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The Wigner phase-space quasi-probability distribution function

QUANTUM MECHANICS LIVES AND WORKS IN

PHASE SPACE

A complete, autonomous formulation of QM based on the standard c-

number variables x and p and their functions in phase-space, which com-

pose through a special operation.

C K Zachos



Three alternate paths to quantization:

1. Hilbert space (Heisenberg, Schrödinger, Dirac)

2. Path integrals (Dirac, Feynman)

3. Phase-space distribution function of Wigner (Wigner 1932;

Groenewold 1946; Moyal 1949; Baker 1958; Fairlie 1964; ...)

f(x, p) =
1

2π

∫

dy ψ∗(

x − ~

2
y
)

e−iypψ
(

x +
~

2
y
)

.

A special representation of the density matrix (Weyl correspondence).

Useful in describing quantum transport/flows in phase space ; quantum

optics; quantum chemistry; nuclear physics; study of decoherence (eg,

quantum computing).

But also signal processing (time-frequency spectrograms); Intriguing

mathematical structure of relevance to Lie Algebras, M-theory,...



Properties of f(x, p) = 1
2π

∫

dy ψ∗(x − ~
2y) e−iypψ(x + ~

2y) :

⋔ Normalized,

∫

dpdxf(x, p) = 1 .

X Real

• Bounded: −2
h ≤ f(x, p) ≤ 2

h (Cauchy-Schwarz Inequality)

; Cannot be a spike: Cannot be certain!

• p- or x-projection leads to marginal probability densities: A space-

like shadow
∫

dp f(x, p) = ρ(x); or else a momentum-space shadow
∫

dx f(x, p) = σ(p), resp.; both positive semidefinite. But cannot be

conditioned on each other. The uncertainty principle is fighting back ;

# f can, and most often does, go negative (Wigner). A hallmark of

quantum interference.

“Negative probability” (Bartlett; Moyal; Feynman; Bracken & Melloy).



Hiding through the uncertainty principle. Smoothing f by a filter

of size larger than ~ (eg, convolving with phase-space Gaussian) results

in a positive-semidefinite function: it has been smeared or blurred to a

classical distribution (de Bruijn, 1967). ; Negative areas are small.

When is a real f(x, p) a bona-fide Wigner function? When its Fourier

transform L-R-factorizes:

f̃(x, y) =

∫

dp eipyf(x, p) = g∗L(x − ~y/2) gR(x + ~y/2) ,

( ∂2 ln f̃
∂(x−~y/2)∂(x+~y/2)

= 0), so gL = gR from reality.

N Nevertheless, it is a distribution: it yields expectation values from

phase-space c-number functions.



In Weyl’s association rule (1927), given an operator A(x,p) =
1

(2π)2

∫

dτdσdxdp A(x, p) exp(iτ(p−p)+iσ(x−x)), the corresponding phase-

space kernel function A(x, p), obtained by p 7→ p, x 7→ x, yields that

operator’s expectation value,

〈A〉 =

∫

dxdp f(x, p) A(x, p).

Dynamical evolution of f (Moyal):

Liouville’s Thm, ∂tf + {f, H} = 0, quantum generalizes to

∂f

∂t
=

H ⋆ f − f ⋆ H

i~
,

based on the ⋆-product (Groenewold): ⋆ ≡ e
i~
2 (

←
∂ x

→
∂ p−

←
∂ p

→
∂ x),

the essentially unique one-parameter (~) associative deformation of

Poisson Brackets of classical mechanics, (viz. ~ → 0). (Isomorphism:

AB = 1
(2π)2

∫

dτdσdxdp(A ⋆ B) exp(iτ(p − p) + iσ(x − x)) . )



Systematic solution of time-dependent equations is usually predicated

on the spectrum of stationary ones. But time-independent pure-state

Wigner functions ⋆-commute with H.

However, they further obey a more powerful functional ⋆-genvalue

equation (Fairlie, 1964):

H(x, p) ⋆ f(x, p) = H

(

x +
i~

2

→
∂ p, p − i~

2

→
∂ x

)

f(x, p)

= f(x, p) ⋆ H(x, p) = E f(x, p) ,

which amounts to a complete characterization of them:

For real functions f(x, p), the Wigner form is equivalent to compliance

with the ⋆-genvalue equation (ℜ and ℑ parts).

(Curtright, Fairlie, & Zachos, Phys Rev D58 (1998) 025002)

⇛ Projective orthogonality spectral properties

f ⋆ H ⋆ g = Ef f ⋆ g = Eg f ⋆ g.

For Eg 6= Ef , =⇒ f ⋆ g = 0.



Precluding degeneracy, for f = g,

f ⋆ H ⋆ f = Ef f ⋆ f = H ⋆ f ⋆ f,

=⇒ f ⋆ f ∝ f.

fs ⋆-project onto their space.

fa ⋆ fb = 1
h δa,b fa.

• The normalization matters (Takabayasi, 1954): despite linearity of the

equations, it prevents superposition of solutions (this is not how QM

interference works here!).
∫

dpdx f ⋆ g =

∫

dpdx fg,

so, for different ⋆-genfunctions,
∫

dpdx fg = 0.

; Negative values are a feature, not a liability. Quantum

interference confined to “~-small” regions.



NB →֒
∫

H(x, p)f(x, p) dxdp = E

∫

f dxdp = E .

NB ;

∫

f2 dxdp = 1
h .

In general, ≤ 1/h ; quantum: fuzzy — classical: spiky.

• For any function, 〈|g|2〉 need not ≥ 0.

But 〈g∗ ⋆ g〉 ≥ 0 →֒ the uncertainty principle,

∆x∆p ≥ ~/2 ; (∆x)2 + (∆p)2 ≥ ~. Hides negative values

Curtright & Zachos, Mod Phys Lett A16 (2001) 2381.



H Pf

H(x, p) ⋆ f(x, p)

=
1

2π

(

(p − i
~

2

→
∂ x)

2/2m + V (x)

)

∫

dy e−iy(p+i~
2

←
∂ x)ψ∗(x − ~

2
y) ψ(x +

~

2
y)

=
1

2π

∫
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(
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~

2

→
∂ x)

2/2m + V (x +
~

2
y)

)

e−iypψ∗(x − ~

2
y) ψ(x +

~

2
y)

=
1

2π

∫

dy e−iyp

(

(i
→
∂ y +i

~
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→
∂ x)

2/2m + V (x +
~

2
y)

)

ψ∗(x − ~

2
y) ψ(x +

~

2
y)

=
1

2π

∫

dy e−iypψ∗(x − ~

2
y) E ψ(x +

~

2
y) =

= E f(x, p);

yAction of the effective differential operators on ψ∗ turns out to be null.

f ⋆ H

=
1

2π

∫

dy e−iyp

(

−(
→
∂ y −~

2

→
∂ x)

2/2m + V (x − ~

2
y)

)

ψ∗(x − ~

2
y) ψ(x +

~

2
y)

= E f(x, p).



Conversely, the pair of ⋆-eigenvalue equations dictate, for f(x, p) =
∫

dy e−iypf̃(x, y) ,

∫

dy e−iyp

(

− 1

2m
(
→
∂ y ±~

2

→
∂ x)

2 + V (x ± ~

2
y) − E

)

f̃(x, y) = 0.

; Real solutions of H(x, p) ⋆ f(x, p) = E f(x, p) (= f(x, p) ⋆ H(x, p))

must be of the Wigner form, f =

∫

dy e−iypψ∗(x − ~
2y)ψ(x + ~

2y)/2π,

(s.t. Hψ = Eψ).

The wonderful fact (Groenewold): ⋆-multiplication of c-number phase-

space functions is in complete isomorphism to Hilbert-space operator

algebra.



SIMPLE HARMONIC OSCILLATOR

Solve directly for H = (p2 + x2)/2

(with ~ = 1, m = 1, ω = 1):
(

(x +
i

2
∂p)

2 + (p − i

2
∂x)

2 − 2E

)

f(x, p) = 0.

Mere PDEs! Imaginary part: (x∂p − p∂x)f = 0. ; f depends on

only one variable, z = 4H = 2(x2 + p2). ;

(

z

4
− z∂2

z − ∂z − E

)

f(z) = 0.

Set f(z) = exp(−z/2)L(z) =⇒ Laguerre’s eqn
(

z∂2
z + (1 − z)∂z + E − 1

2

)

L(z) = 0.

Satisfied by Laguerre polynomials, Ln = ez∂n(e−zzn)/n!, for

n = E − 1/2 = 0,1,2, ... ; eigen-Wigner-functions are

fn =
(−1)n

π
e−2H Ln(4H); L0 = 1, L1 = 1 − 4H,

L2 = 8H2 − 8H + 1, ... ♦ not positive definite.



Oscillator Wigner Function, n=3

x

p

f

x ∑

n
fn = 1

2π .

Dirac’s Hamiltonian factorization for algebraic solution carries through

intact in ⋆ space:

H =
1

2
(x − ip) ⋆ (x + ip) +

1

2
,

so define

a ≡ 1√
2
(x + ip), a† ≡ 1√

2
(x − ip).

a ⋆ a† − a† ⋆ a = 1 .



⋆-Fock vacuum:

a ⋆ f0 =
1√
2
(x + ip) ⋆ e−(x2+p2) = 0 .

Associativity of the ⋆-product permits the customary ladder spectrum

generation; H ⋆ f = f ⋆ H ⋆-genstates:

fn ∝ (a†⋆)n f0 (⋆a)n .

> real, like the Gaussian ground state;

; left-right symmetric;

⋆-orthogonal for different eigenvalues;

project to themselves, since the Gaussian ground state does, f0⋆f0 ∝ f0 .



TIME EVOLUTION

Isomorphism to operator algebras ; associative combinatoric operations

completely analogous to Hilbert space QM.

; ⋆-unitary evolution operator, a “⋆-exponential”, U⋆(x, p; t) = e
itH/~
⋆ ≡

1 + (it/~)H(x, p) +
(it/~)2

2!
H ⋆ H +

(it/~)3

3!
H ⋆ H ⋆ H + ...,

f(x, p; t) = U−1
⋆ (x, p; t) ⋆ f(x, p; 0) ⋆ U⋆(x, p; t).

NB Collapse to classical trajectories,

dx

dt
=

x ⋆ H − H ⋆ x

i~
= ∂pH = p ,

dp

dt
=

p ⋆ H − H ⋆ p

i~
= −∂xH = −x =⇒

x(t) = x cos t + p sin t,

p(t) = p cos t − x sin t.



=⇒ For SHO the functional form of the Wigner function is preserved

along classical phase-space trajectories (Groenewold, 1946):

f(x, p; t) = f(x cos t − p sin t, p cos t + x sin t; 0).

Any Wigner distribution rotates uniformly on the phase plane around

the origin, essentially classically, even though it provides a complete

quantum mechanical description. In gen-

eral, loss of simplicity upon integration in x (or p) to yield probability

densities: the rotation induces shape variations of the oscillating prob-

ability density profile. NB Only if (eg, coherent states) a Wigner

function configuration has an additional axial x − p symmetry around its

own center, will it possess an invariant profile upon this rotation, and

hence a shape-invariant oscillating probability density.



THE WEYL CORRESPONDENCE BRIDGE

Weyl’s correspondence map, by itself, merely provides a change of

representation between phase space and Hilbert space →֒ Mutual

language to contrast classical to quantum mechanics on common

footing, and illuminate the transition.

A(x,p) =
1

(2π)2

∫

dτdσdxdp a(x, p) exp(iτ(p − p) + iσ(x − x)),

Inverse map (Wigner):

a(x, p) =
1

2π

∫

dy e−iyp

〈

x +
~

2
y

∣

∣

∣

∣

∣

A(x,p)

∣

∣

∣

∣

∣

x − ~

2
y

〉

.

PHASE SPACE HILBERT SPACE

a
Weyl−−−−→ A

quantum↓ ↓ quantum

a ⋆ b Groenewold−−−−−−−−−→ AB

classical ~=0↓ ↓ Bracken ~=0

ab
Weyl−−−−→ A ⊙ B



; A plethora of choice-of-ordering quantum mechanics problems

reduce to purely ⋆-product algebraic ones: varied deformations (ordering

choices) can be surveyed systematically in phase space. (Curtright &

Zachos, New J Phys 4 (2002) 83.1-83.16 [hep-th/0205063])


