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| was here before,
but | am very happy
to be here again.

| thank the
organizers for
inviting me to this
great conference.




Toyotomi Hideyoshi (1536-98)
unified Japan, appointed himself as the
Emperor of China, and invaded Korea in 1591.

To humans, he looks like a
monkey.

To monkeys, he looks like a
human.

Japanese are Kantianists.
Einstein started as a
Kantianist.




This person has been writing papers since 1961. People
seem to have difficulties in understanding his papers.

To opticd people, | look like
a particle physicist.

To particle people, | look like
an optical physicist.

Thus, | should talk about
particle physics, using the
language of optics.




Two great physicists with many faces.

Henri Poincare (1854-1912) Eugene Wigner (1902-2002)




How close was | to them?

Poincare’s Grave in Paris at with Eugene Wigner at the
Montparnasse Cem. (2010). University of Maryland (1986).
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Poincare Sphere and Wigner’s Little Groups

Polarization optics. The most difficult paper to
Well understood read.

Awnars or MaTuzmaTion
Vok 40, No. 1, January, 1039

ON UNITARY REPRESENTATIONS OF THE INHOMOGENEOUS
LORENTZ GROUP*

Br E. Wioner
(Received December 22, 1937)

1. ORIGIN AND CHARACTERIZATION OF THE PROBLEM

It is perhaps the most fundamental principle of Quantum Mechanics that the
system of states forms a linear manifold,' in which a unitary scalar product is
defined.! The states are generally represented by wave functions’ in such a way
that ¢ and constant multiples of » represent the same physical state. It is

f possible, therefore, to normalize the wave function, i.e., to multiply it by a
eonstant factor such that its scalar product with itself becomes 1. Then, only a

F factor of modulus 1, the so-called phase, will be left undetermined
in the wave function. The linear character of the wave function is called the

superposition principle. The square of the modulus of the unitary scalar
produet (¥, ¢) of two normalized wave functions y and  is called the transition
probability from the state ¢ into g, or conversely. This is supposed to give the
probability that an experiment performed on a system in the state ¢, to see
whether or not the state is , gives the result that it is . I there are two or
more different experiments to decide this (e.g., essentially the same experiment,

* Parts of the present paper were presented at the Pittsburgh Symposium on Group
Theory and Quantum Mechanics. Cf. Bull. Amer. Math. Soc., 41, p. 306, 1935
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exp(iHt/h) Qexp (—iHt/k), where Qis the operator in the Schridinger picture which does not
depend on llma Cf. also E. Bchmd.m;rr Sitz. d. Kon. Preuss. Akad. p. 418, 1930,

The wave functions are ities and the ined factors in them are
complex also. Recently attempta h"a been made toward a theory with real wave func-
tions. CI. E. Majorana, Nuovo Cim. 14, 171, 1937 and P. A. M. Dirae, in print.
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| never met this man, but met some who met

him. O.J.Turner was a Princeton photographer.

1947 1961




Einstein Issue: How to Lorentz-
transform the hydrogen atom?

Newton's Gravity
Bell's Picture of Lorentz Boost

P—
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In 1927, the orbit was replaced by a standing
wave. How to Lorentz-boost standing waves?

The key question is how to put Einstein

Proton replaced the hydrogen and Schrodinger into one box.
atom, because it can be
accelerated. Like the H-atom,
it is a bound state or standing Divac, Wignes beymman

wave.

Einstein <=— 5chroginger

Feynman Diagrms

1r

Proton sitting
in the

Absolute Frame
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Evolution o : 1
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m | Relativity |
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History of Physics. Where is Wigher?

Scattering |Bound States | Space/Time
COMET PLANET
NEWTON
GALILEI
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HEISENBERG, SCHRODINGER
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EINSTEIN

Running and Standing Waves
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Wigner >
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Wigner’s little groups define internal
space-time symmetries

Wigner’s 1939 paper Steven Weinberg was
interested in this paper and

R published many papers on this
ON UNITARY nmsgggggn(sm%zp THE INHOMOGENEOUS Su bject in 1963_65.

Br E. Wioner
(Received December 22, 1937)

1. ORIGIN AND CHARACTERIZATION OF THE PROBLEM

1t is perhaps the most fundamental principle of Quantum Mechanics that the
system of states forms a linear manifold,' in which a unitary scalar product is
defined.! 'The states are generally represented by wave functions® in such a way
that ¢ and constant multiples of ¢ represent the same physical state. It is
possible, therefore, to normalize the wave function, i.e., to multiply it by a
constant factor such that its scalar product with itself becomes 1. Then, only a
constant factor of modulus 1, the so-called phase, will be left undetermined
in the wave function. The linear character of the wave function is called the
superposition principle. The square of the modulus of the unitary scalar
product (¥, ¢) of two normalized wave functions ¥ and ¢ is called the transition
probability from the state ¥ into ¢, or conversely. This is supposed to give the
probability that an experiment performed on a system in the state ¢, to see
whether or not the state is ¥, gives the result that it is . If there are two or
more different experiments to decide this (e.g., essentially the same experiment,

* Purts of the present paper were presented at the Pittsburgh Symposium on Group
Theory and Quantum Mechanics. Cf. Bull. Amer. Math. Soc., 41, p. 306, 1935.

1 The possibility of a future non linear character of the quantum mechanics must be
admitted, of course. An indication in this direction is given by the theory of the positron,
asdeveloped by P. A. M. Dirac (Proc. Camb. Phil. Soc. 30, 150, 1934, of. also W. Heisenberg,
Zeits. I. Phys. 90, 209, 1934; 92, 623, 1934; W. Heisenberg and H. Euler, ibid. 98, 714, 1936
and R. Serber, Phys. Rev. 48, 49, 1035; 49, 545, 1936) which does not use wave functions
and is a non linear theory.

1 Cf. P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford 1935, Chap Iand
1I; J. v. N Mathematische Grundl der Q hanik, Berlin 1932, pages
19-24.

 The wave functions represent throughout this paper states in the sense of the ‘‘Heisen-
berg picture,” i.e. a single wave [unction represents the state for all past and future. On
the other hand, the operator which refers to a measurement at a certain time ¢ contains
this ¢ a8 a parameter. (CI. e.g. Dirac, l.c. ref. 2, pages 115-123). One obtains the wave
function .(f) of the Schradinger picture from the wave function ¢, of the Heisenberg
picture by ¢.(1) = exp (—iHi/h)py  The operator of the Heisenberg picture is Q(t) =
exp(iHt/h) Qexp (—iHi/h), where Qis the operatorin the Schrodinger picture which does not
depend on time. CI. also E. Schrodinger, Sitz. d. Kén. Preuss. Akad. p. 418, 1930.
The wave functions are plex quantities and the undetermined factors in them are
lex also. R tly att ts have been made toward a theory with real wave func-
tions. CI. E. Majorana, Nuovo Cim. 14, 171, 1937 and P. A. M. Dirac, in print.
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Sam Treiman was Weinberg’s
advisor. He was also my advisor.

Weinberg and Treiman The Treimans and the Kims
1985 1987




In 1988, | gave a big conference to Wignher with 8 Nobels
attending. | also invited the Hungarian ambassador to the
United States.

He came with Wigner’s membership certificate for the
Academy of Sciences
of the Peoples Republic of Hungary.




In 2002, Hungarians gave a Wigner
Centennial Conference. |1 am very happy
to meet here two of the organizers of the

2002 conference.




In 2002, there was also a meeting in
Princeton to honor Wigner. With me in

this photo are F.Seitz,C.Upton, J.Taylor.




Wigner’s family photo (19507?)

4




Wigner’s daughter
" ,1




When | said | had a photo with Wigner’s daughter,
young ladies at this conference wanted have photos
with me. | am still available.




Wigner 1939.
Internal space-time symmetries.

Einstein and Schroginger

Dirac, Wigner, Feynman

Feynman

Y Y
| Running W. | Standing W. I

Y Y

Quantum
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1
[ Particles ][ waves |
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Relativity
|

[ Massive ] [ Massless ]

Lorentz group has six degrees of
freedom, three boosts and there
rotations.

Running and Standing Waves

Standing Running Waves
Waves

Feynman Diagrams
Wigner

) 0

If the momentum is fixed, there are
only three degrees of freedom left
for internal symmetries.



Wigner Plan

Start from a massive particle
at rest

Move along the
hyperbola A Energy

Jump the hyperbola at infinity

A
Energy

rotation

gauge transformation
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Wignher 19309:
Internal space-time symmetries

For a massive particle, it is
O(3), or 3-d rotation group.
This defines the particle spin
in Einstein’s world

For a massless particle, the
symmetry group is like E(2),
2d Euclidean group.

YA
translation

Rotation o

/\ translation

>

N X

Translations: Physics?



E(2) becomes Cylindrical (1987).
Up-down translation becomes gauge transformation.

Qy
R R

EUCLIDEAN

1
o
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]
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Rotation Rotation
around around
y axis X axis _/




When the particle
mass becomes zero

rotation

gauge transformation

>

1 I I I | L N | O |
0.0 0.5 1.0 15 20 25 30

Momentum

L e o

Einstein’s Genealogy
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see Phys. Rev. Lett. 63, 384 (1989).



Further contents of Einstein’s E = mc/2

Massive Massless
Slow N between ~ —— Fast
Energy E= i — s mz_l_pg o E=p
Momentum 2m
5"'":‘,3“‘”95 —-+— | ittle Groups —=
Helicity S S, Gauge Trans.
Quarks '
Quark Model —-=— Covdriant ) — Parton Model
Partons Phase Space

Registered at Phys. Rev. Lett. [63] 348-351 (1989).



Massive to Massless

gauge transformation

.0

05

20 25 30 >

Momentum

The Lorentz boost depends only
on the relative velocity

v__p _  (p/m
¢ (pP+m?* 1+ (p/m)?

Thus, it depends only on the ratio
P

m

This quantity can become large when
p becomes large, or m becomes small.
The Lorentz group does not al-
low us to change m. Thus, the only
way to get the little group for a
massless particle is to go to infin-
ity and come back, as shown in this

figure.



rotation

Is there a direct route?
We need a Poincare sphere.

A Energy

gauge transformation

15 20 25 30

Momentum

A

Energy

direct route

i }-

Momentum



Wigner’s Little group whose transformations leave the
four-momentum of a given particle invariant

AX A

B X
- Boost
Fom >
Momentum z
A X
Rotate without
Py changing momentum - 4
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A x
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>~ >
Momentum Z




Four-vectore in 2-by-2 representation

The Lorentz group starts with a group of four-by-four matrices
performing Lorentz transformations on the Minkowskian vector space
of (t,z,x,y), leaving the quantity

12— 22 g% g2

In this two-by-two representation, we write the four-vector as a matrix

(L2 a:—iy)
X_(:r:-I—iy t—=z /)’

whose determinant is just £ — 22 — x% — y°.

The Lorentz transformation =
determinant-preserving transformation.



Determinant-preserving transformations.

Let us consider

c=(3 %) @=(5 7).

det (G) = 1.

The GG matrix starts with four complex numbers. Due to the above
condition on its determinant, it has six independent parameters. The
group of these G' matrices is known to be locally isomorphic to the
group of four-by-four matrices performing Lorentz transformations on
the four-vector (t, z, x,y).

with



With this point in mind, we can now consider the transformation
X' = GXG".

Since G is not a unitary matrix, it is not a unitary transformation. In
order to tell this difference, we call this the “Naimark
transformation.” This expression can be written explicitly as

(t’+z" a:”—fiy’)
r+iy t'—2

. (a: ,B) ( t+ 2 m—iy) (a* 7*)

S\ 6 x+iy t—=z 3 g
Be careful. G is not Hermitian, and this Lorentz
transformation is not a similarity transformation.



Einstein’s Four-momentum

Einstein defined the energy-momentum four-vector, and showed that
it also has the same Lorentz-transformation law as the space-time
four-vector. We write the energy-momentum four-vector as

PZ(E‘I'pz pm_i’py),
p:c‘|‘1py E_pz

with
det (P) = E* — p2 — p} — p2,

which means
det (P) = m?,

where m is the particle mass.



Now Einstein’s transformation law can be written as
P = GPG’T,

or explicitly

(E’ P p;—ip;)
p, +ip, E —p;

:(a ﬁ)(E——pz pm—ipy)(a* '}'*)_
Y 0)\Pz+ipy E—Dp, g* o




4-by-4 from 2-by-2

It is possible to construct familiar 4-by-4 transformation matrices
from the a 0 parameters.
'/ 29750 1

[t + 2\ [aa® af* pBa® BB\ [ t+2z

-y | | oyt «ad* By* [ x — 1Y
'+ | | yat 4B8* da* 63 r+iy |’
K t'— 2 ) \yY* Y8 &y 86*) \t—=z
and

L 1 0 0 1)\ /t+z)

z| 1|10 0 -1]||xz—1y

x| 2/0 1 1 o0 T + iy

Y 0 2 —t 0/ \t—2z)



Transformation 2-by-2 4-by-4
1 0 O 0
i5/2
e 0 10 O 0
rot. around z Z(9) = ( 0 e""&fﬂ) 0 1 cosd —sind
0 0 sind cosd
coshnn sinhn 0 0
e”? 0 sinhn coshn 0 0
boost along z B(n) = ( 0 e""“"z) 0 i 0 9 1 0]
0 0 0 1
1 0 0 0
_ __ {cos(8/2) —sin(0/2) ) 0 cosf# —sinf 0
rot. around y  R(f)= (5in(6/2} sin(6/2) 0 sin@ cos@ O
0 O 0 1
coshA 0 sinhA 0
[ cosh(A/2) sinh(,\/2)) 0 1 0 0
Bepsbaloig X SN = (sinh(z/z) sinh()\/2) sinhA 0 coshA 0
0 0 0 1




Wigner’s Little Groups

In 1939, Wigner considered subgroups of the Lorentz group whose
tranformations leave the four-momentum of a given particle invariant.
The massive particle can be brought to its rest frame, and its
four-momentum becomes

(m,0,0,0).

This four-momentum is invariant under three-dimensional rotations
applicable only to the z, &, y coordinates. The dynamical variable
associated with this rotational degree of freedom is called the spin of
the particle.



In the two-by-two representation, the particle at
rest has its four-momentum

P=(0 1)

This is invariant under rotation:

(TR (4 D, =)

~(0 1)



If the particle is massless,

the momentum four-vector is

1 0
Po(1,1,0,00 = (5 o)

and the invariant transtormation
(0 7)o 0){Z 1)=(s o)
0 1 0 0 —~ 1) \0 0/°
(0 1)
0O 1

triangular matrix looks strange, and has a stormy
history. Physically, it corresponds to a

This

gauge transformation.



Lorentz completion of the little group

Mathematicians call this ”orbit”
completion.

We are then interested in what
happens when the particle moves with
a non-zero momentum. If it moves
along the z direction, the
four-momentum takes the value

m/(coshn, sinhn,0,0),
which means

po = m(coshn), p. = m(sinhn),

en _ Po +pz
Po — D=

Accordingly, the little group consists of
Lorentz-boosted rotation matrices.
This aspect is not contained in
Wigner’s

original 1939 paper.

-

Move along the
hyperbola

=

05

10 23 i

Momentum



In the large-n limit, the four-momentum becomes
P = (e",€e",0,0).
In the two-by-two representation, this becomes
e’ 0 e’ 0
P=(5 )= (5 o)

For n = 0, the momentum can come back to

1 0
P=(g 1)
for the massive particle, and
1 0
P=(g o)

for the massless particle.

rotation

Go to infinite
momentum and
come back

gauge transformation

-

0.5 10 15 20 25 30

Momentum



Lorentz-boosted rotation matrix

(6 ) (sntorn) ooy ) (To em)

_ ( cos(6/2) —e” sin(ﬂ/Z))
e "sin(6/2) cos(0/2)

cos(6/2) e"sin(6/2)
_}( 0 cos(0/2) )

However, 8 = 0 if the determinant = 1. Thus €"sin(8/2) = =,

and
( )
0 1 :



Winger’s Little Groups

Particle mass Wigner 4-mom. 2-by2

Transform matrices

Massive (1,0,0,0) ({]j I[1] )
Massless (1,1,0,0) (%} g)
Imaginary (0,1,0,0) ( E —{]1 )

cos(0/2)
sin(6/2)

cosh(A/2)
sinh(A/2)

— sin(60/2)
cos(6/2)

(s 1)

sinh(\/2)
cosh(A/2)

)

)




Wigner and Einstein

Massive, Slow COVARIANCE Massless, Fast
E = p?/2m E = \/m2c* + (cp)? E =cp
Ss Helicity

Wigner’s Little Group

51,85 Gauge Transformation

Wigner liked this table.



Jones vector for polarization optics

An Optical beam progpagates along the z
direction with @ and y components of the
electric field. We start with

(F0) = (cxti=—ot).

When the beam goes through a medium
with different values of indexes of
refraction for the x and y directions, we
have to apply the matrix

i6/2 0
26)= (%) ue)-

In the language of the space-time
symmetry, this matrix performs a
roation aroung the z axis.

Also along the & and y directions, the
attenuation coefficients could be different.
This will lead to the matrix

e ™M 0
( 0 e™ )

n/2
— e~ (m+m2)/2 (eo 6_07]/2 )

withn =mne — 1, . Ilf ;1 = 0 and
1Ny = 00, the above matrix becomes

(0 o)

0 0/’

which eliminates the y component. This
matrix is known as a polarizer in the

textbooks, and is a special case of the
attenuation.



Matrices applicable to the Jones vector

This attenuation matrix tells us that the
electric fields are attenuated at two
different rates. The exponential factor
e~ (m+n2)/2 peduces both components at
the same rate and does not affect the
state of polarization. The effect of
polarization is solely determined by the
squeeze matrix

et 0
B(n): ( 0 e—n/2)'

In the language of space-time
symmetries, this matrix performs a

Lorentz boost along the z direction.

The polarization axes are not always the
x and y axes. For this reason, we need
the rotation matrix

__(cos(0/2) —sin(6/2)
R(0) = (sin(9/2) cos(0/2) )

This matrix peroforms a rotation
around the x axis in the space-time
symmetry.

Among the rotation angles, the angle of
45° plays an important role in
polarization optics. Indeed, if we rotate
the squeeze matrix B(n) by 45°, we end
up with another squeeze matrix

_ (cosh(\/2) sinh(\/2)
S(A) = (g(iﬁh()\/Z) (S:osh(A/Z)) .

In the language of space-time
physics, this matrix leads to a
Lorentz boost along the x axis.



Matrices for optics and Lorentz transformations

Polarization Optics Transformation Matrix Particle Symmetry
e?? 0
Phase shift & ( 0 i ﬂ) Rotation around z.
e cos(0/2) — sin(ﬁ'/?l}) L
Rotation around z (Ein (0/2)  cos(6/2) Rotation around y.
e’ 0
Squeeze along @ and y ( 0 e IE) Boost along z.

cosh(A/2) sinh(A/2) ) Boost along .

Squeeze along 45 ( sinh(A/2) cosh(A/2)

(ab)? sin® Determinant (mass)?




Stokes parameters and coherency matrix

However, the Jones vector alone cannot
tell us whether the two components are
coherent with each other. In order to

address this important degree of freedom,

we use the coherency matrix

Sll 812
C=(n sn)
SZl S22 ’

with
S =< Y1 >=1,

Sa2 =< P12 >=1,

If 2 and 5 are different, the off-diagonal
elements become

1 /T
<P >= [ gt + gt

where T, for a sufficiently long time
interval, is much larger than 7.

Sip =< ¢I¢2 > = e—(0'+z'6),
S21 =< Yy >= g ri),

The o parameter specifies the degree of
coherency.

This coherency matrix is not always real
but it is Hermitian. Thus it can be
diagonalized by a unitary transformation.
If this matrix is normalized so that its
trace is one, it becomes a density matrix.



Stokes parameters constitute a four-vector.

The coherency matrix takes the form

(8 ﬁ Sll 512 o Y

cz( 1 e_(ma)). :(7 5)(821 522)(5* 6:)'

e—(cr—i&) 1
We can then make the following linear
Singe e~ 7 is always smaller than one, we combinations.
can introduce an angle x defined as

S — S11 + Sa2
cosy =e 7, b=y 2
and call it the “decoherence angle.” In S. — S11 — S22
terms of this angle, ° T 2 ’
. ( 1 (cos X)e_*"s) S, — S12 + Sa1
~ \(cosx)e® 1 ' 2 ’
& = S12 — S21 .
Starting from this simplest form of the 20
coherence matrix, the most general form These quantities lead to the four-vector:
can be obtained from the Lorentz
transformation. (So5:855 55 85):

s, S
c’:GCGTz( 11 }2)
Szl 822



Poincare
Sphere

Figure 3.2.1. The Poincaré sphere £} is the unit sphere surrounding the origin of the
Cartesian coordinate, orthonormal basis (e, e,). The normalized Stokes p S
({a, ), (g, {&,)) constitute the components of the Poincaré vector u that represents
the state of polarization of an arbitrary pure state of polarization (Ju| =1). The
longitude 24 and latitude 2y of point M are respectively related to the azimuth and the
ellipticity angles of the polarization ellipse of the wave. Each point on Ef corresponds
to a unique state of polarization. The north pole N =[0,0,1]" represents right
circularly polarized light. The south pole S =[0,0, —1]7 represents left circularly
polarized light. Points on the equator (2y = 0) represent linearly polarized light.
Elliptical polarization states lie between the poles and equator. The positive directions
of the angle 2y and 2y are defined according the adopted sign convention.

We now have the four-vector

(SD, Sg, Sl, Sg), which is
Lorentz-transformed like the space-time
four-vector (¢, z, x,y) or the
energy-momentum four-vector. This
Stokes four-vector has a three-component
subspace (83, S1,52), which is like the
three-dimensional Fuclidean subspace in
the four-dimensional Minkowski space. In
this three-dimensional subspace, we can
introduce the spherical coordinate system
with

R=/S2+ 52+ 82
=0

o
| —

= (sin x) cos 4,
Sy = (sin x) sin d.



Poincare sphere with two radii

The radius R is the radius of this sphere,
and is

R = cos x.
with
Ss = 0.
S(] — 1,

The radius R takes its maximum value Sy
when x = 0°. It decreases and reaches
its minimum value, S5, when xy = 90°.
The determinant of the coherency matrix
is

S2 — R* =1 — cos® x = sin’ .

This determinant is invariant under the
optical (Lorentz) transformation
applicable to the coherency matrix.

S

Y



From massive to massless

The coherency matrix is Hermitian, and
it can be diagoinalized to

(l—l—cosx 0 )
0 1—cosy/"

(o o)

0 0/’

when x = 0. This form corresponds to
the four-momentum for a massless

particle.
It becomes

[t becomes

(0 1)

when x = 90°. This form is the same as
the four-momentum for a massive particle
at rest.

It is possible to go from the massive to
massless case continually, but this
transformation does not leave the
determinant invariant since it is (sinx)?.

Thus, the parameter x does not belong to
the Lorentz group.

Within the framwork of the Lorentz
group, we take Lorentz-boost the
rest-frame four-momentum:

(0 1) = (4 o)
0 1 0 e ")’
For large values of i, this matrix can be
written as

e” 0

(9 o)

We can then come back to n = 0, and

(0 0):



A Energy A Energy

rotation

direct route
gauge transformation

r

(L0 h_ L
I].U 0% 14 15 Pl 15 i i} ik 14 15 1 15 il

Momentum Momentum

The Poincaré sphere contains the symmetry of the Lorentz group.
In addition, it allows the mass of the particle to take different
values. We should expect more from the Poincaré sphere.



| would like to thank my long-time
collegues who worked with me.
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