse.

1.0e2

1.0e3

1.0e4

1.0e5

1.0e6

1 1.0e3 1.0e5 1.0e7 1.0e9

Figure 6.2: The net force ∆f as the function of the temperature variable t, for bosons,
at N = 100 , obtained by a numerical computation (solid line). The high-temperature
approximation (6.12) is also displayed (dashed line). The figure is double logarithmic.
For fermions, the curve is qualitatively similar and its high-energy part coincides with
that of the bosonic case.
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6.2 High temperature regime

The high-temperature asymptotic behaviour can be calculated completely analogously for
bosons and fermions.

For increasing temperature, we expect N1 to decrease so [see (6.2) for n = 1] we
expect α to increase to higher positive values. Inspired by this, let us expand Nn in
q := e

−α as

Nn =
qe−ben

1 − ηqe−ben
= η−1

∞∑

k=1

(ηq)k
e
−kben , (6.6)

which is valid for any positive α. Thus

ηN = η
∞∑

n=1

Nn =
∞∑

k=1

(ηq)k
∞∑

n=1

e
−kben =

∞∑

k=1

(ηq)k

[
−σ

2
+

1

2

∞∑

n=−∞
e
−kben

]
, (6.7)

with the constants σ+ = 0 , σ− = 1 corresponding to the ± half wells, where we have
extended the meaning of the notation en [see (6.1)] to negative ns, too. Applying the
Poisson summation formula

∞∑

n=−∞
y(n) =

∞∑

m=−∞

∞∫

−∞
duy(u) e

2πimu , (6.8)

we obtain

ηN =
∞∑

k=1

(ηq)k

[
−σ

2
+

√
π

4kb

∞∑

m=−∞
(τ)m

e
−π2

kb
m2

]
(6.9)

with τ± = ∓1 . Similarly, for the force quantity f , one can find

f =
∞∑

n=1

Nnen = η−1
∞∑

k=1

(ηq)k

√
π

16k3b3

∞∑

m=−∞
(τ)m

(
1 − 2π2

kb
m2
)

e
−π2

kb
m2

. (6.10)

For the high-temperature asymptotic behaviour ( q → 0 ), it suffices to consider only
the first some terms in the sums over k [both in (6.9) and (6.10)], and within each term
to keep only the m = 0 term in the sums over m (the m 6= 0 terms being exponentially

suppressed). Now, the leading, k = 1 term in (6.9) gives that q = 2N
(

b
π

)1/2
+ O (b) .

Since this leading behaviour of q is independent of σ, inserting it into (6.10) gives that the
leading, O (b−1) term of f (coming from k = 1 , m = 0 ) is also σ-independent. Hence,
this term will drop out from the net force. Therefore, to have the first nonvanishing term
in the net force we need the first subleading term in q, too. Incorporating the k = 2 term
as well for q, we find2

q = 2N

(
b

π

)1/2

+ 2N
[
σ − η

√
2N

] b
π

+ O
(
b3/2

)
. (6.11)

2The result confirms the expectation that, for high temperatures, α tends to infinity — although
logarithmically slowly.
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Plugging this into (6.10) and then calculating the net force yields

∆f =
N

2

(
t

π

)1/2

+ O
(
t0
)
. (6.12)

We can see in Fig. 6.2 how the net force actually reaches this square-root asymptotic
behaviour at high temperatures.

By incorporating higher orders, the approximation can be improved easily. For exam-
ple, in the next order, one finds

∆f =
N

2

(
t

π

)1/2

− N

π

[
(
√

2 − 1)ηN − 1

2

]
+ O

(
t−1/2

)
. (6.13)

Nevertheless, being a high-temperature expansion, it may not be expected to be able to
explain the low and medium temperature part of the force curve.

6.3 Low temperature regime

Next, let us approach from the low-temperature direction. At exactly zero temperature,
all the particles sit on the lowest available level. For bosons this means the ground state,
from which we can immediately conclude

∆f(0) = f−(0) − f+(0) = Ne−1 −Ne+1 =
3

4
N (6.14)

which is apparently nonzero and is proportional to N . For fermions, the lowest N levels
will be occupied, and we find

∆f(0) =
N∑

n=1

e−n −
N∑

n=1

e+n =
N(N + 1)(2N + 1)

6
− N(4N2 − 1)

12
=
N(2N + 1)

4
, (6.15)

which (roughly) is proportional to N2, instead.

Since the subsequent energy levels have a bigger difference on the Dirichlet side than
on the Neumann side, at the same energy height, we can guess that, for a little bit
increased temperature, the particles start to occupy the first empty level more early on
the Neumann half. Consequently, the force difference will decrease a bit.

Indeed, in the two-level approximation for bosons, where the higher levels are treated
as still completely unoccupied, the force difference is found

∆f ≈ 3

4
N + (3 e−3/t − 2 e−2/t) , (6.16)

which accounts for decrease: see Fig. 6.3. We mention that, for α, the low temperature
behaviour is

α ≈ −be1 + ln
(
1 +

1

N

)
, (6.17)

which is a straightforward consequence of the approximation N1 ≈ N .
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Figure 6.3: The temperature dependence of the net force ∆f for bosons, N = 100 , in
the region t < 1 , obtained by a numerical computation (solid line), and in the two-level
approximation (6.16) (dashed line).

Unfortunately, this result, and even its improvement by incorporating an approximate
participation of a few higher levels as well, does not prove satisfying to describe the further
behaviour of the force curve. We will need different methods to discuss the medium
temperature domain.

For fermions, the analogue of the bosonic two-level approximation is when only the
occupation of the Nth andN+1th levels differ from the zero temperature value. Assuming
this, one easily finds

α ≈ − b

2
(eN + eN+1) (6.18)

and

∆f ≈ ∆f(0) + ∆

(
eN+1 − eN

e
b
2
(eN+1−eN ) + 1

)
. (6.19)

This is able to describe the decreasing to the similar extent as for bosons: it gives
correctly where and how the force curve starts to decrease but is unable — and, again,
unable even if a few higher levels are also taken into account — to explain the subsequent

5024.7

5024.8

5024.9

5025

0 40 80tbeg.

tend

Figure 6.4: The low-temperature behaviour of the net force for fermions, N = 100 .
Observe the steplike shape, characterized by the temperature values at the two points of
inflection.
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behaviour. Namely, there is a qualitative difference between the fermionic curve and
the bosonic one. The fermionic curve exhibits a ‘steplike’ pattern, but only one step
independently of N , during the initial decrease (Fig. 6.4). This step is already a rather
complex feature, an interplay of at least O (N) levels (effectively). Numerically, one finds
that this step occurs at a temperature proportional to N (Fig. 6.5).

0
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0.3

0.4

0.5

0.6

100 200 300 400 500

Figure 6.5: tbeg./N and tend/N , as the function of N , determined numerically. They
appear to tend to constants that are approximately .237 and .472, respectively. Within
error, the second number is just the double of the first one.

6.4 Medium temperature regime

The qualitative shape of the force curve agrees for bosons and fermions not only in the
start at a nonzero value and that the initial constant plateau is followed by decrease,
and not only in the (even quantitatively coinciding) high-temperature increase but also
in that there is only one minimum between the two limiting domains. It is this medium
temperature part where the job to calculate the force is the toughest. For bosons, the
place and value of the minimum is proportional to N when N � 1 and can be determined
as follows.

We start with that the trapezoid approximation of integrals, applied for a function g
behaving “peacefully” in [y1,∞) with lim

∞
g = 0 , gives

∞∑

n=1

g(yn) ≈
g(y1)

2
+

1

∆y

∫ ∞

y1

g(y)dy
(
∆y = yn+1 − yn =

√
b
)
. (6.20)

This approximation is better and better for smaller and smaller ∆y — and, in our case,
∆y =

√
b ∼ N−1/2 . Remarkably, the trapezoid approach provides an approximation one
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order better (in ∆y) than the simple rectangular one. If g is “peaceful” even in [0,∞) ,
which will always be the case in our applications, then, further,

≈ g(y1)

2
− y1

∆y
g(0) +

1

∆y

∫ ∞

0
g(y)dy ≈

(
1

2
− y1

∆y

)
g(0) +

1

∆y

∫ ∞

0
f(y)dy . (6.21)

Next, we argue that, at t ∼ 1 , α + be1 is � 1 and increases only slowly with t from
its t = 0 value:

α+ be1 =ln
(
1 +

1

N1

)
= ln


1 +

1

N −
∞∑

n=2
Nn


 = ln


1 +

1

N −
∞∑

n=2

1
eα+be1eb(en−e1)

−1




≈ ln
(
1 +

1

N

)
(zeroth iteration), (6.22)

≈ ln




1 +
1

N −
∞∑

n=2

1

(1+ 1
N )e

b(en−e1)
︸ ︷︷ ︸

>1 or �1

−1




(first iteration).

Therefore, it is reasonable to conjecture that, for some t � 1 , α + be1 is still � 1 .
(And then b� 1 , |α| � 1 . ) The high-t asymptotics also supports this idea since there α
increases only logarithmically with t. So, let us assume b � 1 , |α| � 1 in what follows.
The validity of this assumption will be confirmed later.

Let us now derive an expression for the net force, under the conditions b ∼ 1/N � 1 ;
|α−|, |α+| � 1 . For the force on one side, we can write

f =
∞∑

n=1

en

eα+ben − 1
, bf +Nα =

∞∑

n=1

α + ben

eα+ben − 1
=

∞∑

n=1

zn

ezn − 1
(6.23)

with zn = α + ben . Fortunately, we are actually interested in the difference of the two
forces, ∆f = f− − f+ , which, a sum of differences, will be possible to evaluate as an
integral of a derivative, in the leading order. This can be done as follows.

∆(bf +Nα) = b∆f +N∆α =
∞∑

n=1

∆
(

zn

ezn − 1

)
, (6.24)

and note that z
ez−1

and its derivative (by z) are both “peaceful” functions in z ∈ [0,∞) .
Furthermore,

∆zn = z−n − z+
n = ∆α + b∆(n− τ)2 = ∆(α + bτ 2) − 2b∆τ n (6.25)

where τ is the constant appearing in en = (n− τ)2 , i.e., τ− = 0 and τ+ = 1/2 . Thus,

up to n = O
(
t1/2

)
, ∆zn = O

(
t−1/2

)
= O

(
N−1/2

)
. Hence, for increasing N (and a

fixed such n), the approximation

∆
(

zn

ezn − 1

)
≈
(

d

dz

z

ez − 1

)

z=zn

· ∆zn (6.26)
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gets valid better and better. Here,
(

d
dz

z
ez−1

)

z=zn

can either be the Dirichlet or the

Neumann one, or, for increased preciseness, the average of the two. As it happens, the
relevant, leading, order is the same for the two sides so we don’t have to specify a choice,
actually. Note also that it is harmless to write the approximation (6.26) for higher ns as
well, since the higher n terms are exponentially suppressed.

To proceed, let us express ∆zn as

∆zn = [∆α + b(∆τ 2 − 2τ∆τ)] − 2∆τ
√
b yn (6.27)

(still a form valid on both sides). Then, putting everything together,

b∆f +N∆α ≈
∞∑

n=1

(
d

dz

z

ez − 1

)

z=zn

· ∆zn (6.28)

= [∆α + b(∆τ 2 − 2τ∆τ)︸ ︷︷ ︸
both terms O(N−1)

]
∞∑

n=1

(
d

dz

z

ez − 1

)

z=zn

− 2∆τ
√
b

∞∑

n=1

(
d

dz

z

ez − 1

)

z=zn

· yn (6.29)

≈ O
(
N−1

) [
O
(
b0
)

+
1√
b

∫ ∞

y1

(
d

dz

z

ez − 1

)

z=α+y2

dy

︸ ︷︷ ︸
O(b0) (see below)

]
(6.30)

−2∆τ
√
b
[
O
(
b0
)

+
1√
b

∫ ∞

y1

(
d

dz

z

ez − 1

)

z=α+y2

· y dy︸︷︷︸
1
2
dz

]
, (6.31)

where we utilized the trapezoid approximation. The integral in the third line here is
O (b0) since, by |α| � 1 and y1 ∼

√
b , it is near to

∫ ∞

0

(
d

dz

z

ez − 1

)

z=y2

dy (6.32)

(the integrand is a “peaceful” function!), which is a numerical constant.

The leading term among the 2 + 2 = 4 obtained terms in (6.30) is the last one, and
can be evaluated as

−2∆τ
√
b

1√
b

1

2

∫ ∞

z1

(
d

dz

z

ez − 1

)
dz = −∆τ

[
z

ez − 1

]∞

z=z1

(6.33)

= ∆τ
α + y2

1

e
α+y2

1 − 1
= ∆τ [ 1 + O (α + y2

1︸ ︷︷ ︸
both terms O(N−1)

) ] = −1

2
+ O

(
N−1

)
. (6.34)

Hence,

b∆f +N∆α ≈ −1

2
+ O

(
N−1/2

)
, (6.35)

from which
∆f

N
≈ −1

2

t

N
− ∆(tα) . (6.36)
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Now our task is to provide some approximation for ∆α under the assumptions b� 1 ,
|α| � 1 . We can do it the following way:

N =
∞∑

n=1

1

eα+ben − 1
≈

∞∑

n=1

1

α + ben
, (6.37)

the approximation being surely good at least for the lower — the most — relevant levels.
(Nn falls rapidly with n.) Let us write this in the rearranged form

N

t
≈

∞∑

n=1

1

tα + en

. (6.38)

The solution of this for tα will be a function of t
N

. From [57],

S(tα) :=
∞∑

n=1

1

tα + (n− τ)2
=

{
π
√

tα coth π
√

tα−1
2tα

(Dir; τ = 0 )
π tanh π

√
tα

2
√

tα
(Neu; τ = 1

2
)
. (6.39)

Both formulas are valid for negative α as well, and are a smooth function of tα at zero,
see Fig. 6.6.
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Figure 6.6: The functions S− (solid line) and S+ (dash-dotted line) as defined in (6.39).
They are smooth at zero and diverge at −e−1 resp. −e+1 , see (6.17) why. The dashed line
depicts the approximation (6.47) for S+ around 1.

It is a reasonable first choice to investigate the temperatures where either α− or α+

becomes zero. From (6.38) and (6.39), we have to solve

N

t
≈
{
S−(0) = π2/6 (if α− = 0)
S+(0) = π2/2 (if α+ = 0)

, (6.40)
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from which
t−0 ≈ (6/π2)N , (6.41)

t+0 ≈ (2/π2)N . These are really b ∼ 1/N � 1 cases.3 In addition, the relative error of
(6.37) tends to zero with N → ∞ : e.g., for a t with α = 0 , the error of (6.37) is

∞∑

n=1

1

ey2
n − 1

− 1

y2
n

with yn =
√
ben =

√
b (n− τ) . (6.42)

Thus

∞∑

n=1

(
1

ey2
n − 1

− 1

y2
n

)
≈O

(
b0
)

+
1√
b

∫ ∞

0

(
1

ey2 − 1
− 1

y2

)
dy (6.43)

= (N - and t-independent constant) − 1.29420
√
t .

[
1

ey2−1
− 1

y2 is “peaceful” in [0,∞) so we could apply the trapezoid approximation on it.
]

With t ∼ N , this
√
t error (this

√
N error) gets negligible with respect to N , the lhs in

(6.37).

Now let us choose a t in the vicinity of t−0 . There, |tα−| � 1 , and the equation we
wish to solve is

N

t
=
π
√
tα− coth π

√
tα− − 1

2tα− =
π2

6
− π4

90
tα− +

π6

945
(tα−)2 + O

(
(tα−)3

)
, (6.44)

inverting which we can obtain its solution as

tα− =
5

2

(
t

N
− 6

π2

)
+

5π2

28

(
t

N
− 6

π2

)2

+ O
((

t

N
− 6

π2

)3
)
. (6.45)

For tα− around 0, the equations we wish to solve can be combined as

S+(tα+) = N/t = S−(tα−) ≈ S−(0) , (6.46)

and from 6.6 we can read off that the tα+ corresponding to S+(tα+) ≈ S−(0) is roughly
1, where tanhπ

√
tα+ already almost saturates to its large-variable asymptotic value, 1.

Taking this asymptotical approximation

tanh π
√
tα+ ≈ 1 , (6.47)

tα+ is provided by the solution of N/t = π/(2
√
tα+ ) , which is

tα+ =
π2

4

(
t

N

)2

. (6.48)

Note that this solution satisfies t−0 α
+ = O (1) , α+ = O (1/N) � 1 , so here our

initial assumption b� 1 , |α| � 1 has been validated.

3In addition, one of the αs is zero. However, we don’t know yet whether the other |α| is also much
smaller than 1 or not. That will come later.
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Now let us insert the obtained solutions (6.45), (6.48) in (6.36) to see the net force in
the temperature region around t−0 . We obtain

∆f

N
≈ π2

14

(
t

N
− 6

π2

)2

+
6

π2
. (6.49)

We thus find that, in our approximation, the force difference possesses a parabolic min-
imum, at the temperature where, incidentally, α− = 0 (and α+ is some corresponding
positive, nonspecial value), with

tmin

N
≈ ∆fmin

N
≈ 6

π2
= 0.6079 . . . . (6.50)

In spite of the various approximations made, the result is fairly reliable, as can be seen
for N = 100 in Fig. 6.7, and from the true N -dependence of tmin and ∆fmin displayed in
Fig. 6.8. Actually, this result fits better for N ∼ 100 than in the limit N → ∞ : the
high-N limits of tmin/N and ∆fmin/N are predicted with a bit too big error.
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Figure 6.7: The minimum of the force curve, for bosons, with N = 100 . Solid line:
numerical computation; dash-dotted line: the approximation (6.49); dashed line: the
approximation (6.53).

For an approximation better than (6.47), we can apply

tanh x ≈ tanh x∗ + (x− x∗)

1 + tanhx∗ · (x− x∗)
, (6.51)

a formula precise up to the quadratic Taylor term at x∗, and behaving much better than
the quadratic Taylor polynomial approximation in a larger neighbourhood. From 6.6 we
can read off that, at the t/N where tα− is zero, tα+ is near 0.9 and π

√
tα+ is near 3.

Thus we choose the expansion point (x∗) simply to be 3. Denoting the corresponding t/N
as t∗/N (which is, naturally, close to t−0 /N) and assuming an expansion

tα+ − (tα+)∗ = c1

(
t

N
− t∗
N

)
+ c2

(
t

N
− t∗
N

)2

+ O
((

t

N
− t∗
N

)3
)
, (6.52)
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we obtain a quadratic approximation for tα+ that is better than (6.48). Correspondingly,
the approximation of the force difference improves to

0.51211 · (t/N − 0.54648)2 + 0.59672 . (6.53)

These tmin/N and ∆fmin/N values are really very close to the real ones, see Fig. 6.7.
Accidentally, for N ∼ 100 this latter parabola is less good than (6.49), as can be seen in
Fig. 6.7 but for increasing N it becomes more and more reliable.

At last, for an even better approximation of the N → ∞ limiting values of tmin

N
and

∆fmin

N
, we can solve

S−(tα−) =
N

t
= S+(tα+) (6.54)

numerically at many t/N -s in favour of tα− and tα+, and put those solutions into (6.36).
Choosing the temperature where the force difference (6.36) is minimal, we find

tmin

N
= 0.54805 ,

∆fmin

N
= 0.5967 . (6.55)

These values differ only very slightly from the ones in (6.53).
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Figure 6.8: tmin/N (dashed line) and ∆fmin/N (solid line), as the function of N , for
bosons. The constants (6.55) to which they tend are also displayed (dash-dotted lines).

We can see that the parabolic approximation is, naturally, not able to describe the
whole medium temperature domain. Expanding at other values and/or using approximate
formulas for the other parts of the functions S, a local description is available at the other
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Figure 6.9: tmin/N
2 (solid line) and ∆fmin/N

2 (dashed line), as the function of N , for
fermions. The constants to which they appear to tend are approximately 0.45 and 0.46,
respectively.

parts of the force curve. To derive a more universally valid approximate description of
the medium temperature region seems hard.

For the case of fermions, the minimum in the medium temperature region is qualita-
tively similar to the bosonic one but quantitatively not: both tmin and ∆fmin appear to be
proportional to N2 rather than to N (see Fig. 6.9). For fermions, an approximation like
(6.37) is not available, and the “mechanism” that creates the minimum seems be different.
Unfortunately, determining the location and value of the minimum for the fermionic case
is still an open problem.

6.5 Ideas to improve the results

During studying the medium temperature domain, we have introduced various technics
for treating the medium temperature domain. They can actually be listed as follows.

• One such method is an improvement of the trapezoid integral approximation, where
the sum is approximated by two intergrals based on the one order more precise
Simpson integral approximation.

• Another is the adaptation of partial intergration for sums.

• A third approach uses an idea similar to the one applied in (6.26), to express the dif-
ference of forces, and, more generally, the difference of two similar sums, expanding
in terms of the parameters in which they differ slightly.
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• A fourth possible way is to “factorize” the two-parameter sums4 into two one-
parameter ones, like done in (6.6), then approximating the inner one-parameter
sum with a simple enough function that admits the same asymptotics for small
and large values of the parameter and interpolates well in between, and finally to
somehow sum up the remaining outer sum.

• A fifth is to approximate arising functions with “less transcendental” and more
easily integrable and summable ones, like

z2
e
−kz

2(cosh z − 1)
=

[
1 − z2

12
+ O

(
z4
)]

e
−kz (k = 1, 2, . . .) , (6.56)

z

ez − 1
= e

− z
2

[
1 + O

(
z2
)]

=
(
1 + z/

√
12
)

e
−(1/2+1/

√
12)z

[
1 + O

(
z3
)]

(6.57)

=

[
1 +

z

2
+
z2

12
+ O

(
z3
)]

e
−z ,

z

1 − e−z
e
−kz =

(
5

6
+

2

3
z +

1

6
e
−z
)

e
−kz

[
1 + O

(
z3
)]

(k = 1, 2, . . .) , (6.58)

which are chosen to reproduce the first some Taylor terms around z = 0 as well as
to follow the approximated function faithfully enough for large values of z, too.

• A sixth is to differentiate the sums with respect to one of its parameters and to
derive, approximate and solve a differential equation in the parameter from a known
special case.

• A seventh is to expand an two-parameter sum around some special value of one
parameter, like α = 0 .

Naturally, these ideas can also be combined. Still, it is found hard to reach reasonable
analytic results. What is easier is to derive a good approximation of the force difference
that contains the αs explicitly, even globally from t = 0 to t → ∞ . It is harder to
reach such version that contains the αs in a simple enough form so that if we have an
approximation for the αs then the result is a not too complicated and reasonably usable
one. What is the hardest is to achieve an approximation for the αs to enough preciseness,
since a generally observed feature about the α-containing force approximations is that the
force difference is extremely sensitive to the error of α.

6.6 Some remarks concerning the numerical calcula-

tion of the net force

The numerical computation of the net force for a given N and t is, naturally, based on a
finite truncation of the infinite sums involved. The solution of (6.2) for α also happens

4the two parameters being α and b, or α̂ = α+ be1 and b — the advantage of the latter is that α̂ is
always non-negative, and e

−α̂ ≤ 1
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numerically. Since the force difference is very sensitive to the error in the αs, a great care
is to be taken of the errors of the truncations and of the determined αs. To this end,
estimates, and wherever it is available, upper estimates are needed for these errors. The
dependence of a sum on α can be estimated by the derivative of the sum with respect
to α, and then an upper estimate can be used for the derivative sum. A practical way
to work out a first estimate of the sum when summed up to a given index n1, to really
sum up to an appropriately chosen n1, and then to overestimate the omitted further part
of the sum using both another estimate formula and the numerically obtained sum, as
an additional information. For sum estimates, one can use different ones for low and for
high temperature. The useful technics include upper estimate by a geometric series and
considering the sum as a lower estimate of an integral. The floating-point precision of the
computations must also be chosen by hand, according to the error estimates. For higher
N and higher t, the precision may need to be increased. The calculations presented here,
and throughout the dissertation, have been performed using the mathematical computer
software Maple ( c©Maplesoft, Waterloo Maple Inc.).

6.7 Analysis of the results

We have found that the net force acting on the separating wall is nonzero at low temper-
atures, being practically constant for very small temperatures and starting to decrease
when temperature is increased. Knowing that the energy spectrum is different on the
two halves this property is not very surprising. What is surprising, however, is that this
decrease stops at a certain temperature and the net force starts to increase above this
value. Furthermore, a remarkable fact is that this increase does not stop nor converges
to some finite high-temperature limit but increases to infinity, as the square root of the
temperature. From the naive expectation that such quantum effects coming from the dif-
ferent boundary conditions should vanish at high temperatures where the classical picture
would be available, this result seems quite unusual. However, this may be understood
by the fact that, contrary to most quantum systems, one dimensional boxes have such
energy spectra that the level spacing is not decreasing but increasing for higher energy
levels (which is actually valid not only for boxes with Dirichlet and/or Neumann boundary
conditions but for all other boxes as well, as has been seen in Sect. 5.1). In other words,
quantum boxes can be distinguished by their high-temperature behaviour, too.

We mention that the calculation presented here could be repeated for boxes with
other boundary conditions, too. We note however that, for most box systems, the energy
values are determined by a transcendental equation [(5.8), (5.9) and (5.10)], and hence a
certain additional difficulty for carrying out calculations, especially analytical ones, will
arise there. Our intuition says that the Dirichlet and Neumann conditions represent two
very different, probably most different, cases so the effect can be reliably demonstrated
already via them. Nevertheless, some details may vary depending on which types of boxes
we choose, especially the low and medium temperature ones (since, asymptotically, the
energy levels follow an n2 pattern so the high-temperature part may be more universal).

It is not only this net force that can be determined from the calculations. One can
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also ask what an equilibrium position would be for the separating wall, with appropriate
unequal box sizes l(+) 6= l(−), l(+) + l(−) = 2l . Another similar question is when the
box sizes are kept fixed and equilibrium is achieved by choosing appropriate unequal
particle numbers on the two sides, N (+) 6= N (−), N (+) + N (−) = 2N . Calculations
not presented here show that, for bosons, these equilibrial values at zero temperature
are l(−)/l(+) ∼= 4.404 , N (+)/N (−) = 4 . This shows that for achieving equilibrium one
needs O (1) changes in the parameters, i.e., changes comparable to the initial values. For
fermions, these required changes prove to be less significant, O (1/N). In other words,
for fermions the amount of unbalancedness is smaller — at least at zero temperature. In
the future, we plan to repeat the same calculations in the medium and high temperature
regimes as well.

62



Chapter 7

The deuteron and proton-neutron
scattering

This chapter reports about a work that investigates the relevance of contact conditions
in the description of certain nuclear physical systems. We wish here to give account of
the proton-neutron scattering experimental results and of the deuteron. Since the nuclear
force that acts between the two particles is short-range, and is strongly repulsive if the
interparticle distance is within a given range, the idea is to assume that, seen from the
outside, the nuclear force can be modelled by some contact condition. Nuclear physics
says [58] that the S = 1 , L = J ± 1 channels1 are coupled (due to the spin dependence
of the nuclear force); and here we will be interested in the J = 1 case — the coupling
between the L = 0 and L = 2 channels —, the case the deuteron bound state belongs
to. The interaction is assumed to possess time reversal invariance.

The standard way to describe such nuclear interactions is to use some model potentials
with (usually numerous) free parameters that have to be fitted to the experimental data.
According to our experience gained in the previous chapters, such an approach may
introduce too many parameters compared to the few essential contact-type parameters
that are provided by boundary/connection conditions. In addition, some of the boundary
parameters may be hard to expressed via a potential realization. Therefore, here we test
the idea how the formalism of contact conditions can give account of the nuclear force.

7.1 Formulating the model

We will consider a channel L as an effective quantum subsystem on a positive half line
with Hamiltonian

HLψL =
h̄2

2m

(
−d2ψL

dr2
+
L(L+ 1)

r2
ψL

)
, ψL ∈ L2((ρ,∞), dr) (7.1)

with m being the reduced mass (see Appendix E). Here, ρ > 0 is introduced as the
range outside which the nuclear force is considered zero; [58] indicates that ρ ≥ 0.5 fm.

1angular momentum sectors of the relative motion of the two particles
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For L ≥ 1, r = 0 would be a limit-point singularity, and thus we would have no free
fitting parameter nor mixing. That’s why the original idea of the Fermi-potential leads
only to the one-parameter delta-potential. However, here we will impose our fitting at
the positive radius value r = ρ.

Note that connecting two half lines at a common positive value with connection con-
dition means the continuity of the probability current at ρ from one channel to the other,
not entering the excluded core region. Therefore, the physical essence of our present model
is that we don’t allow the probability to be nonzero in the core region while, via the U(2)
variety of connection conditions we allow probability flow from angular momentum one
channel to the other, in other words, we are able to incorporate spherically nonsymmetric
interactions as well. The known repulsion for very short distances supports this concept.
Nevertheless, our model means a simplification which may or may not prove to be realis-
tic. On the other side, if our idea works then it means that there is no need — and room
— for so many free parameters that are usually used in nuclear potentials for connection:
the language of connection conditions would provide an economically small family of the
necessary, and physically really distinct, parameters.

The experimental input we will use is the binding energy of the deuteron and the
large-distance asymptotic ratio of the deuteron wave function in the L = 2 channel
with respect to the L = 0 channel. This ratio, ηD, is a relatively easily measurable
quantity (see Appendix E) and its small nonzero value indicates the mixing of the two
angular momentum channels, in other words, the nonsphericalness (spin dependence)
of the proton-neutron interaction. The output of our calculation is the proton-neutron
scattering phase shifts, as a function of the few free parameters allowed by the family of
connection conditions. Then we can do fitting with our parameters and check whether
some appropriate values of them fall close enough the experimentally known phase shifts
or not. That will be the test of our model.

The configuration space for our effective system is two positive half lines (the radial
coordinate r ∈ [ρ,∞) running on them is positive and outward oriented), connected at
one point (at the effective endpoints r = ρ ). Topologically, this two-legged star graph
setting is the same as the line system in Chapter 4, a positive and a negative half line
connected at their endpoints, so we can utilize the formulation of the connection condition
from there. What we need to change in those formulas is that the negative half line has
to be reverted to a positive one (and the endpoint coordinates have to be shifted from 0
to ρ).

For the time reversal invariance of the nuclear force, we are interested in time reversal
invariant connection conditions, and because of the nonzero coupling of the two channels,
in the nonseparating ones. The latter will allow us to use the transit matrix (4.10).
Now, the characteristic matrix of a nonseparating and time reversal invariant pointlike
singularity at x = 0 on a line x ∈ (−∞,∞) is

U = e
iξ
(
αR + iαI βR + iβI

−βR + iβI αR − iαI

)
(7.2)

with β 6= 0 (nonseparating) and βR = 0 (time reversal invariant), and the corresponding
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transit matrix is

Λ =
−1

βI

(
sin ξ − αI −L0(cos ξ + αR)

L−1
0 (cos ξ − αR) sin ξ + αI

)
(7.3)

(see Sect. 4.1). This Λ has real2 entries and its determinant is found one; and any Λ with
these two properties is allowed (gives a nonseparating, time reversal invariant self-adjoint
Hamiltonian). In terms of Λ, the connection condition reads

Λ
(

ψ(−0)
dψ/dx(−0)

)
=
(

ψ(+0)
dψ/dx(+0)

)
. (7.4)

If we revert the negative half line ( x ∈ (−∞, 0) , x increasing inward) into positive
( y ∈ (0,∞) , y increasing outward) then

(
ψ

dψ/dx

)
=
(

ψ
−dψ/dy

)
= σ3

(
ψ

dψ/dy

)
, (7.5)

and correspondingly

Λσ3

(
ψ

dψ/dy

)

y↘0

=
(

ψ
dψ/dx

)

x↘0

. (7.6)

This connection condition is now easily adapted for our two channels:

Λσ3

(
ψ0

dψ0/dr

)

r↘ρ

=
(

ψ2

dψ2/dr

)

r↘ρ

, (7.7)

where Λσ3 =: Λ3 is any real3 matrix with determinant −1.

7.2 Solving the problem

Next, let us introduce notations for the negative and positive energy eigenfunctions of
the differential operators HL, which can be given in terms of the (spherical) Bessel (or
Hankel) functions, and can be expressed with exact and compact formulas. For negative
energies, a convenient choice for two linearly independent solutions is

ϕ
(∓)
L (r) = ∓

√
κ/2 r h

(∓)
L

(
κr

i

)
=

{ 1√
2κ

e
∓κr (L = 0)

1√
2κ

[
−
(
1 + 3

(κr)2

)
∓ 3

κr

]
e
∓κr (L = 2)

(7.8)

(for our needs only the negative bound state energy E = −ED and the corresponding

κ =
√

2mED/h̄
2 — see Appendix E for their actual values — will be interesting). In

parallel, for positive energies E = k2/(2m) a practical choice is

χ
(∓)
L (r) = iL+1krh

(∓)
L (kr) =

{ ∓e
∓ikr (L = 0)[

∓
(
1 − 3

(kr)2

)
+ 3i

kr

]
e
∓ikr (L = 2) .

(7.9)

2Real in the sense that the diagonal elements are real numbers while the offdiagonal ones are real but
dimensionful quantities, with length (resp. inverse length) dimension.

3Again, up to dimensions.
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We can observe that, for large r, the solutions in the two channels have identical asymp-
totic behaviour (in case of negative and positive energies both).

In addition to the known ED, we have another experimental input for our investigation,
which is the mixing ηD of the two channels in the deuteron bound state. A first and
naive approach to our problem could be that, for any possible value of the three free
parameters in our connection condition, we numerically check whether the bound state
arises with the required energy and mixing, and whether the scattering parameters are also
satisfactorily reproduced or not. However, the numerical scanning of a three dimensional
region is practically very tedious — as well as conceptually somewhat simple-minded.
In the following method we will be able to directly express how the two bound state
parameters restrict the three fitting parameters to one remaining free parameter. Thus
only a one-dimensional scanning will be needed.4

The normalizable bound state eigenfunction can be written as the following composite
two-row wave function: (

ψ0

ψ2

)
=

(
c0ϕ

(−)
0

c2ϕ
(−)
2

)
(7.10)

(i.e., containing only the decreasing solutions). We know that
∣∣∣ c2
c0

∣∣∣ = ηD . According to

our assumption, it has to satisfy the connection condition (7.7). Thus the connection
condition will determine the ratio of c1 and c2. If we introduce the auxiliary matrices

WL :=

(
ϕ

(−)
L (ρ) ϕ

(+)
L (ρ)

ϕ
(−)
L

′
(ρ) ϕ

(+)
L

′
(ρ)

)
(WL real, detWL = 1) (7.11)

(prime means derivative) then

WL

(
1
0

)
=

(
ϕ

(−)
L (ρ)

ϕ
(−)
L

′
(ρ)

)
, (7.12)

and using the connection condition we can write

c2

(
1
0

)
= c2W

−1
2

(
ϕ

(−)
2 (ρ)

ϕ
(−)
2

′
(ρ)

)
= W−1

2

(
ψ2(ρ)
ψ2

′(ρ)

)
= W−1

2 Λ3

(
ψ0(ρ)
ψ′

0(ρ)

)

= c0W
−1
2 Λ3

(
ϕ

(−)
0 (ρ)

ϕ
(−)
0

′
(ρ)

)
= c0W

−1
2 Λ3W0

(
1
0

)
. (7.13)

Hence, the matrix ΛW = W−1
2 Λ3W0 (which is also real matrix with determinant −1) has(

1
0

)
as an eigenvector with eigenvalue c2

c0
. Consequently, ΛW is of the form

(
a b
0 −1

a

)
(7.14)

where a, b are real, and c2
c0

= a = ±ηD , while b is unrestricted.

4If we are able to pick out a characteristic parameter in the scattering data as well then we may aspire
to determine from it the last remaining free parameter as well. For example, the energy where δ0 [see
(7.25), (7.26)] becomes zero seems to be a good candidate.
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Therefore, we learn that we can express the connection matrix Λ3 in the form

Λ3 = W2ΛWW
−1
0 = W2

(
a b
0 −1

a

)
W−1

0 , (7.15)

containing now only one free parameter (b), plus a free sign (the sign of a). This is the
form we will use subsequently, for the scattering state solutions.

According to the conventions for the S-matrix for two channels, the 0-incoming and
the 2-incoming solutions must asymptotically ( r → ∞ ) behave as

Φinc
0 (r) ≈

(−e
−ikr + S00e

ikr

S20e
ikr

)
, Φinc

2 (r) ≈
(

S02e
ikr

−e
−ikr + S22e

ikr

)
(7.16)

(the minus sign preceding the incoming term comes from the general multiplier (−1)L+1).5

Therefore, the two incoming solutions are the following linear combinations of χ
(∓)
L :

Φinc
0 =

(
−χ(−)

0 + S00χ
(+)
0

S20χ
(+)
2

)
, Φinc

2 ) =

(
S02χ

(+)
0

−χ(−)
2 + S22χ

(+)
2

)
. (7.17)

It is again beneficial to introduce “the positive energy version of the matrices WL”,

ΩL :=

(
χ

(−)
L (ρ) χ

(+)
L (ρ)

χ
(−)
L

′
(ρ) χ

(+)
L

′
(ρ)

)
. (7.18)

Then




(
Φinc

0

)

0
(ρ)

(
Φinc

0

)′
0
(ρ)



=Ω0

(
1
S00

)
,





(
Φinc

0

)

2
(ρ)

(
Φinc

0

)′
2
(ρ)



 = Ω2

(
0
S20

)
,




(
Φinc

2

)

0
(ρ)

(
Φinc

2

)′
0
(ρ)


=Ω0

(
0
S02

)
,




(
Φinc

2

)

2
(ρ)

(
Φinc

2

)′
2
(ρ)


 = Ω2

(
1
S22

)
, (7.19)

from which we derive
(

0
S20

)
=Ω−1

2 W2

(
a b
0 −1

a

)
W−1

0 Ω0

(
1
S00

)
,

(
1
S22

)
=Ω−1

2 W2

(
a b
0 −1

a

)
W−1

0 Ω0

(
0
S02

)
. (7.20)

With the notation

Ω−1
2 W2

(
a b
0 −1

a

)
W−1

0 Ω0 =: T =
(
T11 T12

T21 T22

)
(7.21)

(fulfilling detT = −1 ), the solution of this linear system of equations for the S-matrix
components is

S00 = −T11

T12

, S02 =
1

T12

, S20 =
1

T12

, S22 = −T22

T12

. (7.22)

5The order of the indices of S is according to the general convention Sfi.

67



Explicitly, we find

T11 =
i

4k3κ3ρ3

{[
b(k2 + κ2)e−2κρ − a(k − iκ)2

]
(f+ + g+) − (k + iκ)2

a
(f− + g−)

}
,

T12 =
i

4k3κ3ρ3
e
2ikρ

{[
b(k − iκ)2

e
−2κρ − a(k2 + κ2)

]
(f+ + g+) − (k2 + κ2)

a
(f− + g−)

}
,

T21 =
i

4k3κ3ρ3
e
−2ikρ

{[
−b(k + iκ)2

e
−2κρ + a(k2 + κ2)

]
(f+ − g+) +

(k2 + κ2)

a
(f− − g−)

}
,

T22 =
i

4k3κ3ρ3

{[
−b(k2 + κ2)e−2κρ + a(k + iκ)2

]
(f+ − g+) +

(k − iκ)2

a
(f− − g−)

}
, (7.23)

where

f± =ρ[3(k2 − κ2) + k2κ2ρ2] ± 3κ(−1 + k2ρ2) ,

g± =3ik(1 ± κρ)2 (7.24)

The last step is to write the S-matrix in terms of the “nuclear bar” phase shifts [58]
introduced by Stapp, which are the quantities depicted in [58] as experimental results:

S =
(
S00 S02

S20 S22

)
=
(

cos 2εe2iδ0 i sin 2εei(δ0+δ2)

i sin 2εei(δ0+δ2) cos 2εe2iδ2

)
(7.25)

(S02 = S20 is actually a consequence of time reversal invariance). From S, these phases
can be identified, e.g., as

δ0 = arg(S00/|S00|)/2 , δ2 = arg(S22/|S22|)/2 , ε = arcsin(S02/(ie
i(δ0+δ2)))/2 . (7.26)

Some ambiguities (uncertainties up to π) arise, which are allowed to be fixed to follow
the conventions how they are plotted in [58].

Thus we have obtained the predictions of the model for the scattering phase shifts, as
the function of the parameters ρ, b and the sign of a). For a comparison of the model
with the experimentally measured phase shifts, see Fig. 7.1. The parameters used for
the comparison are b = 0 , the + sign for a, and ρ = 0.56 fm , the last value chosen to
ensure that δ0 becomes zero at the experimentally known energy value. The agreement is
apparently quite good for this simple set of parameters, and may be improved further by
tuning the parameters.
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Figure 7.1: The proton-neutron scattering phase shifts for S = 1 , J = 1 in the coupled
channels L = 0 and L = 2 , as the function of the energy ELAB (in MeV): δ0 (solid
line), δ2 (dashed line) and ε (left: dotted line, right: circles). Left: experimental results
reproduced from [58]. Right: the present model, at a = +ηD , b = 0 and ρ = 0.56 fm .
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Chapter 8

Conclusion

Concerning the significance of the results presented in the thesis, let us first consider
the discussed systems in turn. The importance of the wall/half-line systems lies in that
they appear in many practically relevant models, such as the nontrivial radial part of
two and three dimensional delta-type singularities, or the reflecting boundaries of boxes.
In parallel, they also serve as a prototype for many features of quantum systems with
boundary conditions, including the quantum breaking of classical scale invariance, the
time delay and it classical (non)reproducability, and the aspects how they can be produced
as a sequence of regularizing potentials. The latter gains practical importance, e.g., when
one wishes to experimentally realize the various reflecting walls.

The point singularities on a line are models for any possible short-range interaction,
impurity, etc., in an (effectively) one dimensional configuration space. Many of the prop-
erties of one such pointlike singular object will appear repeatedly for a sequence of more
than one point singularities, leading to models of a crystal lattice, or, if distributed ran-
domly, of defects in a crystal lattice yielding electric resistance, for example. In addition,
the one singularity case has proved to be important in the suggestion of spacelike (‘aba-
cus’) qubit realization, which might become a real alternative compared to the recent
spin-based realizations. Two coupled angular momentum channels - like the ones in the
chapter about the proton-neutron system - also appear as application.

A pointlike object on a circle is again a prototype, and is the first necessary step
towards a circle with two or more singularities. On the theoretical side, the presented
supersymmetry results have motivated other authors to study supersymmetry on a circle
with more than one singularities. On the other side, it has opened the possibility to
provide an explanation of a recent experiment about how the magnetic flux influences
the energy levels in a nanoring. The two junctions where the electric current enters and
leaves the ring, respectively, may admit a good effective characterization as pointlike
singularities. That work is presently in progress by the author and his collaborators.

The investigation of the quantum pressure difference caused by distinct boundary
conditions has originally intended to provide an illustrative example of the physical con-
sequences of different boundary conditions. The found apparently nonzero (and even
diverging) net force really serves this aim. Although such a force on a separating wall
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may be experimentally hard to observe, we plan to repeat the treatment for a similar
setting, in which the chemical potential difference drives an electric current between two
boxes. That effect may well be verified experimentally with the recent nanotechnology
and measurement methods. In parallel, the work also required to invent a number of al-
ternative calculational techniques to treat quantum statistical systems when the standard
approximation recipes do not provide enough preciseness. Therefore, the methodology is
also expected to be of value for quantum statistical physics.

The application for the proton-neutron system is also originally an illustration, but as
well a test whether the idea can work quantitatively for nuclear force. Since this attempt
seems successful, the idea can be applied for other, theoretically less understood, cases as
well (like certain experimental results for hadrons with strangeness).

Considering the dissertation as a whole, the aim has always been to fill the gap between
two typical approaches existing on the field of boundary conditions. One typical class
of papers is where proper and high-quality mathematical methods are applied but the
analysis stops at solving the energy eigenvalue problem, not studying further physical
consequences. Such works do not penetrate into physics well enough both because of the
language and because they may not discuss questions which physicists are interested in.
On the other side, another class of papers aims at answering a physicist’s question, but
the approach may use improper mathematics, and be incomplete both in the considered
family of boundary conditions and in the derived conclusion. The author’s motivation
has been to appear in between: to be mathematically simple still complete, and to answer
questions raised by a physicist’s way of thinking.

The other aim has been to advertise boundary conditions for physicists, showing how
appropriate and relevant they can be in various quantum physical settings. Boundary con-
ditions are definitely a valuable aspect to be aware of whenever one works with quantum
systems.1

Throughout the chapters we could see many various faces and aspects of boundary
conditions. Although being local in their formulation, they can influence the systems con-
siderably. It may be said that effects and interactions in quantum physics can be modelled
in two ways, via a potential and in terms of some boundary condition. Quantum mechan-
ics can formulate physical effects in these two possible forms. Some phenomena may be
better described by a potential and others by some contact-type condition. Boundary
conditions provide a technically simple description which can be an advantage for a num-
ber of physical situations, while in others they may be too restrictive. Potentials and
contact conditions can also act together, expressing such richness that could remain un-
explored in a potential-only theoretical attitude. Therefore, boundary conditions should
be recognized as a relevant part of quantum mechanics.

The third message of this material is hopefully that, right because of their richness,
boundary conditions may apply various practical applications in physics. Tunable quan-
tum devices: qubits, quantum switches, filters and other objects may be designed and
manufactured making use of them. This aspect adds to the virtues and relevance of con-
tact conditions. If the present work and the related literature inspires experimentalists to

1To put it very simplified: life is much richer than only the Dirichlet boundary condition.
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carry out measurements and realize practical applications related to boundary conditions
then physics and technology may benefit from these studies.

At last, we have been happy to find that many properties historically observed related
to quantum field theoretical models appear in quantum physical systems with boundary
conditions. Therefore, renormalization, quantum breaking of a classical symmetry, du-
ality, Landau poles, plus other seminal quantum properties like supersymmetry and the
Berry-like anholonomy in energy, can be demonstrated on these technically simple sys-
tems, and by analytical tools. Quantum mechanical systems with boundary conditions
are thus also of much pedagogical and illustrative value.
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Appendix A

Mathematical background

This appendix contains the necessary mathematical definitions, theorems and notes, com-
piled from the references [20, 21, 22, 23, 59]. For further information, the Reader is asked
to consult these sources.

Throughout this appendix, we will treat operators (linear maps) mapping from a subset
of a separable Hilbert space H to H. For the purposes of quantum mechanics, we will
need to deal with unbounded symmetric operators, which cannot have the whole H as
their domain of definition (Hellinger-Toeplitz theorem). We will assume the domains to
be dense in H. D(A) will denote the domain of an operator A. A and B will always
denote densely defined operators. The scalar product on H is denoted by (·, ·) .

A.1 Self-adjointness

Definition B is an extension of A if D(A) ⊂ D(B) and B|D(A) = A . Notation:
A ⊂ B .

Note The definition includes the trivial case D(A) = D(B), A = B .

Definition The adjoint A+ of A is defined on the domain D(A+) which is the set of
functions χ ∈ H for which there is a χ̃ ∈ H such that

(Aψ, χ) = (ψ, χ̃) for all ψ ∈ D(A) ; (A.1)

and maps each such χ to the corresponding χ̃.

Note For χ, the corresponding χ̃ is uniquely determined, which is ensured by the dense-
ness of D(A).

Note The adjoint always exists, but its domain may not be dense. It is even possible
to have D(A+) = {0} .
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Theorem A ⊂ B implies B+ ⊂ A+ .

Definition A is symmetric if A ⊂ A+ . Equivalently, A is symmetric if and only if

(Aψ, χ) = (ψ,Aχ) for all ψ, χ ∈ D(A) . (A.2)

Definition A is self-adjoint if A = A+ , that is, if and only if A is symmetric and
D(A) = D(A+) .

Note We avoid to use the term Hermitian because different authors assign different
meaning to it (some use them for symmetric operators and others for self-adjoint ones).

Definition A is closed if the ordered pairs of ψ and Aψ form a closed subset in H×H
as ψ takes all values in D(A). An operator is closable if it admits a closed extension. The
smallest closed extension of a closable A is called its closure and is denoted by A.

Theorem A symmetric A is always closable, and, as such, satisfies A++ = A and
(A)+ = A+ .

Definition A symmetric A is called essentially self-adjoint if A is self-adjoint.

Definition For a nonreal λ, the deficiency subspaces Eλ and Eλ∗ are defined as the
eigensubspace ofA+ with respect to the eigenvalue λ and the complex conjugate eigenvalue
λ∗, respectively. The deficiency indices nλ , nλ∗ are defined as the dimension of Eλ, resp.
Eλ∗.

Definition A closed symmetric A is maximal symmetric if at least one of its deficiency
indices is zero.

Theorem A closed symmetric A is self-adjoint if and only if both deficiency indices are
zero.

Theorem A closed symmetric A admits self-adjoint extensions if and only if its defi-
ciency indices are equal. With an arbitrarily fixed nonreal λ, the self-adjoint extensions
of A are in a one-to-one correspondence with the unitary maps of Eλ to Eλ∗ . Each unitary
U : Eλ → Eλ∗ assigns a self-adjoint domain

D(AU) = {ψ0 + ψλ + Uψλ |ψ0 ∈ D(A), ψλ ∈ Eλ} . (A.3)

Note In an equivalent form, ψ ∈ D(A+) belongs to the self-adjoint domain D(AU) if
and only if

UPλψ = Pλ∗ψ , (A.4)

where Pλ and Pλ∗ are the projectors projecting into Eλ and Eλ∗ , respectively, in H.

Note Denoting the equal deficiency indices of such an A by n, the family of all possible
self-adjoint domains is an n2-parameter U(n) family.

Note This characterization of the self-adjoint extensions has been provided by Neumann.
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Definition An antilinear map C : H → H [that is, satisfying C(c1ψ1 + c2ψ2) = c∗1ψ1 +
c∗2ψ2 ] is a conjugation if it is norm-preserving and C2 = IH (the identity operator on H).

Note Complex conjugation on an L2 Hilbert space is an example for conjugation.

Theorem If a conjugation C maps the domain of a symmetric A into itself and com-
mutes with A then A has equal deficiency indices.

Definition For an operator A, a boundary value space is a triple (Hboundary,Γ1,Γ2) ,
where Hboundary is a Hilbert space with its scalar product denoted by 〈·, ·〉 and Γ1, Γ2

are linear mappings of D(A+) into Hboundary, if

1) for any ψ, χ ∈ D(A+) ,

(A+ψ, χ) − (ψ,A+χ) = 〈Γ1ψ,Γ2χ〉 − 〈Γ2ψ,Γ1χ〉 ; (A.5)

2) for any Ψ1,Ψ2 ∈ Hboundary there exists a ψ ∈ D(A+) such that Γ1ψ = Ψ1 ,
Γ2ψ = Ψ2 .

Note With the notations Γ(±) := Γ1 ± iΓ2 , the rhs of (A.5) reads

1

2i

[
〈Γ(+)ψ,Γ(+)χ〉 − 〈Γ(−)ψ,Γ(−)χ〉

]
, (A.6)

and condition 2) is equivalent to that, for any Ψ(+),Ψ(−) ∈ Hboundary , there exists a
ψ ∈ D(A+) such that Γ(+)ψ = Ψ(+) , Γ(−)ψ = Ψ(−) .

Theorem A closed symmetric A with equal deficiency indices n always admits a bound-
ary value space, with an n dimensional Hboundary .

Note Indeed, a boundary value space is provided by the choice Hboundary = Eλ , Γ(+) =
2
√

Imλ Pλ and Γ(−) = 2
√

Imλ Uλ,λ∗Pλ∗ , where Uλ,λ∗ is an arbitrary unitary mapping
of Eλ∗ to Eλ and, without loss of generality, we have assumed Imλ > 0 .

Note The name “boundary value space” of this abstract notion comes from that, in the
important special case of differential operators, it can be chosen to be constructed from
the boundary values (or the asymptotic boundary behaviours) of the square integrable
functions and its derivatives.

Theorem The self-adjoint extensions of a closed symmetric A with equal deficiency
indices are, for an arbitrarily fixed boundary value space (Hboundary,Γ1,Γ2) , in a one-
to-one correspondence with the unitary operators of Hboundary . The self-adjoint domain
D(AU) corresponding to such a unitary U is formed by those ψ ∈ D(A+) which satisfy

(U − I)Γ1ψ + i(U + I)Γ2ψ = 0 , (A.7)

where I is the identity operator of Hboundary .

Note An equivalent form of (A.7) is

U Γ(+)ψ = Γ(−)ψ . (A.8)
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Note This latter characterization of self-adjoint extensions, via a boundary value space,
is presented, e.g., in [59]. The unitary operator U in this description is in a one-to-one
correspondence with U appearing in the Neumann approach. The mentioned example
for boundary value space (Hboundary = Eλ , etc.) shows that Neumann’s approach can be
considered as a special case of the boundary value space characterization.

Note With appropriate modifications, the boundary value space approach is able to de-
scribe the maximal symmetric extensions of symmetric operators with unequal deficiency
indices, too.

A.2 Application for ordinary differential operators

(i.e., on a one dimensional configuration space)

In this section, the question of self-adjoint domains of a differential operator H of the
form

Hψ = −(pψ′)′ + qψ , (A.9)

acting on appropriate square integrable functions ψ ∈ L2(a, b) , is addressed. The one
dimensional interval (a, b) may be finite or infinite. The functions p and q are required
to be real, measurable in (a, b) , and 1/|p|, |q| to be locally1 Lebesgue-integrable. If a
is finite and 1/|p|, |q| are integrable on a subinterval (a, c) then the endpoint a is called
regular, and is singular otherwise. The other endpoint b is classified analogously.

In what follows, we will discuss the case of a regular a and a singular b. The other
possibilities, as well as configuration spaces formed by more than one interval, can be
treated by analogous means.

Definition A (real or complex) function f on a closed interval [α, β] is absolutely con-

tinuous if, for any positive ε, there is a positive δ so that

n∑

k=1

|f(yk) − f(xk)| < ε (A.10)

for every finite collection of disjoint intervals [xk, yk] satisfying

n∑

k=1

|yk − xk| < δ . (A.11)

Theorem If f is absolutely continuous on [α, β] then f is differentiable almost every-
where, f ′ ∈ L1[α, β] , and f is the indefinite integral of f ′. Conversely, if g ∈ L1[α, β]
then its indefinite integral G is absolutely continuous, and G′ = g almost everywhere.

Note It is this property why absolutely continuous functions will play a distinguished
role for the self-adjoint domains of ordinary differential operators. For partial differential

1i.e., on every finite closed subinterval
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operators, it is not some higher dimensional generalization of absolute continuity that
can be used as a general concept to derive the self-adjoint domains. It is an alternative
formulation, treating differentiation in the distributional sense and imposing some Sobolev
space-like properties that admits a natural higher dimensional generalization.

Notation Let Dmax denote the class of those functions ψ ∈ L2(a, b) such that ψ, pψ′

are locally absolutely continuous and −(pψ′)′ + qψ ∈ L2(a, b) , and let Hmax be the
operator acting on this domain as (A.9).

Notation Let Ω denote the antisymmetric sesquilinear form

Ω[ψ1, ψ2] = p(ψ∗
1ψ

′
2 − ψ∗

1
′ψ2) , ψ1, ψ2 ∈ Dmax . (A.12)

Theorem For any ψ1, ψ2 ∈ Dmax , Ω[ψ1, ψ2](x) has a finite limit when x approaches
either endpoint. In addition, when approaching the regular endpoint a, for any ψ ∈ Dmax

both ψ and pψ′ have a finite limit.

Notation Let Dmin denote the class of those functions ψ ∈ Dmax which, for any χ ∈
Dmax , satisfy

lim
x→a

Ω[ψ, χ](x) = lim
x→b

Ω[ψ, χ](x) = 0 , (A.13)

and let Hmin be the corresponding restriction of Hmax.

Note For all these ψs, limx→a ψ(x) = limx→a(pψ
′)(x) = 0 .

Note Dmin is dense in H, since it contains all functions with compact support.

Theorem Hmin is symmetric and has equal deficiency indices.

Note For the first statement in this theorem, note that integration by parts yields

(Hmaxψ1, ψ2) − (ψ1, Hmaxψ2) = Ω[ψ1, ψ2](b) − Ω[ψ1, ψ2](a) (A.14)

for any ψ1, ψ2 ∈ Dmax , and the analogous formula holds for Hmin within Dmin. For the
second statement, we can use the invariance of Hmin under complex conjugation as a
conjugation.

Theorem Hmin is closed, and H+
min = Hmax .

Note Neither that D(H+
min) is formed by such “smooth enough” functions as the ones

in Dmax nor that H+
min acts on them as the differential operator Hmax is trivial.

Theorem The deficiency index ofHmin is either 1 or 2. If it is 1 then limx→b Ω[ψ1, ψ2](x) =
0 for all ψ1, ψ2 ∈ Dmax . If it is 2 then any eigenfunction of (A.9) with any real eigenvalue
is locally square integrable near b [that is, in an interval (c, b) with some finite c].

Note The first interesting fact here is that the deficiency index cannot be 0. It means
that, approaching the singular endpoint, not all eigenfunctions of the eigenvalue problem
of H in (A.9) for a nonreal eigenvalue “blow up”, at least some behave square integrably.

78



The second is that if the deficiency index is 1 then the singular endpoint produces a
zero surface term in (A.14) so it does not generate multiple self-adjoint extensions for
Hmin. (The two endpoints really decouple in this respect, since it is only local square
integrability that plays a role in this question.)

Note In the case of deficiency index 1, the singular endpoint is called a limit-point
singularity, and in the other case, a limit-circle singularity. These names do not refer to
some geometric aspect of the configuration space but are of technical origin. They express
whether, in the complex plane, a disk — where a certain auxiliary quantity connected to
this classification is nonpositive — contracts to one point or into a disk of nonzero radius,
as x approaches the singular endpoint b.

Theorem Let χ(1), χ(2) ∈ Dmax be real functions, with ω := Ω[χ(1), χ(2)] tending to a
nonzero limit when approaching a limit-circle endpoint b. Then, for any ψ1, ψ2 ∈ Dmax ,
we have

Ω[ψ1, ψ2] =
1

ω

(
Ω[χ(1), ψ1]

∗ Ω[χ(2), ψ2] − Ω[χ(2), ψ1]
∗ Ω[χ(1), ψ2]

)
(A.15)

at any x where ω(x) 6= 0 , and in the limit x→ b .

Note An example for such χ(1), χ(2) is

χ(k) := ϕ(k) , k = 1, 2 , (A.16)

where ϕ(k) are two linearly independent eigenfunctions of (A.9) for an arbitrary real eigen-
value. In this case, ω is constant. The eigenfunctions ϕ(k) are locally square integrable
near the limit-circle endpoint b so they belong to Dmax.

Note If a is also singular then a possible choice is

χ(k) := ηϕ(k) , k = 1, 2 , (A.17)

where ϕ(k) are as before, and η is a smooth function that is nonzero only in an interval
(c1, b) with some finite c1 and is one in an interval (c2, b) with c1 < c2 < b . Then, ω is
constant in (c2, b). The function η here is applied only to ensure global square integrability,
and it can be ignored as long as we are interested in the limit x → b only.

Note The formula (A.15) makes it easy to set a boundary value space forHmin. Although
ψ and pψ′ may diverge around b for ψ ∈ Dmax , the limit numbers Ω[χ(k), ψ](b) are finite
and can be used to construct a boundary value space. Such limit numbers are naturally
finite when approaching a regular endpoint a as well, but for a regular endpoint the finite
limiting values of ψ and pψ′ are the simplest and most natural candidates to be used for
a boundary value space.

Note For a configuration space that consists of more than one interval, the generalization
of these results is simple. From the practical aspect, (A.14) will contain just more surface
terms, and those of these terms which are not identically zero (that is, those belonging to
a limit-circle or regular endpoint) have to be taken into account when constructing the
boundary value space.
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Note We can see the advantage of the boundary space value approach over the Neumann
one since, for the latter, generally we need to solve the eigenvalue problem for a nonreal
eigenvalue. On the contrary, in the former characterization, we need to know only two real
eigenfunctions to an arbitrary real eigenvalue (for example, 0), and, what’s more (what’s
less), typically we need to know them only approximately (the leading and subleading
asymptotic behaviour of them) so that the limiting values Ω[χ(k), ψ](b) can be determined.
(Actually, we need to know only one real eigenfunction because a linearly independent
second one can be determined from that their ω must be constant.)

Note The literature provides various criteria to decide whether a singular endpoint
is limit-point or limit-circle, without the need to investigate by hand the local square
integrability of any eigenfunctions. Many criteria are also available about the qualitative
properties of the spectra of the various possible self-adjoint extensions. The following
theorem is just one such result to quote.

Theorem All self-adjoint extensions of an operator with equal and finite deficiency
indices have the same continuous spectrum.

Note Partial differential operators, on more than one dimensional configuration spaces,
are harder to treat than ordinary differential operators (as usual. . . ). The separation of
the variables may help us to reduce the problem to one dimensional ones, and then we
can apply the one dimensional arsenal we have at hand.
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Appendix B

Weak classical realization of the time
delay for walls with negative L

Here, we outline how a weaker classical realization of the quantum time delay, namely, as
the x0 → ∞ limit of the classical time delay τcl, x0(E) , can be determined for the walls
L < 0. Let us assume that we have a strictly decreasing positive potential such that, for
a fixed finite x0 and all energies E above V (x0), τcl, x0(E) = τ(E) . We use the ‘Landau
trick’ again, dividing this equation by

√
W − E , integrating now between V (x0) and W ,

and evaluating the left hand side by changing the variable to V . From the result we can
express x(W ) to find

x(W ) =
x0

π
arccos

[
1 − 2V (x0)

W

]
− 2|L|/π√

1 + 2mL2

h̄2 W
arccos

√√√√ 1 + 2mL
2

h̄2 W

1 + 2mL2

h̄2 V (x0)

V (x0)

W
. (B.1)

Now we perform the limit x0 → ∞ , with a fixed W . The second term on the rhs of (B.1)
remains finite no matter how V (x0) changes correspondingly. Consequently, to have a

finite x(W ) in the limit, arccos
[
1 − 2V (x0)

W

]
has to tend to zero. This means V (x0) →

0 , and from cos ε ≈ 1 − ε2

2
(ε ≈ 0) we have the asymptotics arccos

[
1 − 2V (x0)

W

]
≈

2
√

V (x0)
W

so to reach a finite limit of (B.1) x0

√
V (x0) has to converge to a constant.

Introducing

c := lim
x0→∞

2
√

2m
πh̄

x0

√
V (x0) , (B.2)

which will be a free parameter in the realizing potential, the limit of (B.1) is

x(W ) = h̄√
2m

(
c/
√
W − 1

/√
h̄2

2mL2 +W
)
. (B.3)

One can check that the inverse of this x(W ) is really a strictly decreasing potential
tending to zero if c ≥ 1 , and that the time delay corresponding to it is

τcl, x0(E) = h̄


 c

√
1 − V (x0)

E
− 1

√
V (x0)E

+
1√

h̄2

2mL2 + V (x0)

(
1√
E
−
√
E − V (x0)
h̄2

2mL2 + E

)
, (B.4)
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whose x0 → ∞ limit is really the desired quantum time delay (3.40) (independently of
c). The potential itself is obtained by solving the biquadratic equation that follows from
(B.3), and reads, for example, for c = 1,

V (x) = 2h̄2

mL2

(
x
|L|

)− 2
3

[(
x
|L|

) 2
3 + η(x)−1 + 2

√
η(x) − η(x)4

]−2

(B.5)

with

η(x) = 1√
2



(√

1 + 1
27

(
x
|L|

)4
+ 1

) 1
3

−
(√

1 + 1
27

(
x
|L|

)4 − 1

) 1
3




1
2

. (B.6)
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Appendix C

Symmetries, dualities and other
generalized symmetries for the line
system

Here, the boundary transformations for the ‘point interaction on a line’ systems are in-
troduced and investigated, in a systematic sequence of gradual technical mathematical
steps.

C.1 On parity-type operators

Parity-type operator (on an arbitrary vector space V): a P : V → V linear map such that
P 2 = idV but P 6= ±idV .

In other words, an operator whose eigenvalues are +1 and −1.

V = V1⊕V2, where V1 and V2 are the eigenspaces corresponding to the eigenvalues +1 and
−1, respectively. Any x ∈ V can be decomposed uniquely as x = x1 +x2 = 1+P

2
x+ 1−P

2
x.

C.2 On U (2)-matrices

Notations: In the sequel D and X are always diagonal matrices, Y is offdiagonal (Y =(
0 Y12

Y21 0

)
), P is parity-type, Z is parity-type and offdiagonal, V and T are SU(2)-

matrices, U and W are U(2)-matrices, I is the identity matrix, σj are the Pauli matrices.
U , D and V will always be in the relationship U = V DV −1 with each other.
Further notations: Indices like j are j = 1, 2 or j = 1, 2, 3, always according to the sense.
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D =
(
d1 0
0 d2

)
, D̃ =

(
d2 0
0 d1

)
, X =

(
x1 0
0 x2

)
, W =

(
W11 W12

W21 W22

)
, Uvj =

djvj (for the eigenvalues and eigenvectors of U); σ = cjσj (cjcj = 1) .The parametriza-
tion

W = e
iη

(
γ δ

−δ∗ γ∗

)
= e

iη(γRI + iδIσ1 + iδRσ2 + iγIσ3)

of U(2)-matrices (with η ∈ [0, π), |γ|2 + |δ|2 = 1) will also be used.

Ds are of the form e
iξ
e
iρσ3 , where ξ ∈ [0, π), ρ ∈ [0, 2π).

Y s are of the form e
iτ (cosωσ1 + sinωσ2) , where τ ∈ [0, π), ω ∈ [0, 2π) . Y ∈ SU(2) s

are the ones i(cosωσ1 + sinωσ2) . Parity-type Y s are the ones Z = cosωσ1 + sinωσ2 .

For conjugations WUW−1s, TUT−1s are enough, since detW drops out from WUW−1.

In the diagonalization U = V DV −1, D contains the eigenvalues of U , and V the corre-
sponding eigenvectors. The first column of the matrix V is v1, the other is v2.

If d1 6= d2 then WDW−1 is diagonal only if W is diagonal (in which case WDW−1 = D)
or if W is offdiagonal (in which case WDW−1 = D̃).
Proof: For example, by computing directly the product

(
W11 W12

W21 W22

)(
d1 0
0 d2

)
1

detW

(
W22 −W12

−W21 W11

)
.

Corollaries: If d1 6= d2 then:
1) The matrices commuting with U are the V XV −1 ones.
2) In the diagonalization U = V DV −1, V is uncertain exactly up to V ′ = V X, if D′ = D
is required. This corresponds to that v1 obtains a phase factor x1, and v2 obtains a phase
factor x2. If we allow D′ = D̃ as well, the further uncertainties are the V ′ = V Y ones. In
these cases the columns vj are interchanged as well.
3) The W = V Y V −1s are the ones with which WUW−1 = V D̃V −1, in other words, which
preserve V but flip D.

Only W = wI s commute with each U ∈ U(2). (See Corollary 1 above.)

WUW−1 and U have the same eigenvalues.

All Us that have the same pair of eigenvalues can be connected by conjugation, (∃W ) U ′ =
WUW−1 . As a special case, D and D̃ can be connected by the conjugations D̃ = Y DY −1.

The W s with diagonal W 2 are: the ones with γR = 0, in other words, the W = e
iηiσ

ones (in which case W 2 = const. I ), and the ones with δ = 0, in other words, the
W = e

iη(γRI + iγIσ3) ones.
Proof: For example, by computing the square of W directly, where W is written in the
form with η, γ, δ.
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As special cases, P s are the σs.

Another aspect: P s are the Tσ3T
−1s (since, in the diagonalization P = TXT−1, X must

be σ3, as X carries the eigenvalues of P ).

For example, a diagonalization of a Z is: T = 1√
2
[cos ω

2
I+ i sin ω

2
σ1 − i cos ω

2
σ2 − i sin ω

2
σ3].

The matrices anticommuting with σ3 are the Y s.
Proof: For example, by computing directly the product

(
W11 W12

W21 W22

)
σ3

1

detW

(
W22 −W12

−W21 W11

)
. (C.1)

Corollary: The matrices anticommuting with a V σ3V
−1 are the V Y V −1 ones.

C.3 Boundary transformations and their properties

In the sequel, ψ ∈ H and W ∈ U(2), however, the definition and most of the results below
will be valid for arbitrary functions ψ : IR \ {0} → C and matrices W (with detW 6= 0).

(FWψ)(x) :=
{
W11ψ(x) +W12ψ(−x) x > 0
W21ψ(−x) +W22ψ(x) x < 0

(C.2)

=W11ψ+(x) +W12ψ−(−x) +W21ψ+(−x) +W22ψ−(x) ,

where we have used the decomposition

ψ = ψ+ + ψ− , ψ+(x) = Θ(x)ψ(x) , ψ−(x) = Θ(−x)ψ(x) . (C.3)

The Pjs of the paper [12] are the cases W = σj .

Fλ1W1+λ2W2 = λ1FW1 + λ2FW2 (∀λ1, λ2 ∈ C) .

FW1W2 = FW1FW2 , FW−1 = F−1
W , FW+ = F+

W .

FW is unitary iff W is unitary.

Proposition: A w is an eigenvalue of FW iff it is an eigenvalue of W . Further, if w is a

nondegenerate eigenvalue of W then the corresponding eigenvector, t =
(

(t)1

(t)2

)
, deter-

mines the form of the eigenfunctions of FW belonging to the eigenvalue w, in the following
way: The eigenfunctions are the ψ(x) = (t)1ψ0(x) + (t)2ψ0(−x) ones where ψ0 ∈ H is
such an arbitrary function that is zero on the negative half line of IR.
Proof: FWψ = wψ means the conditions

(∀x > 0) W11ψ+(x) +W12ψ−(−x) = ψ+(x) , (C.4)
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(∀x < 0) W21ψ+(−x) +W22ψ−(x) = ψ−(x) . (C.5)

In compact form,

(∀y > 0)
(
W11 W12

W21 W22

)(
ψ+(y)
ψ−(−y)

)
= w

(
ψ+(y)
ψ−(−y)

)
. (C.6)

There must exist such a y0 for which
(
ψ+(y0)
ψ−(−y0)

)
6=
(

0
0

)
(since an eigenfunction ψ can-

not be the identically zero function) so we can see that w must be an eigenvalue of W

and that
(
ψ+(y0)
ψ−(−y0)

)
must be a corresponding eigenvector of W .

If w is a nondegenerate eigenvalue of W then, denoting a corresponding normed eigenvec-

tor by t,
(
ψ+(y0)
ψ−(−y0)

)
= const. t. For different y0s this factor can be different: let us there-

fore denote it by ψ0(y0). Let us extend the function ψ0 for the ys where
(
ψ+(y)
ψ−(−y)

)
=
(

0
0

)

as well, in the way ψ0(y) := 0, ψ0 becomes defined on the whole positive line. Let us ex-
tend it further, to the negative half line as well, in the way ψ0 := 0. Then we can write that
ψ(x) = (t)1ψ0(x) + (t)2ψ0(−x) (∀x) . Since ψ is normalizable, ψ0 is also normalizable.
Remark: From ψ, ψ0 can be determined as ψ0(x) = Θ(x)[(t)∗1ψ(x) + (t)∗2ψ(−x)] .

If W has two nondegenerate eigenvalues then the eigenfunctions of FW correspond-
ing to the eigenvalue w1 (i.e., the elements of the eigensubspace H1) are of the form
ψ1(x) = (t1)1(ψ1)0(x)+(t1)2(ψ1)0(−x), and the eigenfunctions belonging to w2 are ψ2(x) =
(t2)1(ψ2)0(x) + (t2)2(ψ2)0(−x), where tj (j = 1, 2) are normed eigenvectors of W corre-
sponding to wj, in other words, the two columns of the matrix T in the diagonalization

W = T
(
w1 0
0 w2

)
T−1 , T = ( t1 t2 ) =

(
(t1)1 (t2)1

(t1)2 (t2)2

)
. H1 and H2 are orthogonal to

each other (since FW is unitary).

Proposition: The decomposition H = H1⊕H2 is, in concrete terms, ψ = ψ1+ψ2 (ψj ∈ Hj),
where the (ψj)0s belonging to the ψjs are

(
(ψ1)0(x)
(ψ2)0(x)

)
= Θ(x) T−1

(
ψ(x)
ψ(−x)

)
.

Proof: Let us observe that the decomposition ψ = ψ1 + ψ2 is equivalent to the equation

(∀y > 0)
(
ψ+(y)
ψ−(−y)

)
=
(

(t1)1(ψ1)0(y) + (t2)1(ψ2)0(y)
(t1)2(ψ1)0(y) + (t2)2(ψ2)0(y)

)
= T

(
(ψ1)0(y)
(ψ2)0(y)

)
. (C.7)

Multiplying this equation by T−1 we reach the stated result.

If the eigenvalues of W coincide then W = wI, and therefore FW = w idH. In this case
any function is the eigenfunction of FW . (No H1 and H2 in this case.)

The parity-type FW s are the ones FTσ3T−1 , in other words, the Fσs.

All FV XV −1s commute with each other. Further, their eigensubspaces H1, H2 are the
same (since the V determining them is the same). Among the FV XV −1s, the ones with
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X = ±σ3 take the eigenvalue 1 on one of H1 and H2, and take the eigenvalue −1 on the
other.

The generalized symmetries (see the definition below in section 4) mapping H1 (of a fixed
V ) to H2 and mapping H2 to H1 are the ones that flip the eigenvalue of an arbitrary
ψ ∈ Hj taken under the operator FV σ3V −1 from 1 to −1 and vice versa.

In other words, the ones that anticommute with FV σ3V −1 .

In other words, the FW s mapping H1 to H2 and vice versa are the ones with W = V Y V −1.

C.4 Definition of some important maps within the

family Ω

Notation: X is always a unitary or antiunitary H → H operator.

X is a generalized symmetry of U if there exists such a UX ∈ U(2) that XHUX−1 = HUX
.

Remark: Here UX is necessarily unique, since the different self-adjoint extensions of H
are indexed by the Us in a one-to-one way.

X is a generalized symmetry of Ω if it is a generalized symmetry of all U ∈ U(2).

X is a symmetry of U if UX = U .

X is a symmetry of Ω if it is a symmetry of all U ∈ U(2).

X is a trivial generalized symmetry of U if it is a symmetry of it; nontrivial if not.

X is a trivial generalized symmetry of Ω if it is a symmetry of it; nontrivial if not, i.e., if
there exists such a U that UX 6= U .

X is a trivial symmetry of U , as well as of Ω, if X = const. idH.

X is a duality transformation of U if it is such a nontrivial generalized symmetry of it
that (UX )X = U .

X is a duality transformation of Ω if it is such a nontrivial symmetry of it that (UX )X = U
(∀U ∈ U(2)). In other words, if (UX )X = U for all U but ∃U that UX 6= U .
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C.5 The role of boundary transformations in the fam-

ily Ω

If ψ satisfies the boundary condition corresponding to U then FWψ satisfies the boundary
condition corresponding to UFW

= WUW−1. Some possible names for FW s: boundary
transformations, boundary condition transformations, boundary conjugations.

Remark: If we are interested only in UFW
= WUW−1 but not FW directly, it is enough

to use W ∈ SU(2)s only.

FWHUF−1
W remains a differential operator.

Putting the two things together, FW s are generalized symmetries, with UFW
= WUW−1.

FW is a nontrivial generalized symmetry of Ω if W 6= wI, while it is a trivial symmetry
of it if W = wI.

If the eigenvalues of U coincide then all FW s are symmetries of U .

If the eigenvalues of U differ then the FW -type symmetries of U are the ones with W =
V XV −1. These symmetries actually depend on V only but not on D. Among these
symmetries the parity-type ones are those with X = ±σ3.

If the eigenvalues of U coincide then U has no FW -type duality transformations, all the
FW -type duality transformations of Ω leave such an U invariant. These Us are called the
self-dual Us.

If the eigenvalues of U differ then the FW -type duality transformations of U are the ones
with W = V e

iηiσV −1, where σ 6= ±σ3. These also do not depend on D but on V only.
The square of any duality transformation of this kind is of the form const. idH .
Proof: Introducing W ′ := V −1WV , the requirement is that (W ′)2 has to commute with
D, therefore, that it has to be diagonal. However, W ′ itself must not commute with D,
therefore, W ′ must not be diagonal.

The FW s anticommuting with FV σ3V −1 are the ones with W = V Y V −1.

Remark: These are just the FW s that flip D (to D̃) but preserve V (in other words, the
ones doing V DV −1 7→ V D̃V −1).

The FW -type duality transformations of U anticommuting with FV σ3V −1 (the so-called
strict duality transformations) are the ones with W = V ZV −1.

U = V DV −1 and U ′ = V ′D′(V ′)−1 can be connected by an FW (i.e., (∃W ) U ′ = UFW
), if

D′ = D or D′ = D̃ (e.g., with W = V ′V −1, respectively with W = V ′V −1Y ), and cannot
be connected by an FW otherwise.
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C.6 Application for the spectral properties of HUs

If U and U ′ have the same pair of eigenvalues then HU and HU ′ have the same spectrum,
since they can be connected by a generalized symmetry (by an FW -type one).

The spectrum of HUs belonging to the same Ω(D) are the same.

Us having different pairs of eigenvalues cannot be connected by FW s.

In general, different Ω(D)s correspond to different elements of Σ.

Conjecture: Not always. For example, systems with negative L+ and L− are expected
to be connected to the free system by an appropriate generalized symmetry. Also, e.g.,

systems with the same positive L+ but different negative L− are expected to be connected,
too.

However, those appropriate generalized symmetries will not be FW -type.

If the eigenvalues of U differ then a nondegenerate eigenfunction of HU is either in H1 or
H2, where the Hjs are the ones belonging to V .

Conjecture: In case of degenerate eigenfunctions, one of them can be chosen to be in H1

and the other in H2.

If the eigenvalues of U differ then the FW -type duality transformations that map H1 (of
V ) to H2 and vice versa are the ones with W = V ZV −1. (The strict ones.)

The duality transformation found earlier (e.g., in [10], in the parity invariant subfamily)

is the special case V = i√
2
(σ1 +σ3), Z = σ1. (In which case v1 = 1√

2

(
1
1

)
, v2 = 1√

2

(
1
−1

)
,

ω = 0.)

If the eigenvalues of U coincide then U has noncommuting FW -type symmetries (belonging
to noncommuting W s), even such ones as well that [FW1,FW2] is an injective map, i.e.,

it maps any nonzero ψ to a nonzero ψ′. Example: the Wj = σjs. Thus in this case the
eigenvalues of HU are degenerate: even if an eigenfunction ψ of HU is an eigenfunction of
FW1, it cannot be an eigenfunction of a FW2 noncommuting with FW1. Therefore, either
FW1 or FW2 will map ψ to a ψ′ that is linearly independent of ψ. However, ψ′ is also in the
same eigensubspace of HU as ψ is in, hence this subspace is more than one dimensional.
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Appendix D

Point interaction on a circle: spectra
and the scale independent subfamily

D.1 The family of distinct spectra

To prove that a spectrum uniquely determines ξ, αR and βI, first we study the dependence
of the spectrum on these parameters. When doing this, it is useful to recall that ξ ∈ [0, π) ,
and α2

R + β2
I ≤ 1 .

To start with, if ξ = βI = 0 (let us call this case ‘case I’) then the positive energies
satisfy

[(1 − αR) + (1 + αR)(kL0)
2] sin kl = 0 . (D.1)

Since |αR| ≤ 1 , 1 − αR and 1 + αR are non-negative, and only one of them can be
zero, therefore [(1−αR)+ (1+αR)(kL0)

2] is always positive. Consequently, the positive
energies fulfil sin kl = 0 , with the solutions kn = π

l
n , n = 1, 2, . . .

If at least one of ξ and βI is nonzero then let us first consider the subcase αR = − cos ξ
(called ‘case II’). Here, sin ξ 6= 0 , since sin ξ = 0 ⇒ ξ = 0 ⇒ αR = −1 ⇒ βI = 0 , and
this case is now excluded. Thus we can write (5.8) in the form

βI

sin ξ
+ cos kl +

cot ξ

kL0
sin kl = 0 . (D.2)

On the left hand side, if k → ∞ then the third term tends to zero so βI

sin ξ
+cos kl → 0 ,

cos kl → − βI

sin ξ
. This means that the large roots k will get closer and closer to the values

of the form 1
l
(arccos −βI

sin ξ
+2πn) , respectively, 1

l
(− arccos −βI

sin ξ
+2πn) , in an alternating

sequence.

In the remaining case — i.e., when αR 6= − cos ξ and at least one of ξ and βI is nonzero
‘case III’) — (5.8) can be written as

a1

kl
+
a2

kl
cos kl +

[
a3

(kl)2
+ 1

]
sin kl = 0 , (D.3)
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with

a1 =
2βI

cos ξ + αR

l

L0
, a2 =

2 sin ξ

cos ξ + αR

l

L0
, a3 =

cos ξ − αR

cos ξ + αR

(
l

L0

)2

. (D.4)

If k → ∞ then the terms proportional to a1, a2 and a3 tend to zero so sin kl → 0 . Now
the large roots k are getting closer and closer to the values of the form π

l
n , n = 1, 2, . . . .

Now we will determine more details about the asymptotic behaviour of the roots k. For
this reason, we make the following Ansatz:

knl = πn+ εn , where εn =
c1
n

+
c2
n2 +

c3
n3 + · · · . (D.5)

The coefficients ci can be determined iteratively from (D.3). For our purposes the first
three coefficients will be the interesting ones. To be up to this order, it is enough to use
the formulae

cos knl = cos(πn) cos εn = (−1)n[1 − 1

2
ε2

n] + O
(
ε4

n

)
, (D.6)

sin knl = cos(πn) sin εn = (−1)n[εn − 1

6
ε3

n] + O
(
ε5

n

)
, (D.7)

(knl)
2 = π2n2 + 2πc1 + O

(
1

n

)
, (D.8)

ε2
n =

c21
n2 + O

(
1

n3

)
ε3

n =
c31
n3 + O

(
1

n4

)
. (D.9)

Inserting these into the condition (D.3) multiplied, for convenience, by (kl)2 , and group-
ing the terms as decreasing powers of n, the vanishing of the coefficients of n1, n0 and
n−1 lead to

c1 = − 1

π
[(−1)na1 + a2] , c2 = 0 , c3 =

−c1
π2 a3 +

c21
6π

(c1 + 3a2 − 6) , (D.10)

respectively. We can see that there is a sequence c
(+)
1 , c

(+)
2 , c

(+)
3 , . . . for even ns, and

another sequence c
(−)
1 , c

(−)
2 , c

(−)
3 , . . . for odd ns. Note that at least one of a1 and a2 is

nonzero, because ξ = βI = 0 is now excluded. Therefore, at least one of c
(+)
1 and c

(−)
1 is

nonzero. Thus in case III the roots do not exactly fulfil sin kl = 0 , they are only getting
closer and closer to it, sin kl only tends to zero.

In the possession of this collected knowledge, we can turn to the inverse problem we wish
to solve, i.e., to identify the parameters ξ, αR and βI from a given spectrum.

If all the positive energies satisfy sin kl = 0 exactly then we can know that we are in
case I. This determines ξ and βI (namely, ξ = βI = 0 ) but αR is yet unknown. Let us see
whether the possible zero and negative energies determine αR. The condition for a zero
energy state (5.10) reads in this case simply αR = 1 . Therefore, if the spectrum contains
a zero energy state then αR = 1 . If not, then let us see the possibility for negative
energies: (5.9) is now

[(1 − αR) − (1 + αR)(κL0)
2] sinh κl = 0 , (D.11)
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which gives that there exists one negative energy state with

κ =
1

L0

√
1 − αR

1 + αR
(D.12)

if αR 6= −1 and no negative energy state if αR = −1 . Consequently, from the absence
of negative energy states we learn αR = −1 , and from one negative energy state with κ
we can identify αR as

αR =
1 − (κL0)

2

1 + (κL0)2
. (D.13)

If we see that cos kl tends to a definite value as k increases then we know that we face at
case II [since in case I cos kl oscillates between 1 and −1, and in case III cos(kn=2jl) → 1
and cos(kn=2j+1l) → −1 ]. From lim(cos kl) we obtain βI/ sin ξ , and then, from (D.2),
using any root k from the known spectrum for which sin kl 6= 0 , we determine cot ξ ,
which uniquely tells ξ.

In the end, if we find that the positive spectrum is such that the values of sin kl tend to
zero but are not exactly zero then we know we are in case III. For large enough ks we
can determine which integer n belongs to a k (by rounding kl/π to the nearest integer).

Then, we can identify the coefficients c
(+)
1 and c

(+)
3 as

c
(+)
1 = lim

n→∞,
n even

n(knl − πn) , c
(+)
3 = lim

n→∞,
n even

n3

[
knl − πn− c

(+)
1

n

]
, (D.14)

and c
(−)
1 and c

(−)
3 in a similar way. From c

(+)
1 and c

(−)
1 we can obtain a1 and a2 [cf.

(D.10)] as

a1 = −π

2

[
c
(+)
1 − c

(−)
1

]
, a2 = −π

2

[
c
(+)
1 + c

(−)
1

]
, (D.15)

and then, corresponding to that which of c
(+)
1 and c

(−)
1 is nonzero — we know that at

least one of them is nonzero —, a3 can be determined from c
(+)
3 or c

(−)
3 , respectively

[cf. (D.10)].

From a1 , a2 and a3 the parameters ξ , αR and βI are calculated as follows [all steps
will be based on (D.4)]. If a3 = −(l/L0)

2 then cos ξ = 0 ⇒ ξ = π/2 , and
αR = 2/[(L0/l)a2] and βI = a1/a2 . If a3 6= −(l/L0)

2 then, observing that

(L0/l) a2

1 + (L0/l)2a3
= tan ξ, (D.16)

ξ is determined uniquely. Then, we have

αR =
1 − (L0/l)

2a3

1 + (L0/l)2a3
cos ξ , βI =

a1

a2
sin ξ . (D.17)

We can summarize the above considerations with that the spectrum of a circle system
uniquely determines its parameters ξ, αR and βI.
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D.2 The scale independent boundary conditions

On dimensional grounds, the coefficients A, B in the eigenfunctions (5.3) will be k-
independent if L0 actually drops out from the boundary conditions expressed by (5.1).
This happens if both lines of the matrix equation (5.1) — or, two appropriate linear
combinations of them — contain only one of the two boundary value vectors Ψ, Ψ′.

First, suppose that neither of the rows of the matrices U − I and U + I are identically
zero. Then an appropriate linear combination of the two lines of (5.1) is needed to drop
Ψ out from, say, the first line. In this case, any other linear combination will leave some
Ψ in the second line so the goal of another linear combination will be to drop Ψ′ out from
the second line. This is possible only if both matrices U − I and U + I are such that
their first row is a multiple of their second row. Then we have

det(U − I) = det(U + I) = 0 , (D.18)

which tells that the two eigenvalues of U are ±1. Therefore, U = P+ − P− , where P+ is
the projector projecting onto the eigensubspace of U corresponding to the eigenvalue 1,
and P− projecting onto the other eigensubspace. From this we see that U is self-adjoint,
and this property leads to the requirements ξ = π

2
, αR = 0 .

Second, if some of the rows of U − I and U + I are identically zero then first we observe
that this can happen to at most two of the four rows in question: Otherwise at least one of
the matrices U − I , U + I would be zero, but then the other one should be ±2I , which
has only nonzero rows. Now, if two rows of the four are zero then it is easy to see that one
of these rows must be an upper row and the other a lower row (the difference of U + I
and U − I is 2I, which makes the other cases impossible). This means four possibilities,

the matrices U =
(±1 0

0 ±1

)
, which give the two isolated scale independent systems

U = ±I (the two other cases, U = ±σ3 , are included in the Us with ξ = π
2

, αR = 0 ).
At last, if one of the four rows is zero — say, a row of U − I —, then one of the two lines
of (5.1) is already Ψ independent. The other line will then necessarily contain Ψ so, to
make it Ψ′ independent, a suitable multiple of the Ψ independent line has to be added to
it. This means that the two rows of U + I has to be each other’s multiple, consequently,
det(U + I) = 0 . However, U − I has a zero row so det(U − I) = 0 , too. Thus we arrive
again back to (D.18), and hence to ξ = π

2
, αR = 0 .
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Appendix E

Constants used in the treatment of
the proton-neutron system

We have found that fm = 10−15 m and MeV are convenient units for length, respectively
energy, quantities in this problem.

Masses:

mp =938.272 MeV/c2 (source: [60]),

mn =938.565 MeV/c2 (source: [61]), (E.1)

m=2mpmn/(mp +mn) = 938.918 MeV/c2 ; (E.2)

Fundamental constants:

c=299792458 m/s (source: [60]),

h̄=6.582119 × 10−22 MeVs (source: [60]); (E.3)

Deuteron constants:

ED =2.2246 MeV (source: [62]),

κ=
√

2mED/h̄
2 = .327543 fm−1 ; (E.4)

ηD = lim
r→∞

∣∣∣∣∣
ψ2

ψ0

(r)

∣∣∣∣∣ = 0.0256 ± 0.0004 (source: [63]).

94



Bibliography

[1] S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, “Solvable Models in
Quantum Mechanics”, Springer, New York, 1988.

[2] C. Manuel and R. Tarrach, Phys. Lett. 328B (1994) 113.

[3] T. Cheon, T. Shigehara and K. Takayanagi, J. Phys. Soc. Jpn. 69 (2000) 345.

[4] T. Cheon and T. Shigehara, Phys. Lett. A243 (1988) 111.

[5] T. Shigehara, H. Mizoguchi, T. Mishima and T. Cheon, IEICE Trans. Fund. Elec.

Comm. Comp. Sci. E82-A (1999) 1708.

[6] R. Jackiw, Paper I.3 in “Diverse Topics in Theoretical and Mathematical Physics”,
World Scientific, Singapore, 1995.

[7] R. Tarrach, UB-ECM-PF 38-94, hep-th/9502020.

[8] T. Cheon and T. Shigehara, Phys. Rev. Lett. 82 (1999) 2536.
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