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Introduction

FindFind and  and DecodeDecode the the
mapping/representationsmapping/representations
                        intointo
DDeep eep NNeural eural NNetworketwork

            function approximatorfunction approximator

                                  Universal approximator  Universal approximator  
                                  (Hastad et al 86 & 91)(Hastad et al 86 & 91)
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Introduction

Convolutional Neural Network has proved to be extremely
powerful in Pattern Recognition, Image Classification 
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Deepthinkers Group at FIAS

(1) Statistical physics/ lattice configuration analysis

(2) heavy-ion collisions : decode medium property (phase transition)

(3) hydrodynamic simulation : speed-up

(4) smart-valve: 'hear' the valve (leakage? Flow status?)
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Dualization approach for

configurations – 4 integer-valued variables: 

Divergence constraint :
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Observables :      and 

Grand canonical ensemble

Condensation sets in at
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Observables :      and 

Grand canonical ensemble

Condensation sets in at
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Exploring NN ability here

(1) Classification 1: differentiate configs with different interaction

(2) Classification 2: detect phase transition based on config.

(3) Regression: learn physical observables 

(4) Generative model : learn to generate new configs

                                     Generate configs with proper distribution
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DCNN Architechture – Classification 
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DCNN Architechture – Classification 1

Can interaction information be decoded from microscopic 
configuration  (same sized lattice)?  

Train with two ensemble of configs (different     ) :

Test on other chemical potentials with the two couplings
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DCNN Architechture – Classification 1

Can interaction information be decoded from microscopic 
configuration  (same sized lattice)?  

Train with two ensemble of configs (different     ) :

Test on other chemical potentials with the two couplings

   



12

DCNN Architechture – Classification 2

Training set consist only two 
ensembles of configuations at

and
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DCNN Architechture – Classification 2

Training set consist only two 
ensembles of configuations at

and

Testing set consist of

different ensembles of 
configurations at different 
chemical potential
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Condensation probability from DCNN

Non-linear correlation 
between P_cond and 
physical observables :

n and squared field
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Condensation probability from DCNN

Adding one more CNN layer 
gives better expressive 
power to the network :

better distinguish ability
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Ensemble average cond-probability

Classifier of the phases :  
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Ensemble average cond-probability

Classifier of the phases :  

one more CNN 
layer sharpens 
the transition 
curve
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Discard kt information

Is phase transition information also encoded in 
variable ? Yes!

beyond conventional 
knowledge, 
indicating hidden 
structures in the  
variables and not only in 
the       variables.
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Try different field component variables

The same transition point
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DCNN Architechture – Regression
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regression for particle density

Note, for training, only used 
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regression for squared field

Note, for training, only used 
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Gnerative Adversarial Network
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GAN – generate proper configurations

The divergence condition automatically get learned :

Physical configs

can be generated
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Conditional GAN

make GAN conditional on particle 
density n,

We train GAN using one esemble 
with                    labled as well by 
n (including n=0.4, 0.5, 0.6, 0.7), 

Once trained, in generating stage,

We specify different n values.
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Conditional GAN

mean value for n and squared field of generated ensemble is 
controlled by condition in c-GAN.
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Conditional GAN

mean value for n and squared field of generated ensemble is 
controlled by condition in c-GAN.
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Results

(1) Classification 1: NN can identify interaction information

(2) Classification 2: NN can pin down phase transition point

(3) Regression: NN can learn physical observable (non-linear 
interpolation)

(4) Generative model : GAN can generate physical configs

                                     For canonical ensemble, GAN can generate 
beyond training examples
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Thanks!
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Dualization approach for

Euclidean continuum action for complex 1+1d scalar field

On a lattice with n labels the lattice sites:

Partition function is defined from path integral:
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Dualization approach for

Flux representation for partition function :

Divergence constraint :
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Observables :      and 

Net particle density and squared field expectation

Flux representation for above :
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GAN – distribution

Zero-sum game – Nash equilibrium
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