The Cellular Automaton Perspective on the Linearity of Quantum Mechanics

Hans-Thomas Elze

Università di Pisa

Linearity \longrightarrow superposition principle \longrightarrow interference
\longrightarrow entanglement: Schrödinger's Cat \& Wigner's Friend

2 - INTRODUCTION

Linearity ...

■ Def.: linearity \Longleftrightarrow dynamics maps states linearly on states.

- Theorem: QM is linear.
proof: E.P. Wigner and V. Bargmann
- assumption: dynamics does not change $\left|\left\langle\psi^{\prime} \mid \psi\right\rangle\right|$
- e.g., unitary, $\exp (-i \hat{H} t)$; but, if \hat{H} state dependent ... proof: T.F. Jordan
- assumption: No Influences Without Interactions
"... dynamics does not depend on anything outside the system, but the system can be described as part of a larger composite system together with another separate system."
- Experiments testing linearity, test also these assumptions!

3 - INTRODUCTION

... we shall replace Jordan's "No Influences Without Interactions"
Based on synthesis of three ingredients ...

- deterministic discrete mechanics - T.D. Lee et al.
- sampling theory for discrete structures on / of spacetime - A. Kempf et al.
- QM in terms of classical notions of observables \& phase space - A. Heslot; HTE, N. Buric et al.
... three ingredients, which lead us to:
- deterministic discrete mechanics
\longrightarrow Hamiltonian cellular automata (CA), action principle
- sampling theory for discreteness on spacetime \longrightarrow map: CA \leftrightarrow continuum QM + corrections
- QM in terms of classical notions of observables \& phase space \longrightarrow "oscillator representation"
$\ldots \Longrightarrow$ from CA perspective linearity of QM unavoidable.

5 - DISCRETE HAMILTONIAN MECHANICS

Assumptions

- fundamental discreteness to be incorporated in dynamics
- there is a fundamental length or time scale I"such that in a $(d+1)$-dimensional spacetime volume Ω maximally Ω / I^{d+1} measurements can be performed or maximally this number of events take place"
- time is a discrete dynamical variable

6 - DISCRETE HAMILTONIAN MECHANICS

Hamiltonian Cellular Automata (CA) - "bit machines"

- classical CA with denumerable degrees of freedom
- state described by integer valued coordinates x_{n}^{α}, τ_{n} and momenta p_{n}^{α}, π_{n}
$\alpha \in \mathbf{N}_{0}$: different degrees of freedom
$n \in \mathbf{Z}$: successive states
■ finite differences, $\Delta f_{n}:=f_{n}-f_{n-1}$, all dynamical variables
■ $\mathcal{A}_{n}:=\Delta \tau_{n}\left(H_{n}+H_{n-1}\right)+c_{n} \pi_{n}$,

$$
H_{n}:=\frac{1}{2} S_{\alpha \beta}\left(p_{n}^{\alpha} p_{n}^{\beta}+x_{n}^{\alpha} x_{n}^{\beta}\right)+A_{\alpha \beta} p_{n}^{\alpha} x_{n}^{\beta}+R_{n}(x, p) .
$$

7 - DISCRETE HAMILTONIAN MECHANICS

The CA Action Principle

- $\mathcal{A}_{n}:=\Delta \tau_{n}\left(H_{n}+H_{n-1}\right)+c_{n} \pi_{n}$,
$H_{n}:=\frac{1}{2} S_{\alpha \beta}\left(p_{n}^{\alpha} p_{n}^{\beta}+x_{n}^{\alpha} x_{n}^{\beta}\right)+A_{\alpha \beta} p_{n}^{\alpha} x_{n}^{\beta}+R_{n}(x, p)$,
constants c_{n}, sym. $\hat{S} \equiv\left\{S_{\alpha \beta}\right\}$, antisym. $\hat{A} \equiv\left\{A_{\alpha \beta}\right\}$, remainder R_{n}, all integer valued parameters

■ $\mathcal{S}:=\sum_{n}\left[\left(p_{n}^{\alpha}+p_{n-1}^{\alpha}\right) \Delta x_{n}^{\alpha}+\left(\pi_{n}+\pi_{n-1}\right) \Delta \tau_{n}-\mathcal{A}_{n}\right]$.

- Postulate (Action Principle): $\delta \mathcal{S} \stackrel{!}{=} 0 \Rightarrow$ CA updating rules, for arbitrary integer valued variations of the dynam. variables,

$$
\delta g\left(f_{n}\right):=\left[g\left(f_{n}+\delta f_{n}\right)-g\left(f_{n}-\delta f_{n}\right)\right] / 2 . \quad \text { remarks } \ldots \quad R_{n} \equiv 0 .
$$

8 - DISCRETE HAMILTONIAN MECHANICS

CA equations of motion (e.o.m.)

■ $\mathcal{S}:=\sum_{n}\left[\left(p_{n}^{\alpha}+p_{n-1}^{\alpha}\right) \Delta x_{n}^{\alpha}+\left(\pi_{n}+\pi_{n-1}\right) \Delta \tau_{n}-\mathcal{A}_{n}\right]$, with $\delta \mathcal{S} \stackrel{!}{=} 0 \Rightarrow$ CA finite difference e.o.m.:

$$
\begin{aligned}
& \dot{x}_{n}^{\alpha}=\dot{\tau}_{n}\left(S_{\alpha \beta} p_{n}^{\beta}+A_{\alpha \beta} x_{n}^{\beta}\right), \\
& \dot{p}_{n}^{\alpha}=-\dot{\tau}_{n}\left(S_{\alpha \beta} x_{n}^{\beta}-A_{\alpha \beta} p_{n}^{\beta}\right) \\
& \dot{\tau}_{n}=c_{n}, \quad \dot{\pi}_{n}=\dot{H}_{n}, \quad \text { with } \dot{O}_{n}:=O_{n+1}-O_{n-1} .
\end{aligned}
$$

- e.o.m. time reversal invariant, $(n \neq 1, n) \rightarrow(n \pm 1)$

■ $\Longrightarrow \dot{\psi}_{n}^{\alpha}=\dot{\tau}_{n} \hat{H}_{\alpha \beta} \psi_{n}^{\beta}$, discrete "Schrödinger equation" with $\hat{H}:=\hat{S}+i \hat{A}$, self-adjoint, $\psi_{n}^{\alpha}:=x_{n}^{\alpha}+i p_{n}^{\alpha}$, CA "time" n

9 - DISCRETE HAMILTONIAN MECHANICS

CA conservation laws

- discrete "Schrödinger equation", $\dot{\psi}_{n}^{\alpha}=\dot{\tau}_{n} \hat{H}_{\alpha \beta} \psi_{n}^{\beta} \Longrightarrow$
- Theorem: For any \hat{G} with $[\hat{G}, \hat{H}]=0$ there is a discrete conservation law: $\psi_{n}^{* \alpha} G_{\alpha \beta} \dot{\psi}_{n}^{\beta}+\dot{\psi}_{n}^{* \alpha} G_{\alpha \beta} \psi_{n}^{\beta}=0$.
For self-adjoint \hat{G}, with complex integer elements \rightarrow real integer quantities.
For $\hat{G}:=\hat{1} \Longrightarrow$ constraint: $\psi_{n}^{* \alpha} \dot{\psi}_{n}^{\alpha}+\dot{\psi}_{n}^{* \alpha} \psi_{n}^{\alpha}=0$.
For $\hat{G}:=\hat{H} \Longrightarrow$ "energy conservation".
- conservation laws not "integrable", since Leibniz rule modified, e.g.: $\left(O_{n} O_{n}^{\prime}\right)=\frac{1}{2}\left(\dot{O}_{n}\left[O_{n+1}^{\prime}+O_{n-1}^{\prime}\right]+\left[O_{n+1}+O_{n-1}\right] \dot{O}_{n}^{\prime}\right)$.

10 - SAMPLING THEORY

How to obtain more of QM ...

- recall $\psi_{n}^{\alpha}:=x_{n}^{\alpha}+i p_{n}^{\alpha}$, CA "time" n
introduce fundamental scale $/ \longrightarrow n \cdot l$, physical time?
Problem: continuum limit, $I \rightarrow 0$, does not work
- integer valuedness \Rightarrow time derivatives diverge!
- Idea: invertible MAP between discrete integer valued and continuous (differentiable ...) quantities. - G. 't Hooft

■ we are familiar with the problem - digital audio and video! but maybe not with the solution: information can be simultaneously continuous \& discrete - C.E. Shannon

11 - SAMPLING THEORY

The Sampling Theorem

- Consider square integrable bandlimited functions f :

$$
f(t)=(2 \pi)^{-1} \int_{-\omega_{\max }}^{\omega_{\max }} \mathrm{d} \omega \mathrm{e}^{-i \omega t} \tilde{f}(\omega), \text { bandwidth } \omega_{\max }
$$

- Shannon's Theorem:

Given $\left\{f\left(t_{n}\right)\right\}$ for set $\left\{t_{n}\right\}$ of equidistantly spaced times (spacing $\pi / \omega_{\max }$), function f is obtained for all t by:

$$
f(t)=\sum_{n} f\left(t_{n}\right) \frac{\sin \left[\omega_{\max }\left(t-t_{n}\right)\right]}{\omega_{\max }\left(t-t_{n}\right)} \quad \text { (reconstruction formula). }
$$

■ CA "time" $n \sim$ discrete time $t_{n}:=n l \rightarrow$ continuous time t bandwidth $\omega_{\max }:=\pi / /$ (Nyquist rate)

12 - SAMPLING THEORY

MAP: discrete CA \leftrightarrow continuous QM

- applying Shannon's reconstruction formula ...
- the discrete "Schrödinger equation", $\dot{\psi}_{n}^{\alpha}=\dot{\tau}_{n} \hat{H}_{\alpha \beta} \psi_{n}^{\beta} \quad \ldots$
- is mapped to continuous time Schrödinger equation:

$$
\frac{\hat{D}_{I}-\hat{D}_{-1}}{2} \psi^{\alpha}(t)=\sinh \left(I \partial_{t}\right) \psi^{\alpha}(t)=\frac{1}{i} H_{\alpha \beta} \psi^{\beta}(t)
$$

with $\hat{D}_{T} f(t):=f(t+T)$ and employing $\underline{\dot{\tau}_{n} \equiv 2 . ~}$

- correction terms, $\quad\left|\partial^{k} \psi / \partial t^{k}\right| \stackrel{?}{\gtrless} I^{-k}=\left(\omega_{\text {max }} / \pi\right)^{k}$
- stationary states, $\sin \left(E_{\alpha} I\right)=\epsilon_{\alpha}$, for $\hat{H} \rightarrow \operatorname{diag}\left(\epsilon_{0}, \epsilon_{1}, \ldots\right)$ \Rightarrow spectrum cut off by $\left|E_{\alpha}\right| \leq \pi / 2 I=\omega_{\max } / 2$

13 - SAMPLING THEORY

Conservation Laws: discrete CA \leftrightarrow continuous QM

- CA \& QM equations are both linear! - Then, CA \rightarrow QM by

$$
\dot{\psi}_{n}:=\psi_{n+1}-\psi_{n-1} \longrightarrow \frac{1}{i} \sin \left(i l \partial_{t}\right) \psi(t), \text { suggests } \ldots
$$

- Theorem: For any \hat{G} with $[\hat{G}, \hat{H}]=0$, it holds that $\psi^{* \alpha} G_{\alpha \beta} \sin \left(i l \partial_{t}\right) \psi^{\beta}+\left[\sin \left(i l \partial_{t}\right) \psi^{* \alpha}\right] G_{\alpha \beta} \psi^{\beta}=0$.

In particular, wave function normalization conserved $\psi^{* \alpha} \sin \left(i l \partial_{t}\right) \psi^{\alpha}+\left[\sin \left(i l \partial_{t}\right) \psi^{* \alpha}\right] \psi^{\alpha}=0$.

- same commutator $[\hat{G}, \hat{H}]=0 \Rightarrow C A \& Q M$ conserv. laws!
- in all modified QM equations, continuum limit $I \rightarrow 0$ works.

14 - QUESTIONS

Some things to find out ...

- CA properties that become unitary symmetries in QM?
- CA Hamiltonians have interesting spectra?
- QM approximation scheme with bandwidth limited wave fct.s?
- What is relativistic/QFT version of CA \leftrightarrow QM map?
- How gauge fields come in?

15 - CONCLUSIONS

On the relation between Hamiltonian CA and QM ...

- MAP: CA \leftrightarrow QM based on
- integer valued action principle with arbitrary variations
- sampling theory, i.e. bandwidth limited wave functions
\rightarrow replaces Jordan's separability assumption (\Rightarrow linearity)
- Schrödinger equation with correction terms, $\sim\left(I \partial_{t}\right)^{k}$,
- incorporating discreteness scale /
- $[\hat{G}, \hat{H}]=0 \rightarrow$ corresp. conservation laws for CA \& QM

$$
=\bullet=
$$

