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Some examples of branched Hamiltonians are explored, as recently advo-
cated by Shapere and Wilczek. These are actually cases of switchback poten-
tials, albeit in momentum space, as previously analyzed for quasi-Hamiltonian
dynamical systems in a classical context. A basic model, with a pair of
Hamiltonian branches related by supersymmetry, is considered as an inter-
esting illustration, and as stimulation.

“It is quite possible ... we may discover that in nature the relation
of past and future is so intimate ... that no simple representation
of a present may exist.” – R P Feynman

Based on work with Cosmas Zachos, Argonne National Laboratory



Introduction to the problem

In quantum mechanics
H = p2 + V (x) (1)

is neither more nor less difficult than

H = x2 + V (p) (2)

by reason of x, p duality, i.e. the Fourier transform:
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This equivalence of (1) and (2) is manifest in the QMPS formalism, as
initiated by Wigner (1932),

f (x, p) =
1

π
dy x+ y| ρ |x− y e−2ipy/

=
1

π
dk p+ k| ρ |p− k e2ixk/

where x and p are on an equal footing, and where even more general H (x, p)
can be considered. See CZ to follow, and other talks at this conference.
Or even better, in addition to the excellent books cited at the conclusion of
Professor Schleich’s talk yesterday morning, please see our new book on the
subject ...





Even in classical Hamiltonian mechanics, (1) and (2) are equivalent under
a classical canonical transformation on phase space:

(x, p)⇐⇒ (p,−x)

But upon transitioning to Lagrangian mechanics, the equivalence between
the two theories becomes obscure.

Here is the issue:

A Legendre transformation from (x, p,H) to (x, v, L) is complicated for
non-convex V (p). The resulting L is multi-valued, in general, with several
branches.



Or, if you are like Feynman in his youth, and keen to proceed from the
start with a given single-valued L (x, v), then you too will face similar com-
plications if you are dealing with

L = x2 − V (v) (3)

instead of the usual
L = v2 − V (x) (4)

If you construct the Hamiltonian for (3) by Legendre transformation, in
general you will encounter multi-valued-ness. (Shapere and Wilczek, 2012)

If V (v) is non-convex, then the LT v ⇐⇒ p gives a multi-valued Hamil-
tonian, i.e. several branches for H (x, p).

Again, the same issue:

Starting from single-valued H (x, p) or starting from single-valued L (x, v)
– either way – if the p or v dependence is non-convex then multi-valued,
branched functions will arise upon Legendre transforming between Hamil-
tonian and Lagrangian formulations.

Let’s consider some examples.



Miami fedora kinetic energy

In dimensionless variables, define

L (x, v) = − exp −v2/2 + 1− V (x) (5)

=
1

2
v2 − V (x) +O v4

e.g. V (x) = x2 gives classical Euler-Lagrange equations

dv

dt
=

−2x
(1− v2) exp v2/2

= −2x+O v2

The RHS is a restorative force so long as v2 < 1 For larger speeds the
solutions explode.



The energy in terms of x and v is

E = V (x)− 1 + 1 + v2 e−v
2/2

This is conserved, given the E-L equations, and so it gives the trajectories as
constant E curves on the (x, v) plane.

I will refer to the v-dependent terms in E as the “Miami fedora” kinetic
energy for obvious reasons.

-4 -2 0 2 4

0.5

1.0

1.5

v

K.E.

Miami fedora kinetic energy (1 + v2) e−v
2/2 = 1
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e.g. V = x2 gives x (v):

x = ±√E −K.E. = ± E − (1 + v2) e−v2/2

Or take E = x2 + (1 + v2) e−v
2/2, and solve for v (x). The solution is:

v = ± −1− 2 LambertW 1

2
√
e
(x2 − E)

For real v it is necessary here for the Lambert function, with negative argu-
ment, to return negative values. That is to say, either the principal branch,
LambertW (0, z) or the lower branch LambertW (−1, z) with −1/e ≤ z ≤ 0.

So, v (x) is multi-valued due to the different
√· · · and LambertW (· · · )

branches.



Lambert function refresher course: The solution of

yey = z

is
y (z) = LambertW (k, z) | k ∈ Z if z = 0

y (z) = 0 if z = 0

where k = 0 and k = −1 give the two real branches as shown below.
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LambertW (0, z) and LambertW (−1, z) in orange and green, resp.



Legendre transforming to obtain the Hamiltonian for the model

The velocity dependent term is a union of three convex functions, defined on
v ∈ [−∞,−1] , [−1, 1] , and [1,∞].
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As a consequence, the Hamiltonian will be multi-valued.



H = vp− L

p =
∂L

∂v
= v exp −v2/2

So as a function of v

H (x, v) = 1 + v2 exp −v2/2 + V (x)− 1

which we recognize as the previous E, of course.

But we want H (x, p).

So we need v (p).



The velocity as function of p again involves a Lambert function, as well
as both branches of a

√· · ·.

v = ± −LambertW (−p2)

Again, for real v, negative values are required for LambertW, so either the
principal branch, LambertW (0, z) or the lower branch LambertW (−1, z)
will do, with −1/e ≤ −p2 ≤ 0. That is to say, the momentum lies in the
finite interval

− 1√
e
≤ p ≤ 1√

e

The result forH (x, p) is multi-valued on this momentum interval, because
of the square root and the Lambert function branches.

H = ±p −LambertW (−p2) + 1

−LambertW (−p2) + V (x)− 1

Note exp (−v2/2) = p/v.
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The real branches of H − V versus p ∈ [−1/√e, 1/√e] ≈ [−0.607, 0.607]

H (x, p) may be thought of as the union of three convex functions of p.



Classically, a particle switches H during the course of its trajectory. Dif-
ferent branches of H govern the motion at different times.

In a previous context (2010) – a study of the evolution of chaotic dy-
namical systems – Zachos and I found the problem was mathematically
equivalent to particle motion in which the Hamiltonian (the potential V (x),
actually) switched when the particle encountered turning points, with con-
tinuous evolution of x (t), v (t), and p (t) at the switching points. (Please
see the literature cited below in the reference list.)

The present example illustrates the same switchback effects, only here it
is the momentum dependent part of H that switches.

For quantum mechanics, the Hamiltonian to be used in the Schrödinger
equation also switches. The only additional issue is what are the boundary
conditions on the wave function where the switches occur. Shapere and
Wilczek impose conditions so that the probability current is conserved.

To shed light on such Hamiltonian switching quantum systems, I will
switch gears from the Florida hat model to a more tractable example ...



Supersymmetric QM

Consider the single-valued real function, for −∞ ≤ v ≤ +∞,

L = C (v − 1)1/3 − V (x) (6)

where C = 3/ 3
√
16 ≈ 1. 19. Take real roots on the real v axis.
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Proceeding with the Legendre transform

p =
∂L

∂v
⇒ v± (p) ≡ 1∓ 1

4

1√
p

3

and the Hamiltonian is ... double valued.()

H± = p± 1

2
√
p
+ V (x) (7)

From the shape of (L+ V ) (v) curve, note that p ≥ 0.

0.2 0.4 0.6 0.8 1.0

-4

-2

0

2

4

p

H-V

H± − V (x) = p± 1
2
√
p
in red/blue. There is a cusp at p =∞.



Following the suggestions of Shapere and Wilczek, we define the asso-
ciated quantum theory with p ≥ 0 as a restriction, with various boundary
conditions imposed on the wave functions, ψ (p), at p = 0, such that there is
no probability flow to negative p.

When the potential V (x) is harmonic, this is a supersymmetric quantum
mechanical system when viewed in momentum space.

V (x) = x2 −→
QM in p space

− d
2

dp2



Quantum features The momentum space supersymmetric pair of QM
Hamiltonian operators for this case is therefore expressible in the standard
form:

H± = − d
2

dp2
+ w20 (p)± w0 (p) =

d

dp
± w0 (p) − d

dp
± w0 (p) (8)

w0 (p) =
√
p

This has the feature that the true – square-integrable – ground state of
the system is non-vanishing for only one of the branches, namely, H−.



As an algebraic system, for p ≥ 0, the two Hamiltonians are related in a
familiar fashion by

H− = a†a

H+ = aa
†

H+ = H− + a, a†

a =
d

dp
+
√
p , a† = − d

dp
+
√
p , a, a† =

1√
p
.

Obviously, either energy spectrum is non-negative.



The zero-energy ground state of H− is given by

aψ0 (p) = 0 , ψ0 (p) = N0 exp −2
3
p3/2 (9)

N0 = 6
1/6/ Γ 2

3
≈ 1. 16 ensures that ∞

0
|ψ0 (p)|2 dp = 1.

The ground state obeys the boundary condition ψ0 (0) = 0.

On the other hand, the zero-energy state forH+, namely, φ (x) = exp +2
3
p3/2 ,

is not admissible, because it has infinite norm.



The higher energy states are degenerate, with H±ψ
(±) = Eψ(±) eigen-

states for E > 0 mutually related by

ψ
(+)
E =

1√
E
aψ

(−)
E , ψ

(−)
E =

1√
E
a†ψ(+)E ,

so as to have equal norms.

In particular the first excited state for H− is degenerate with the low-
est energy state for H+, with E1 = 1.89379, as determined by numerical
analysis.

The degenerate H± eigenfunctions obey different boundary conditions at
p = 0. If one is Dirichlet, the other is Neumann. For example, the first H−
excited state and its degenerateH+ partner eigenstate satisfy ψ

(−)
E1 p=0

= 0 =

dψ
(+)
E1
/dp

p=0
, while for the next excited states, dψ(−)E2

/dp
p=0

= 0 = ψ
(+)
E2 p=0

,

etc.



All this conforms with well-known expectations for general supersymmet-
ric QM, but the common single-component L underlying both branches of
the Hamiltonian, in this case, is a new observation, so far as I know.

The flipping of the boundary conditions actually has a practical benefit
due to the 1/

√
p singularity in both H±: It is more straightforward to

perform an accurate numerical computation of the energy eigenvalue using
the boundary condition ψE (0) = 0 = ψE (0) than it is using the condition
ψE (0) = 0 = ψE (0). The degeneracy of the eigenfunctions permits one to
always choose the ψE (0) = 0 condition, along with the corresponding H+ or
H−.



These higher energy states may be thought of as a single nontrivial state
defined on a unified covering space – a double covering of the half-line R+
by R – obtained by unfolding the two Hamiltonian branches to obtain a
single H globally defined on R. However, as is clear from the preceding
discussion, the true ground state of the system is ψ0 (p) ∪ 0 on the unfolded
space. The latter, somewhat unusual feature is possible because the two
Hamiltonians on the half-lines join together in a cusp at p = ∞, where ψ0
and all its derivatives vanish. So too vanish all the higher ψ(±)E and all their
derivatives at p =∞.

For this reason, it would be excusable not to have thought of the de-
generate eigenstates on the half-line as two branches of a single function.
However, the unified picture provided by joining them together on a cover-
ing real line, with Neumann and Dirichlet boundary conditions at opposite
ends, is a more compelling point of view, in our opinion. Perhaps more
importantly, this omniscient view of the system becomes natural when the
common Lagrangian underpinning both H± is considered.



Classical features It is also instructive to survey essential features of the
classical trajectories for the model. But time does not permit me to do this
here. (Please see my paper with Cosmas Zachos, when it appears on the
arXiv.)



Discussion

As emphasized by Shapere andWilczek, “many worlds” systems with branched
Hamiltonians are by no means rare, in theory. Here, I have displayed
some simple unified Lagrangian prototype systems which, by virtue of non-
convexity in their velocity dependence, branch into double-valued (but still
self-adjoint) Hamiltonians.

I have surveyed the spectral and boundary conditions involved for a super-
symmetric model, in a uniform framework, by utilizing the eigenstate-linking
“supercharge” ladder operators. These particular branched Hamiltonians –
although governing “two worlds” – are nevertheless paired into a uniform
isospectral system, in the very same Hilbert space.

Yet they are inexorably separated, in some analogy to fermionic and
bosonic sectors, as the respective dynamical intervals only connect at p =∞.
In this respect, this particular supersymmetric system differs from more typ-
ical constructions given by Shapere and Wilczek, which exhibit similar oper-
ator branching structures but connect for finite p.



However, in addition, I have outlined another model whose branches lie
on a compact, closed momentum manifold with coalescing cusps at finite
p. The quantum features of this other model are in line with the cases
considered by Shapere and Wilczek.

While only double-valued, H for the Miami fedora model is clearly the
union of three convex functions, defined on three overlapping momentum
intervals: H−, H0, andH+ for p ∈ [−1/

√
e, 0], [−1/√e, 1/√e], and [0, 1/√e],

as displayed in a previous Figure in blue, orange, and green, respectively.

This unified 3-fold structure brings to mind some previous theories ex-
hibiting triality, as discussed by Shankar (1981). However, to my knowledge
the gaussian model shows no compelling signs of supersymmetry. Still,
it would be quite interesting to find a simple, three-Hamiltonian, single-
particle quantum system, based on a single unifying Lagrangian, that could
be partitioned into pairs of supersymmetric Hamiltonians, with state-linking
operators of the type analyzed above.
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