The unreasonable effectiveness of experiments in constraining nova nucleosynthesis

Anuj Parikh

Universitat Politècnica de Catalunya Institut d'Estudis Espacials de Catalunya

The unreasonable effectiveness of experiments in constraining nova nucleosynthesis

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. XIII, 001-14 (1960)

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University, May 11, 1959

EUGENE P. WIGNER

Princeton University

The unreasonable effectiveness of experiments in constraining nova nucleosynthesis due to the hard work of many people

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. XIII, 001-14 (1960)

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University, May 11, 1959

EUGENE P. WIGNER

Princeton University

WIGNER VS A NOVA

WIGNER VS A NOVA

SAO/NASA Astrophysics Data System (ADS)

Query Results from the ADS Database

Selected and retrieved 108 abstracts.

Go to bottom of page

-

Sort options

13

#	Bibcode	Score	Date	<u>Lis</u>	<u>t of Links</u>					
	Authors	Title		Access Control Help						
1	□ <u>1992Orion50236N</u>	1.000	12/1992							
	Nussbaumer, H.	Novae	- von den l	neftige	en Folgen einer	Zweierbezieh	ung.			
2	□ <u>1992MNRAS.259P23L</u>	1.000	12/1992	A	<u>F G</u>		<u>R C</u>	<u>s</u>	U	
	Livio, M.; Pringle, J. E.	Dwarf	nova outbu	rsts -	The ultraviolet	delay and the	effect o	of a weak	dy magr	netized white dwarf
3	□ <u>1992MNRAS.259P17H</u>	1.000	12/1992	A	<u>F G</u>					
	Harrison, Thomas E.	A near-	-infrared su	rvey	of old novae. I	- The				
4	□ <u>1992JRASC86287R</u>	1.000	12/1992							
	Reed, L.	A new	planetariun	n for 1	Nova Scotia?		E			S
5	□ <u>1992BVol5563G</u>	1.000	12/1992	A	E		62	2	$\langle \cdot \rangle$	
	Greenough, J. D.; Dostal, J.	Cooling Canada	g history an a)	d diff	erentiation of a	thick				

Classical nova explosions

REVIEWS: "Classical Novae", eds: Bode, Evans (2008) José and Hernanz (2007) ...

SOME HISTORY

For ≈ 2000 y, *stellae novae* = nova + supernova

- 1885: Observation of a *stella nova* in the *spiral nebula* M31 (S Andromedae, Hartwig)
- 1920: The "Great Debate"...**distance** of the *spiral nebulae* (Curtis, Shapley)
- 1920s: a ≈dozen other *stellae novae* discovered in M31, **all far fainter** than that of 1885
- 1920s: Hubble's distance scale...*spiral nebulae* are **galaxies**!
- 1934: **two classes** of *stella nova*, "super-nova" for the most luminous ones (Zwicky, Baade, Lundmark)

OBSERVATIONS

Nova Her 1934 (optical), d ~ 500 ly

OBSERVATIONS NOVA CYGNI 1992

Day after Outburst

AAVSO DATA FOR V1974 CYG - WWW.AAVSO.ORG

MECHANISM: Unstable thermonuclear burning of accreted matter **on the** surface of a white dwarf star

- close binary systems (1 12 h)
- accretion for ≈ 10⁵ years^{*}
- envelope is degenerate
- from few x 10⁷ K to $T_{peak} \approx 10 100$ days
- outburst is confined to the envelope

MECHANISM: Unstable thermonuclear burning of accreted matter **on the** surface of a white dwarf star

Casanova et al. (2010, 2011)

MECHANISM: Unstable thermonuclear burning of accreted matter **on the surface of a white dwarf star**

FIRST MODELS:

Schatzmann 1950, 1951; Cameron 1959; Rose 1968; Starrfield 1971 (the need for CNO enhancement); ...

LATER:

Parameterized/one-zone models: Hillebrandt and Thielemann 1982; Wiescher et al. 1986; Weiss and Truran 1990; ...

1-D hydrodynamic models: Prialnik and Kovetz 1995; Starrfield et al. 1998; Jose and Hernanz 1998; Paxton et al. 2011 ...

Multidimensional models (limited): Shara 1982, Fryxell and Woosley 1982, Shankar et al. 1992, Glasner and Livne 1995, Kercek et al. 1998, Kercek et al. 1999 (3D), Glasner et al. 2005, Glasner et al. 2007, Casanova et al. 2010, Casanova et al. 2011 (3D)

KEY variables: M_{WD}, M_{acc}, Z_{acc}, L_{initial}, mixing

NUCLEOSYNTHESIS:

MultiD models: limited in scope, networks ≤ 15 isotopes Still need to rely on 1D hydro models for detailed nucleosynthesis calculations **MODELS** \rightarrow for nucleosynthesis – 1D hydrodynamic \rightarrow reaction networks: \approx 100 species, H – Ca

José, Casanova, Moreno, García-Berro, AP, and Iliadis (2010)

MODELS \rightarrow for nucleosynthesis – 1D hydrodynamic \rightarrow reaction networks: \approx 100 species, H – Ca

How reliable are these nucleosynthesis predictions?

Nova sensitivity study (lliadis et al. (2002)) :

- input from **5 different** hydrodynamic nova simulations
- Variation of each of 175 reaction rates within errors

¹⁷ O, ¹⁸ F
¹⁷ O, ¹⁸ F
¹⁷ O, ¹⁸ F
¹⁶ O, ¹⁷ O, ¹⁸ F
²¹ Ne, ²² Na, ²² Ne
²² Ne
²⁰ Ne, ²¹ Ne, ²² Na, ²³ Na, ²⁴ Mg, ²⁵ Mg, ²⁶ Mg, ²⁶ Al, ²⁷ Al
²⁰ Ne, ²¹ Ne, ²² Na, ²³ Na, ²⁴ Mg
²⁶ Mg
²⁶ Al
²⁶ Mg
²⁹ Si
³⁰ Si, ³² S, ³³ S, ³⁴ S, ³⁵ Cl, ³⁷ Cl, ³⁶ Ar, ³⁷ Ar, ³⁸ Ar
³³ S, ³⁴ S, ³⁵ Cl, ³⁶ Ar
³³ S
³⁴ S, ³⁵ Cl, ³⁶ Ar
³⁴ S
³⁷ Cl, ³⁷ Ar, ³⁸ Ar
³⁸ Ar

Nova sensitivity study (lliadis et al. (2002)) :

- input from **5 different** hydrodynamic nova simulations
- Variation of each of 175 reaction rates within errors

¹⁷ O(p, γ) ¹⁸ F	$^{17} m O, ^{18} m F$ Fox+ 2004,2005; Hager+2012, Kontos+2012, LUNA
$^{17}O(p, \alpha)^{14}N$	^{17}O , ^{18}F Chafa+2005,2007,2013; Sergi+2013, LUNA
${}^{17}\mathrm{F}(\mathrm{p},\gamma){}^{18}\mathrm{Ne}$	17O, 18F Parete-Koon+ 2003, Blacknom+2003, Dufour+2004
${}^{18}F(p, \alpha){}^{15}O$	16O, 17O, 18F Chae+ 2006, Beer+2011, Adekola+2011, Mountford+2012, Laird+2013
21 Na(p, γ) 22 Mg	²¹ Ne, ²² Na, ²² Ne _{Davids+2003} , Bishop+ 2003, D'Auria+ 2004, Seweryniak+2005, Liu+2007
22 Ne(p, γ) 23 Na	²² Ne Hale+ 2002, Jenkins+2013
23 Na(p, γ) 24 Mg	²⁰ Ne, ²¹ Ne, ²² Na, ²³ Na, ²⁴ Mg, ²⁵ Mg, ²⁶ Mg, ²⁶ Al, ²⁷ Al Rowland+2004, Hale+2004
$^{23}Mg(p, \gamma)^{24}Al$	²⁰ Ne, ²¹ Ne, ²² Na, ²³ Na, ²⁴ MgVisser+2007, Zegers+ 2008, Lotay+ 2008
$^{26}Mg(p, \gamma)^{27}Al$	²⁶ Mg
²⁶ Al ^g (p, γ) ²⁷ Si	²⁶ Al Ruiz+2006, AP+2011, Pittman+2012
²⁶ Al ^m (p, γ) ²⁷ Si	$^{26}{ m Mg}$ Deibel+ 2008, Lotay+ 2009, 2011
29 Si(p, γ) 30 P	²⁹ Si
$^{30}P(p, \gamma)^{31}S$	³⁰ Si, ³² S, ³³ S, ³⁴ S, ³⁵ Cl, ³⁷ Cl, ³⁶ Ar, ³⁷ Ar, ³⁸ Ar Jenkins+2006, Ma+2007, Wrede+2007, 2009, AP+2011, Doherv+2012, Irvine+2013
${}^{33}S(p, \gamma){}^{34}Cl$	³³ S, ³⁴ S, ³⁵ Cl, ³⁶ Ar AP+ 2009, Freeman+ 2011, Fallis+2013
$^{33}Cl(p, \gamma)^{34}Ar$	³³ S
${}^{34}S(p,\gamma){}^{35}Cl$	³⁴ S, ³⁵ Cl, ³⁶ Ar
${}^{34}Cl(p, \gamma){}^{35}Ar$	³⁴ S
${}^{37}Ar(p,\gamma){}^{38}K$	³⁷ Cl, ³⁷ Ar, ³⁸ Ar
³⁸ K(p, <i>γ</i>) ³⁹ Ca	³⁸ Ar

How are these thermonuclear rates determined?

Reaction rate per particle pair at some temperature T

$$N_A \langle \sigma v \rangle = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} \int_0^\infty E \,\sigma(E) \, e^{-E/kT} \, dE$$

So...."just" measure $\sigma(E)$ (or estimate it from theory) and solve!

For reactions involved in novae, the cross-section is often dominated by a few contributions from narrow resonances

How are these thermonuclear rates determined?

Reaction rate per particle pair at some temperature T

$$N_A \langle \sigma v \rangle = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} \int_0^\infty E \,\sigma(E) \, e^{-E/kT} \, dE$$

So...."just" measure $\sigma(E)$ (or estimate it from theory) and solve!

For reactions involved in novae, the cross-section is often dominated by a few contributions from narrow resonances

An isolated resonance can be described by the Breit-Wigner formula

$$\sigma_{\rm BW}(E) = \frac{\lambda^2}{4\pi} \frac{(2J+1)(1+\delta_{01})}{(2j_0+1)(2j_1+1)} \frac{\Gamma_a \Gamma_b}{(E_r-E)^2 + \Gamma^2/4}$$

How are these thermonuclear rates determined?

Reaction rate per particle pair at some temperature T

$$N_A \langle \sigma v \rangle = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} \int_0^\infty E \,\sigma(E) \, e^{-E/kT} \, dE$$

So...."just" measure $\sigma(E)$ (or estimate it from theory) and solve!

For reactions involved in novae, the cross-section is often dominated by a few contributions from narrow resonances

$$\sigma_{\rm BW}(E) = \frac{\lambda^2}{4\pi} \frac{(2J+1)(1+\delta_{01})}{(2j_0+1)(2j_1+1)} \frac{\Gamma_a \Gamma_b}{(E_r - E)^2 + \Gamma^2/4}$$

$$N_A \langle \sigma v \rangle = N_A \left(\frac{2\pi}{m_{01}kT}\right)^{3/2} \hbar^2 e^{-E_r/kT} \omega \gamma$$

An isolated resonance can be described by the Breit-Wigner formula

$$\omega \gamma = \frac{2J+1}{(2J_t+1)(2J_p+1)} \frac{\Gamma_p \Gamma_{\gamma}}{\Gamma}.$$

How are these thermonuclear rates determined?

For these cases, the problem may be reduced to determining the parameters of resonances

$$<\sigma\upsilon>=\left(\frac{2\pi}{\mu kT}\right)^{3/2}\hbar^{2}\sum_{i}(\omega\gamma)_{i}\exp\left(\frac{-(E_{R,i}^{CM})}{kT}\right)$$
$$\omega\gamma=\frac{2J+1}{(2J_{t}+1)(2J_{p}+1)}\left(\frac{\Gamma_{p}\Gamma_{p}}{\Gamma}\right).$$

$$\Gamma_p = \frac{2\hbar^2}{\mu a^2} P_l C^2 S \theta_{s.p.}^2$$

These may be determined through indirect measurements (stable beams/targets, high cross-sections)

MOST nuclear reaction rates involved in standard models of classical nova explosions are sufficiently well-constrained.

ion beam facility at TRIUMF, Vancouver [252]. Actually, the list of reactions whose uncertainty still has a strong impact on nova yields has been dramatically reduced. The main interest is now focused on measuring the challenging reactions ${}^{18}F(p,\alpha){}^{15}O$, ${}^{25}Al(p,\gamma){}^{26}Si$, and ${}^{30}P(p,\gamma){}^{31}S$.

José and Iliadis (2011)

Direct (recent): Chae+ 2006, de Sereville+ 2009, Murphy+ 2009, Beer+ 2011 **Indirect (recent)**: Dalouzy+ 2009, Adekola+ 2011a, 2011b, 2012, Laird+ 2013

Direct (recent): Chae+ 2006, de Sereville+ 2009, Murphy+ 2009, Beer+ 2011 **Indirect (recent)**: Dalouzy+ 2009, Adekola+ 2011a, 2011b, 2012, Laird+ 2013

1D hydro nova model

The uncertainty associated with the 48 keV resonance, however, results in a factor of ~ 2 uncertainty in the final ¹⁸F yield, which, in turn, affects the predicted maximum detectability distance for the associated γ -ray lines by about a factor 1.4 for the models considered.

γ-ray emission from novae may initially be dominated by contributions from e+-e- following ${}^{18}F(β+)$ (t_{1/2} = 110 m)

Indirect (recent): Jenkins+ 2006, Ma+ 2007, Wrede+ 2007, 2009, AP+ 2011, Doherty+ 2012, Irvine+ 2013

Let me end on a more cheerful note. The miracle of the appropriateness of the <u>language of mathematics</u> for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve. We should be grateful for it and hope that it will remain valid in future research and that it will extend, for better or for worse, to our pleasure even though perhaps also to our bafflement, to wide branches of learning.

Classical nova explosions

Compact object:

L_{max}:

 $\Delta \mathbf{t}_{\mathsf{lightcurve}}$:

T_{orbital}:

t_{rec}:

T_{peak}:

 $\boldsymbol{\rho}_{\mathsf{peak}}$:

envelope:

#_{Galaxy}:

Ejecta:

nucleosynthesis:

white dwarf (CO / ONe
~ 10 ⁴ – 10 ⁵ L _{sol}
~ days – months
~ 1 – 16 h
∼ 10 ⁴ − 10 ⁵ yr
~ 0.1 – 0.4 GK
~ 10 ³ – 10 ⁴ g / cm ³
~ 100 km
~ 30 / yr
~ 10 ⁻⁴ – 10 ⁻⁵ M _{sol} / nova
H – Ca

Most of the thermonuclear reaction rates involved are constrained by **experiments**

OBSERVATIONS

mass fraction in ejecta

MODEL	Н	He	С	Ν	0	Ne	Na-Fe	Ζ
		V693	CrA 1981					
Vanlandingham et al. 1997	0.25	0.43	0.025	0.055	0.068	0.17	0.058	0.32
Model ONe3	0.30	0.20	0.051	0.045	0.15	0.18	0.065	0.50
Andreä et al. 1994	0.16	0.18	0.0078	0.14	0.21	0.26	0.030	0.66
Model ONe4	0.12	0.13	0.049	0.051	0.28	0.26	0.10	0.75
Williams et al. 1985	0.29	0.32	0.0046	0.080	0.12	0.17	0.016	0.39
Model ONe5	0.28	0.22	0.060	0.074	0.11	0.18	0.071	0.50
		V137	0 Aql 1982					
Andreä et al. 1994	0.044	0.10	0.050	0.19	0.037	0.56	0.017	0.86
Model ONe7	0.073	0.17	0.051	0.18	0.14	0.24	0.14	0.75
Snijders et al. 1987	0.053	0.088	0.035	0.14	0.051	0.52	0.11	0.86
Model ONe7	0.073	0.17	0.051	0.18	0.14	0.24	0.14	0.76
		QU	Vul 1984					
Austin et al. 1996	0.36	0.19		0.071	0.19	0.18	0.0014	0.44
Model ONe1	0.32	0.18	0.030	0.034	0.20	0.18	0.062	0.50
Saizar et al. 1992	0.30	0.60	0.0013	0.018	0.039	0.040	0.0049	0.10
Model ONe2	0.47	0.28	0.041	0.047	0.037	0.090	0.0035	0.25
		PW	Vul 1984					
Andreä et al. 1994	0.47	0.23	0.073	0.14	0.083	0.0040	0.0048	0.30
Model CO4	0.47	0.25	0.073	0.094	0.10	0.0036	0.0017	0.28

José and Hernanz (1998)