
Functional Programming vs
Efficient Computer Graphics

GPU Day, 21-22 June 2018

Attila Szabo
Georg Haaser
Harald Steinlechner

Outline
● Introduction to our Institute/Team/Projets

● Rendering Engine Experience
○ Functional Programming (FP) in High-Performance Visual Computing

● 4 parts
○ FP for photogrammetry
○ FP for efficient rendering
○ FP for shader programming
○ FP for in real projects

by using
domain specific languages (DSLs)

Takeaways

● Functional Programming in High-Performance Visual Computing
● Domain Specific Languages help
● Real World functional programming

○ Experience from moving to purely functional

What is Aardvark?

https://commons.wikimedia.org/wiki/File:Ardvark_The_Aardvark_Original.png

shared development platform for projects

research platform for visual computing

…

open source project on github

2005

First Aardvark in C#

2008

Composability/Flexibility

● Semantic Scene Graph [Tobler 11]
● Easy to use
● Expressiveness

2010

Performance

Lazy Incremental Computation For
Efficient Scene Graph Rendering
[Wörister et al. 2013]

2014

Domain Specific Languages

● Composable Shaders
[Haaser et al. 2014]

● Attribute Grammars

2015

Performance + Dynamism

● Incremental Rendering VM
[Haaser et al .2015]

2017

● Vulkan
● Purely Functional App

Frontend

Concepts
● High-Level abstraction via

○ Domain Specific Languages
○ Functional Programming

● High-Performance via
○ Compilers
○ Incremental Evaluation
○ Low-Level trickery

Part I

Functional Programming vs. Efficient Computer
Graphics

https://bar.wikipedia.org/wiki/Datei:Injection.svg

Renderer:

If attributes.Dirty then
UpdateGpuData()

Foreach spawned geometry do
 addAndOptimize()

GameModule:

If mouse.IsDown && ammo > 0
then
 updateGui()
 startRocket()

Character Rendering

If character.hasMoved() then
 asyncUpdateLevelOfDetail()

Asnyc Loading

Out of core

Save/Load State

Undo Redo

Rendering Engine Challenges

● Performance
● Synchronization between modules

GPU StateApplication State Scene Representation

● Side effects -> complexy

Why use Functional Programming?

● Pros
○ Easier reasoning/debugging
○ No side effects
○ concurrency
○ parallel programming
○ Features such as

■ Persistency
■ Undo Redo

● Cons
○ Performance (?)

Purely Functional Mutable imperative?

Parallelism
Reasoning
Persistence

Performance
Memory usage
In-place updates
Algorithms

A Functional approach to Mutation
● Creates modifiable input cell

● Create single edge dependency

● Mod.force evaluates a dependency graph

let modRef1 = Mod.init 10

let mappedref = Mod.map (fun s -> s + 1) modRef1

Mod.force mappedref ⇒ 11

Dependency Graph Operations
● Dependency Graph = Directed acyclic graph
● Feed changes into system

● Extract current state from the system

transact (fun () ->
 Mod.change modRef1 0
)

Mod.force mappedref ⇒ 1

Basic operations can be hidden beneath DSL

let input1 = Mod.init 10
let input2 = Mod.init 20
…..
let a =
 adaptive {
 let! currentInput1 = input1
 let! currentInput2 = input2
 return m + c + d
 }

Approach: Monads for incremental computing [Carlsson 2002]

input1 input2

a

● Theoretically well-founded
○ Adaptive Functional Programming [Acar 2002,2005,...Hammer et al 2014]

● ModRef = changeable input values
● IMod = dependent value
● Extends to sets

○ cset = changeable set
○ aset = dependent set
○ Lists, maps….

https://memegenerator.net/img/images/15955
402/hysterical-raisins.jpg

https://memegenerator.net/img/images/15955402/hysterical-raisins.jpg
https://memegenerator.net/img/images/15955402/hysterical-raisins.jpg

An incremental renderer
● Rendering engine

○ Maps scene representation to images

● First step
○ Adaptive scene description instead of

Mutable/Immutable data

class RenderObject {
Shader[] Shaders;
IMod<BlendMode> BlendMode;
IMod<DrawCall> Call;
IMod<Array> Vertices
// ...

}

Adaptive Scene
Description aset<RenderObject> RenderProgram

Incremental compiler:
Two dimensions of input change

Incremental flattening

Our Implementation [Haaser et al. 2015]

First resumé

✔ Best possible performance
✔ Incremental dependency tracking
✔ Dependencies tell us when to render
✖ No functional API

Part II

A functional Shader library

Part III

Functional Programming in the Wild

https://bar.wikipedia.org/wiki/Datei:Injection.svg

Many projects later...
● Incremental System (dependency graph) is nice
● But we still miss functional programming benefits
● Source of complexity:

○ Dealing with changes

○ Interactions

● Can we do better?

The ELM Architecture

https://guide.elm-lang.org/architecture/

ELM Demo
https://ellie-app.com/yBPRbmmKvQa1

https://ellie-app.com/yBPRbmmKvQa1

Scale through Composition

https://guide.elm-lang.org/architecture/

Immutable Data Structures

Functional Scene Representation?

● Conceptually, we get a new scene each frame

● Given a new scene, we need to extract effective changes
○ Reuse GPU resources for each scene object

● Web Frameworks extract changes at DOM level

Create new
StateGrab User Input Incremental Rendering

Engine
Compute
changes

Incremental
Scene update

Create new
StateGrab User Input Incremental Rendering

Engine

Create updated
scene
representation

Compute
changes

Our approach

type Model =
{

value : int
}

type MModel =
{

value : IMod<int>
}

val applyChanges : Model -> Model -> MModel -> unit

recursive

view : Model -> Html.Html Msg
view model =
 div []
 [button [onClick Increment] [text "+"]
 , br [] []

 , text (toString model)
 , br [] []
 , button [onClick Decrement] [text "-"]
]

view : MModel -> Html.Html Msg
view model =
 div [] [

button [onClick (fun _ -> Increment)] [text "+"]
br []
Incremental.text (

 m.value |> Mod.map(fun x -> toString x)
)

br []
button [onClick (fun _ -> Decrement)] [text "-"]

]

ELM for 3D graphics

https://github.com/aardvark-platform/gpuDayDemo

https://github.com/aardvark-platform/gpuDayDemo

type Model =
 {
 finishedPolygons : list<Polygon>

 past : Option<Model>
 future : Option<Model>
 }

let update (msg : Msg) (model : Model) =
match msg with

 | Undo _ ->
 match m.past with
 | None -> m
 | Some p ->
 { p with future = Some m }
 | …..

PRo3D Viewer
3D Visualization tool for interactive
visualization and analysis of the
Martian surface
● Large amount of data
● Out of core asynchronous rendering
● Lots of different interactions

and use cases
● Research

http://pro3d.space/

http://pro3d.space/

“The total cost of owning a mess”*
● 6 Years Development written in C# and WPF (OOP)
● “Maintenance Deadlock” - Clean code and regular refactoring?
● Out-of-Date technology and architecture
● Functional Rewrite (F# and HTML5)

*Robert C. Martin (2008) Clean Code - A Handbook of Agile Software Craftmanship. p.4-13

*

What can we expect from such a rewrite?
● F#

○ Functional principles enforce cleaner code by preventing side effects
○ Better testable and therefore easier to refactor

● HTML5 GUI
○ Easy throw away GUI code
○ Complex GUI elements through composition

● Additional Efforts
○ Rewrites take time
○ FP training for all members

Conclusion

● Low level performance tweaks
● High level functional programming via

○ Compilers
○ Domain specific languages

● Functional rewrite showed advantages of FP
● ELM appears to be an architecture that scales

Find us on https://aardvark.graphics

