

The quest for Gravitational Waves:

Status of ground based projects

Federico Ferrini EGO

With contributions from

H. Grote – GEO T. Kajita – KAGRA B. Iyer – IndIGO D. Shoemaker – LIGO

No Detections Yet... Why not?

- First generation detectors reached about 100 galaxies
- Events happen once every 10,000 years per galaxy...
- Need to reach more galaxies to see more than one signal per lifetime

(considering NS-NS mergers)

Advanced Sensitivity: 10x More Range makes a qualitative difference

- Advanced detectors will reach about 100,000 galaxies
- Events happen once every 10,000 years per galaxy...
- Order of 1 per month!

The search for GW signal emitted by a binary system (NS-NS) requires a network of (distant) detectors

- Event reconstruction
 - Source location in the sky
 - Reconstruction of polarization components
 - Reconstruction of amplitude at source and determination of source distance (BNS)
- Detection probability increase
- Detection confidence increase
- Larger uptime
- Better sky coverage

NETWORK SKY COVERAGE

GW interferometric detectors

• A network of detectors be active in the World

BEYOND THE LIGO/VIRGO SENSITIVITY

Which ideas/technologies to gain a factor 10 in sensitivity?

$H_{10}^{10^{-10}}$

FREE TEST MASSES

- Virgo test masses are currently suspended from a vibration isolator compliant with 2nd generation
- LIGO has developed a new active system (most of seismic suppression achieved by feedback)
- Both detectors will work with a lower cutoff at ≈10 Hz

LOW FREQUENCY RANGE

MAIN SCIENCE TARGETS: BH/BH binaries, pulsars

- Sensitivity limited by thermal noise in wires suspending the mirrors (now steel wires)
- SOLUTION: use low dissipation materials (fused silica: 1000x better than steel, 30x improvement in thermal noise)
- Fused silica suspensions pioneered by GEO600
- Long R&D activity in the community to engineer the solution
 - Fiber geometry
 - Welding to mirrors
 - Assembly procedure
 - <u>Robustness</u> issues
- Monolithic payload to be tested on Virgo in 2010 (TBC, risk reduction in view of Advanced Virgo)

HIGH FREQUENCY RAN

$N_{(\frac{10^{20}}{10^{22}}, \frac{10^{21}}{10^{22}}, \frac{10^{21}}{10^{22}}, \frac{10^{22}}{10^{22}}, \frac{1$

10⁴

10

MAIN SCIENCE TARGETS: Supernovae

- Sensitivity limited by laser shot noise
- SOLUTION: increase laser power
- Available technology: solid state laser providing up to 200 W developed at Laser Zentrum Hannover (GEO600)
- High power drawbacks:
 - Radiation pressure noise
 - Thermal effects in the mirrors
- Drawbacks mitigation
 - Heavier mirrors
 - Thermal Compensation System (TCS)

GEO600

- German-British (+ Spain) collaboration, location Hannover / Germany

Leibniz Universität Hannove

U. Birmingham CARDIFF **U. Mallorca**

UNIVERSITY

IGR

Glasgow

GEO600: The First Gravitational Wave Detector using Squeezed Light!

Squeezing: up to 3.5dB yet

First demonstration of squeezing at a Gravitational-wave detector Nature Physics 7, 962-965 (2011)

	ĺ																																								Ţ						7		_	1
																																	-								•									L
	:																				:												:								:						:			L
• •	1	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	•	• •	:	•	•	•	•	•	•	•	-	•	•	•		•	•	•	-	•	• •	-	5	•	•	•	•	•		-	-	1
	:																				:																				•						•			L
																																	-								•									L
· ·	÷	•	•	•	•	•	-	• •	• •	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	-	•	• •	•	÷	•	•	•	-	• •	• •	-	2	•	•	•	•	•	÷	-	-	ł

Largest Dedicated Computer Cluster in the World for GW Data Analysis at AEI

Astrowatch for GEO600 until 2015

LIGO and Virgo offline for upgrading

GEO600 taking data 24/7

 Occasional interruptions for commissioning and upgrades

LIGO Laboratory: two Observatories and Caltech, MIT campuses

Hanford

Caltech

- Mission: to develop gravitational-wave detectors, and to operate them as astrophysical observatories
- Jointly managed by Caltech and MIT; responsible for operating LIGO Hanford and Livingston Observatories
 - Requires instrument science at the frontiers of physics fundamental limits

MIT

LIGO in Washington state...

...LIGO in Louisiana

200W Nd:YAG laser, stabilized in power and frequency

- Designed and contributed by Max Planck Albert Einstein Institute
- Uses a monolithic master oscillator followed by injection-locked rod amplifier

Test Masses

- Requires the state of the art in substrates and polishing
- Pushes the art for coating!

- Both the physical test mass, a free point in space-time, and a crucial optical element
- Mechanical requirements: bulk and coating thermal noise, high resonant frequency
- Optical requirements: figure, scatter, homogeneity, bulk and coating absorption

Test Mass Polishing, Coating

- Heraeus substrates
- Superpolished
- Ion-beam assisted sputtered coatings (LMA Lyon)

Initial LIGO: first lock in 2000 – 7 years to reach goal

"Half Interferometer" in progress @ Hanford (now one arm, in the fall the other)

✓ Auxiliary green laser to initially stabilize the arm cavity length
 ✓ 1.06 micron detection light held precisely on, or off resonance
 ✓ First measurement of arm cavity motion

VIRGO

- LAPP Annecy
 NIKHEF Amsterdam
 Radboud Univ. Nijmegen
 RMKI Budapest
- INFN Firenze-Urbino

A DE DE RUMAN

EGOW

CNRS, INFN & NIKHEF

INFN – Genova

LMA – Lyon INFN – Napoli OCA – Nice LAL – Orsay APC – Paris LKB - Paris

A PARTY AND A

INFN – Padova-Trento INFN – Perugia INFN – Pisa INFN – Roma 1 INFN – Roma 2 POLGRAV - Warsaw

-

2015 CHALLENGE

- Start in 2015 with a simplified configuration, similar to Virgo+: likely to reduce commissioning time
 - No signal recycling (reduce locking complexity)
 - Virgo+ laser (up to 60W)
- Target BNS inspiral range: >100 Mpc

26

INFRASTRUCTURE

- INJ/DET clean labs
 - civil works completed
 - final details being worked out
 - start-up/tests in 1-2 weeks

DET lab

INSTALLING INJ (and more...)

 Ready to start the installation of the injection system and all is needed to operate it

MUCH MORE IS COMING

- Many parts are ready (or will soon be ready) to be installed
- 2014 will be a crucial year for the assembly & integration

Key features of KAGRA

The detector will be constructed underground Kamioka.
→ Reduction of seismic noise (to

approximately 1/100).

Cryogenic mirrors will be used to reduce the thermal noise (in the 2nd phase).

Key features of KAGRA: Underground

Key features of KAGRA: Cryogenic mirrors

CLIO @Kamioka

Excavation status (Center room)

To laser room

To Y-arm

To X-arm

Status of preparation: Vacuum

 All the pipes (total 6km) were produced and delivered to Kamioka.

A mockup tunnel has been prepared at a factory near Kashiwa.

Status of construction: Cryogenic system

Status of construction: Cryogenic system (Real)

LIGO-India Project

- Construction and Operation of a Advanced LIGO Detector in India in collaboration with the LIGO Lab. Set up a three node global Advanced LIGO detector network by 2020 and operate it for 10 years.
- The entire hardware components of the aLIGO detector along with designs and software to be provided by LIGO-USA and its UK, German and Australian partners (\$120 M including R&D).
- The entire infrastructure including the 8 km beam tubes, UHV system, Corner and End stations, Related Labs and Clean rooms as well as the team to build and operate the Observatory will be the Indian responsibility (\$250 M, 15 yrs).

LIGO-India proposal update

- October 2011: LIGO-India included in the list of Mega Projects under consideration by the Planning Commission
- Dec 2011: IPR, RRCAT, IUCAA commit to DAE-DST to take on Lead Complementary Nodal Institutional responsibilities.
- Oct 2011, Apr, June 2012 : NSF Reviews on LIGO-India
- August 2012: National Science Board approved the proposed Advanced LIGO Project change in scope, enabling plans for the relocation of an advanced detector to India.
- April 2012 LIGO-India discussed at Atomic Energy Commission (AEC) meeting as a DAE Mega Project
- Dec 2012 National Development Council Meeting to approve the Twelfth Five year Plan. LIGO-India included and figures *first* in the list of **Mega-Projects** in its report.
- Feb Sept 2013 LIGO-Lab visits, Meetings on UHV costing, Site selection, Infrastructure, Resolution of Technical issues on Seismic Data handling,...
- Dec 2013: Expected submission of note from DAE for Cabinet approval of the LIGO-India Project

Meanwhile....

- Membership of IndIGO Consortium and IndIGO-LSC is growing
- Project Coordinators appointed at 3 lead institutes
- Project Teams set up for LIGO-India at 3 lead institutes consisting of scientists and engineers ..
 IPR (8), RRCAT (5), IUCAA (14)
- IUCAA: First phase of Tier-2 data & compute centre for archival of GW data and analysis (30 Tflop, 600 Tb storage ..)
- Site pre-selection, Visits of Indian team to LIGO Labs and Observatories, Visits by LIGO-Lab scientists to India, Student internships, Workshops, Post-doc appointments,...
- Laboratory at RRCAT designed to house all the Interferometer Detector related activities for the LIGO-India project
- Building planned by IPR for vacuum and infrastructure team
- Nov, Dec 2013 LIGO-Lab, LIGO-India meetings scheduled in India to finalize DPR, MoU and Management structures
- GWPAW, IUCAA , Pune , Dec 17-20, 2013
- School on GW Experimental Aspects, RRCAT Dec 23 28, 2013

AIGO

Multi-messenger astronomy: Example: Short Gamma Ray Burst

✓ NS-NS binary might be a progenitor of Short-GRB ?

Grants-in-Aid for Scientific Research "New developments in astrophysics through multi-messenger observations of gravitational wave sources", PI: T. Nakamura

GW Timelines

1st Generation

2nd Generation

3rd Generation

Networking

- Networking in GW research is crucial:
 - Know-how and Data exchange
 - Interactions with Astrophysics and Numerical Relativity communities
 - Common R&D
 - Commissioning
 - Planning
- EGO strategy in EU towards a full integration of GW research in the World
 - Main tool: European Projects

European Projects

- European projects are a good opportunity to join together the German and British GEO groups with the Virgo collaboration
- In the past: 2004-2008
 - FP6-ILIAS integration activities (under the ASPERA hat)
 - EGO coordinated the networking in GW FR, DE, GB, IT (0.1M€)
- Recently: 2008-2012
 - Einstein Telescope Design Study FR, DE, GB, NL + HU, PL, ES (3 M€)
- Now: 2012-2016
 - ELITES (FP7-IRSES) DE, GB, IT, NL + JP (0.3 M€)
 - GraWIToN (FP7-ITN) FR, DE, GB, IT (3.6 M€)
 - ASPERA R&D DE, GB, NL, PL, RU + FR, HU, IT (1.3 M€)

Why a global strategy

- ~100 yrs from Einstein's "prediction", only indirect evidence → "Complexity"

 Requirements → high tech and "ad hoc" research infrastructures
- ♦ Ambiguity of sources (local noise vs outer signal)
 coincidences
- ♦ Identification of sources → vision by multiple eyes
 The same nature of the physical problem determines the strategy of research.

Hence, Cooperation more than Competition

The Last Page

- The next generation of gravitational-wave detectors will have the sensitivity to make frequent detections
- The Advanced detectors are coming along well, planned to complete in 2015
- The world-wide community is growing, and is working together toward the goal of gravitational-wave astronomy

Goal: Direct Detection 100 years after

