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Independent-particle shell model�
Independent motion of individual neutrons and 

protons in a mean-field potential.�
Existence of shell structure with “magic numbers” 

2, 8, 20, 28, 50, 82, 126 of increased stability.�
Crucial ingredient: spin-orbit interaction (Fermi).�
Nobel prize in 1963: �

Mayer & Jensen: “…for their discoveries concerning 
shell structure.”�

Wigner: “…for his contributions to the theory of the 
atomic nucleus and the elementary particles…”�

Wigner-111, Budapest, November 2013 



Nuclear shell model�
Ingredients: �

Mean-field potential.�
Residual interaction between (some of) the nucleons.�

Difficulties: �
Nucleonic interactions from QCD (EFT).�
Large-matrix diagonalization.�

Issues of current interest: �
Changing shell structure and three-body forces in 

exotic nuclei.�
Continuum effects (nucleus = open quantum system).�

Wigner-111, Budapest, November 2013 



Words of warning �
Bethe: �

The complexity of the nuclear many-body problem is 
such that the shell-model wave functions cannot be 
the true eigenfunctions of the nuclear hamiltonian. �

Wigner: �
It is nice to know that the computer understands the 

problem. But I would like to understand it too.�

Wigner-111, Budapest, November 2013 



A complex nucleus: 199Pb �

G. Baldsiefen et al., Nucl. Phys. A 574 (1994) 521 �
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The effective nn interaction �
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Geometric interpretation�
Introduce the angle between the angular 

momentum vectors j1 and j2 of the two nucleons�
�
�
�
The effective nn interaction can be represented 

as a “universal function” of θ12.�
�
�

θ12 = arccos
J J +1( )− j1 j1 +1( )− j2 j2 +1( )

2 j1 j1 +1( ) j2 j2 +1( )
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Geometric interpretation �

Wigner-111, Budapest, November 2013 
J.P. Schiffer & W.W. True, Rev. Mod. Phys. 48 (1976) 191 �



Short-range nn interaction �
Delta interaction: �
Its matrix elements are�
�
�
�
�
with  �
�
�
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4π

Rnl
4∫ r( )r2dr

I. Talmi, Simple Models of Complex Nuclei (1993) �
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Classical (large j) limit �
Use Wigner’s results: �
�
�
�
�
�
where A is the area of a triangle and V the 

volume of a tetrahedron with sides of length    
li+1/2.�
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Classical (large j) limit �
The matrix element of the delta interaction in the 

large j limit equals�
�
�
with�
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A. Molinari et al., Nucl. Phys. A 239 (1975) 45�

j1 j2;JT !aTδ r1 − r2( ) j1 j2;JT ≈
s1

π sinθ12
+

t1
π tanθ12

s1 =
aT

1+δ j1 j2
1− −( )1+2+J+T( )+ 1+ −( )T( ) 1+ −( ) j1+ j2+J( )"
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−( ) j1+ j2+J 1− −( )1+2+J+T( )



Classical (large j) limit �

Wigner-111, Budapest, November 2013 

ji ! 11!2 J even
J odd

0 5 10
"8

"6

"4

"2

0

angular momentum J

"j 1j 2
;J

V
∆
j 1
j 2
;J
#



Generalized geometry�
Assume two neutrons and two protons: �
�
�
How do the energies depend on J, on the angular 

momenta of the single-particle orbits and on 
the angular momenta of the‘blades’?�

Take jν=j’ν and jπ=j’π.�
�

jν !jν Jν( ) jπ !jπ Jπ( );J ≡ JνJπ ;J

Wigner-111, Budapest, November 2013 



The pp or hh matrix element �
Consider a hamiltonian of the generic form�
�
The relative energies depend only on the neutron-

proton interaction: �
�
�

€ 

ˆ H = ˆ H ν + ˆ H π + ˆ V νπ
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JνJπ ;J V̂νπ JνJπ ;J
2Jν +1( ) 2Jπ +1( )
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The ph matrix element �
The corresponding matrix element for a particle-

hole configuration: �
�
�
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The large-j limit �
Semi-classical expressions are known for Wigner 

(3j) and Racah (6j) coefficients but not for 3nj 
coefficients with n > 2.�

A field of active mathematical research with 
connections to graph theory, quantum gravity, 
spin networks… �

�
�
�
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3nj coefficients as graphs�
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Two kinds of 12j symbols�
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A simple sum�
An exact result: �
�
�

€ 
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A.P. Yutsis et al., The Theory of Angular Momentum (1962) �
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A more complicated sum (1)�
An exact result: �
�
�
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A more complicated sum (2)�
Wigner’s classical approximation: �
�
�
Therefore�
�
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Another sum�
Another approximate result: �
�
�

€ 
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Classical 2p-2h matrix element �
We obtain for a delta interaction the following 

classical approximation: �
�
�
with  �
�
�

JνJπ
−1;J "aTδ r1 − r2( ) JνJπ−1;J ≈

s2
π sinθνπ

+
t2

π tanθνπ

s2 = 2 3a0 + a1( ), t2 = 2 a0 − a1( )ϕ

ϕ =
1
4
ϕνϕπ +ϕν "ϕπ + "ϕνϕπ + "ϕν "ϕπ( )

ϕρ = −( )ρ+ jρ , "ϕρ = −( ) "ρ+ "jρ
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jρ=19/2 & j’ρ=21/2 & Jρ=20	
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jρ=11/2 & j’ρ=13/2 & Jρ=12�
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jρ=21/2 & j’ρ=21/2 & Jρ=12�
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Conjecture�
Assume near-aligned neutrons and near-aligned 

protons: �
�
The nuclear force has an interaction energy in the 

coupled state which can be approximated as�
�
�
The coefficients sk and tk depend on the isoscalar 

and isovector interaction strengths.�

Jν ≡ jν "jν ""jν…;Jν & Jπ
−1 ≡ jπ

−1 "jπ
−1 ""jπ

−1…;Jπ

JνJπ
−1;J "aTδ r1 − r2( ) JνJπ−1;J ≈

sk
π sinθνπ

+
tk

π tanθνπ
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Conclusions and outlook �
The geometry of the effective nn interaction is 

generalized to more complex configurations.�
This idea can be applied to shears-band states in 

nuclei (e.g. 199Pb).�
Outlook: �

Proof of the np-nh conjecture.�
Analysis of other interactions (tensor…).�
Treatment of mixed configurations.�

P. Van Isacker & A.O. Macchiavelli, Phys. Rev. C 87 (2013) 061301(R) �
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3j as the limit of 6j�
The asymptotic formula: �
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(Semi-)classical approximations�
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FIG. 2. The series of 3j-coefficients ma min:S ma 
:s ma max, in (c) and the corresponding manifold of classical 
angular momentum vector diagrams J1+Ja+J3 =O (J,=h+1, 
J,.=m,) generated by rotation around the shaded circle in 
(a). The quantum mechanical probability distribution 
(2it + 1)(;;1 a for the occurrence of the classical vector 
diagrams in (a) are compared in (b) with Wigner's semiclassi-
cal estimate (2j1+1)/47[A. 

1973 J. Math. Phys., Vol. 16, No. 10, October 1975 

The unitary transformation T between the representa-
tion I jama) I jsms> and I (j2' j3)jlml) of the system of two 
angular momenta 
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defines the 3j-coefficients 

( jl j2 j3) = (_ 1)J2-Js+"'1 [2jl + 1]-1/2 T", J • 
-ml m2 ml -m2 21 

(2) 

T is customarily chosen real with the phase convention 
for its row vectors adopted as by Wigner. The squares 
T J 2 of the elements of T are to be interpreted as the 

for a system prepared in the internal angular 
momentum state 1j2m2) I jsml - m 2) to be found in the 
total angular momentum state I (j2,jS)jlml) and, vice 
versa, as the probability for a system prepared in the 
total angular momentum state I (j2,jS)jlml) to be found in 
the internal angular momentum state I j2m2) I j3ml - m 2). 
On the basis of this interpretation Wigner established an 
approximate functional expression for 3j-coefficients, 
using the classical vector diagrams in Figs. 1a and 2a. 
The probability that in Fig. 1ajl IJ2+J3 1 + 1, given 
by T "'aJ1

2, can be evaluated from the fact that each rela-
tive orientation 7'/1 of J2 and J 3 is equally likely. Wigner 
found 5 

T", i 2 = (2jl + 1)/41TA 
2 1 

(3) 

where A, the area of the triangle J2, J 3) projected 
onto the x, y plane, is given by the Cayley determinant 

0 J/-m 1
2 J 2

2-m2
2 1 
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Likewise, the probability for m 2 m 2 + 1 in Fig. 
2a also given by T "'2h2 can be evaluated by assuming that 
each angle 81 is equally likely. The result is again (3). 

In Figs. lc and 2c the 3j-coefficients 1: _%) and 
10-:'°"'2) are plotted representing the quantum me-

chanical probability amplitudes corresponding to the 
classical angular momentum coupling depicted by Figs. 
la and 2a. Figures 1b and 2b present the associated 
probabilities T ,"2h2 for a comparison with the Wigner 
expression (3). One can see that Eq. (3) does not really 
approximate individual 3j-coefficients, but does provide 
an approximation for the average taken over a few 
neighboring 3j-coefficients. Our aim now is to show how 
Wigner's estimate can be refined to give more accurate 
expressions for individual 3j-coefficients. 

The 3j-coefficients in Figs. lc and 2c are determined 
except for an overall constant factor as solutions of re-
cursion equations. The coupling coefficients in Fig. lc 
associated with the classical angular momentum diagram 
in Fig. la obey the recursion equationS 

K. Schulten and R.G. Gordon 1973 
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Matrix elements of MSDI �
Modified surface delta interaction: �
�
Its matrix elements are�
�
�
with  �
�
�€ 

−
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ˆ V MSDI i, j( ) = −4π $ a Tδ r i − r j( )δ ri − R0( ) + $ b τ i ⋅ τ j + $ c 

  

€ 

a01 =
a0 + a1
2

− −( ) ν + π +R a0 − a1
2

aT = % a TC R0( ), b = % b C R0( ), c = % c C R0( )

P.J. Brussaard & P.W.M. Glaudemans, Shell-Model Applications (1977) �
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1p-1h matrix element �
Recall the well-known classical interpretation of a 

short-range nuclear matrix element.�
For MSDI: �
�
�
with  �
�
�€ 

jν jπ
−1;J ˆ V νπ

MSDI jν jπ
−1;J ≈ b − c( ) +

αs

2π sinθνπ
+

α t

2π tanθνπ

  

€ 

α s = a0 + a1( ) 1+ −( ) jν + jπ +J[ ] + 2a0 + −( ) ν + π +J a0 − a1( )
α t = 2 −( ) jν + jπ +J a0 + −( ) ν + π + jν + jπ a0 − a1( )

J.P. Schiffer & W.W. True, Rev. Mod. Phys. 48 (1976) 191 �
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1p-1h matrix element �

jΡ " 41!2
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J even
J odd
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1p-1h matrix element �
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1p-1h matrix element �

jΡ " 41!2
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jρ=21/2 & j’ρ=21/2 & Jρ=20 �
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Bands without deformation �
Regular sequences of levels (bands) are usually 

associated with nuclear collective behaviour.�
In several regions of the nuclear chart in the 

neighbourhood of closed-shells nuclei regular 
bands are observed.�
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Shears bands�
Question: How can sequences of levels appear 

rotational when deformation is weak?�
Answer: Through the shears mechanism. This 

implies strong in-band M1 transitions.�

S. Frauendorf, Nucl. Phys. A 557 (1993) 259c �
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The shears mechanism �
S. Frauendwfet al./Nuclear Physics A 601 (1996) 41-55 43 
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Fig. I. Schematical representation of the density distribution of the high-j proton particles (torus like) and 
neutron holes (dum-bell like) in a shears band. From the top to the bottom, the three panels correspond to 
the beginning, the middle and the end of the band. 

state, where the angular momentum projection onto the symmetry axis of the deformed 
nucleus, K, changes due to its orbital part. Hence, depending on which kind of excitation 
one has in mind, the “scissors mode” involves a reorientation of the whole deformed 
proton distribution or only of pairs of weakly correlated protons against the deformed 
neutron distribution. In the “shears bands” , on the contrary, a pair of high-j protons in 
stretched coupling changes its orientation relative to a pair of high-j neutron holes in 
stretched coupling, where the nucleus is only weakly deformed. 

S. Frauendorf et al., Nucl. Phys. A 601 (1996) 41 �
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A shell-model configuration �
Assume a shears band in terms of two neutron 

particles and two proton holes: �
�
�
How do the energies of these states evolve as a 

function of J ?�
How does this evolution depends on the angular 

momenta of the single-particle orbits and on 
the angular momenta of the ‘blades’?�

Take jν=j’ν and jπ=j’π.�
�

€ 

N ≡ jν $ j ν ;Jν & P −1 ≡ jπ
−1 $ j π

−1;Jπ ⇒ NP −1;J
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Regular sequences�
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In terms of the shears angle�
The shears angle is the angle between the 

angular momentum vectors of neutron particles 
and the proton holes: �

�
�
We have �
�
�€ 

θνπ = arccos
J J +1( ) − Jν Jν +1( ) − Jπ Jπ +1( )

2 Jν Jν +1( )Jπ Jπ +1( )

Sn ≈
2

π 2 jν +1( ) 2 jπ +1( ) 2Jν +1( ) 2Jπ +1( )sinθνπ
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Semi-classical interpretation �

A.O. Macchiavelli et al., Phys. Rev. C 57 (1998) R1073�
A.O. Macchiavelli et al., Phys. Rev. C 58 (1998) R621  �

Schematic model in terms of the coupling of two 
vectors Jν and Jπ and a ‘shears’ angle�

�
�
An effective interaction of the form�
�
�
➜ Can this geometry of the shears mechanism be 

derived from the spherical shell model?�

€ 

θνπ = arccos
J J +1( ) − Jν Jν +1( ) − Jπ Jπ +1( )

2 Jν Jν +1( )Jπ Jπ +1( )

  

€ 

V θνπ( ) =V0 +V2P2 cosθνπ( ) +
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A simple application �
Let’s accept the expression for the shears energy�
�
�
The head of the shears band follows from�
�
�
The excitation energies of the shears-band 

members are given as�
�

€ 

E J( ) =
αs

2π sinθνπ
+

α t

2π tanθνπ

€ 

∂E
∂θνπ θνπ =θνπ

0

= 0⇒ cosθνπ
0 = −

α t

αs

=
a0 − a1
3a0 + a1

) 

* 
+ 

, 

- 
. 

€ 

Ex J( ) =
αs

2π sinθνπ
1− cosθνπ

0 cosθνπ( ) − αs sinθνπ
0

2π
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A simple application: 199Pb �

S. Frauendorf et al., Nucl. Phys. A 601 (1996) 41 �

199Pb experiment

Shell model

Classical formula
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M1 transitions�
Exact result for np-nh configurations: �
�
�
�
with C’=Jν+Jπ+J.�
Classical approximation: �

B M1;J→ J −1( )

=
3
4π

gJν − gJπ( )
2 #C +1( ) #C − 2Jν( ) #C − 2Jπ( ) #C − 2J +1( )

4J 2J +1( )

B M1;J→ J −1( ) ≈ 3
4π

gJν − gJπ( )
2 2Jν +1( )2 2Jπ +1( )2

16J 2J +1( )
sin2θνπ
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M1 transitions in 199Pb �
Proposed configuration of states in band 1: �
�
�
Calculation of g factors: �

ν 1i13/2
−3( )

33/2
×π 1h9/21i13/2( )11#

$%
&
'(
J( )

ν 1i13/2
−3( )

33/2
: gJν = g1i13/2

ν = −0.29

π 1h9/21i13/2( ) 11( ) : gJπ =
9
22
g1h9/2
π

+
13
22
g1i13/2
π =1.03

Wigner-111, Budapest, November 2013 



M1 transitions in 199Pb �
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