
>> The Cellular Automaton Perspective <<
>> on the <<
>> Linearity of Quantum Mechanics <<

Hans-Thomas Elze

Università di Pisa

Linearity −→ superposition principle −→ interference

−→ entanglement: Schrödinger's Cat & Wigner's Friend

Wigner Symposium, Budapest, Nov. 2013



2 � INTRODUCTION

Linearity ...

Def.: linearity ⇐⇒ dynamics maps states linearly on states.

Theorem: QM is linear.

proof: E.P. Wigner and V. Bargmann
� assumption: dynamics does not change |〈ψ′|ψ〉|
� e.g., unitary, exp(−i Ĥt); but, if Ĥ state dependent ...

proof: T.F. Jordan
� assumption: No In�uences Without Interactions
� ... dynamics does not depend on anything outside the system, but

the system can be described as part of a larger composite system

together with another separate system.�

Experiments testing linearity, test also these assumptions!



3 � INTRODUCTION

... we shall replace Jordan's �No In�uences Without Interactions�

Based on synthesis of three ingredients ...

deterministic discrete mechanics � T.D. Lee et al.

sampling theory for discrete structures on / of spacetime
� A. Kempf et al.

QM in terms of classical notions of observables & phase space
� A. Heslot; HTE, N. Buric et al.



4 � INTRODUCTION

... three ingredients, which lead us to:

deterministic discrete mechanics

−→ Hamiltonian cellular automata (CA), action principle

sampling theory for discreteness on spacetime

−→ map: CA ↔ continuum QM + corrections

QM in terms of classical notions of observables & phase space

−→ �oscillator representation�

... =⇒ from CA perspective linearity of QM unavoidable.



5 � DISCRETE HAMILTONIAN MECHANICS

Assumptions

fundamental discreteness to be incorporated in dynamics

there is a fundamental length or time scale l �
�such that in a (d+1)-dimensional spacetime volume Ω
maximally Ω/ld+1 measurements can be performed or
maximally this number of events take place�

time is a discrete dynamical variable



6 � DISCRETE HAMILTONIAN MECHANICS

Hamiltonian Cellular Automata (CA) � �bit machines�

classical CA with denumerable degrees of freedom

state described by integer valued coordinates xαn , τn and
momenta pαn , πn

α ∈ N0: di�erent degrees of freedom
n ∈ Z: successive states

�nite di�erences, ∆fn := fn − fn−1 , all dynamical variables

An := ∆τn(Hn + Hn−1) + cnπn ,

Hn := 1

2
Sαβ(pαn p

β
n + xαn x

β
n ) + Aαβp

α
n x

β
n + Rn(x , p) .



7 � DISCRETE HAMILTONIAN MECHANICS

The CA Action Principle

An := ∆τn(Hn + Hn−1) + cnπn ,

Hn := 1

2
Sαβ(pα

n
pβ
n

+ xα
n
xβ
n

) + Aαβp
α
n
xβ
n

+ Rn(x , p) ,

constants cn, sym. Ŝ ≡ {Sαβ}, antisym. Â ≡ {Aαβ}, remainder Rn,

all integer valued parameters

S :=
∑

n
[(pαn + pα

n−1)∆xαn + (πn + πn−1)∆τn −An] .

Postulate (Action Principle): δS !
= 0 ⇒ CA updating rules,

for arbitrary integer valued variations of the dynam. variables,

δg(fn) := [g(fn + δfn)− g(fn − δfn)]/2 . remarks ... Rn ≡ 0 .



8 � DISCRETE HAMILTONIAN MECHANICS

CA equations of motion (e.o.m.)

S :=
∑

n
[(pαn + pα

n−1)∆xαn + (πn + πn−1)∆τn −An] ,

with δS !
= 0 ⇒ CA �nite di�erence e.o.m.:

ẋαn = τ̇n(Sαβp
β
n + Aαβx

β
n ) ,

ṗαn = −τ̇n(Sαβx
β
n − Aαβp

β
n ) ,

τ̇n = cn , π̇n = Ḣn , with Ȯn := On+1 − On−1 .

e.o.m. time reversal invariant, (n ∓ 1, n) → (n ± 1)

=⇒ ψ̇αn = τ̇nĤαβψ
β
n , discrete �Schrödinger equation�

with Ĥ := Ŝ + i Â , self-adjoint, ψα
n

:= xα
n

+ ipα
n
, CA �time� n



9 � DISCRETE HAMILTONIAN MECHANICS

CA conservation laws

discrete �Schrödinger equation�, ψ̇αn = τ̇nĤαβψ
β
n =⇒

Theorem: For any Ĝ with [Ĝ , Ĥ] = 0 there is a

discrete conservation law: ψ∗αn Gαβψ̇
β
n + ψ̇∗αn Gαβψ

β
n = 0 .

For self-adjoint Ĝ , with complex integer elements → real
integer quantities.

For Ĝ := 1̂ =⇒ constraint: ψ∗αn ψ̇αn + ψ̇∗αn ψαn = 0 .
For Ĝ := Ĥ =⇒ �energy conservation� .

conservation laws not �integrable�, since Leibniz rule modi�ed,
e.g.: ˙(OnO ′n) = 1

2
(Ȯn[O ′

n+1
+ O ′

n−1] + [On+1 + On−1]Ȯ ′n) .



10 � SAMPLING THEORY

How to obtain more of QM ...

recall ψαn := xαn + ipαn , CA �time� n

introduce fundamental scale l −→ n · l , physical time?

Problem: continuum limit, l → 0, does not work
� integer valuedness ⇒ time derivatives diverge!

Idea: invertible MAP between discrete integer valued and
continuous (di�erentiable ... ) quantities. � G. 't Hooft

we are familiar with the problem � digital audio and video! �
but maybe not with the solution: information can be

simultaneously continuous & discrete � C.E. Shannon



11 � SAMPLING THEORY

The Sampling Theorem

Consider square integrable bandlimited functions f :

f (t) = (2π)−1
∫ ωmax

−ωmax
dω e−iωt f̃ (ω) , bandwidth ωmax .

Shannon's Theorem:

Given {f (tn)} for set {tn} of equidistantly spaced times
(spacing π/ωmax), function f is obtained for all t by:

f (t) =
∑

n
f (tn) sin[ωmax (t−tn)]

ωmax (t−tn) (reconstruction formula) .

CA �time� n ∼ discrete time tn := nl → continuous time t

bandwidth ωmax := π/l (Nyquist rate)



12 � SAMPLING THEORY

MAP: discrete CA ↔ continuous QM

applying Shannon's reconstruction formula ...

the discrete �Schrödinger equation�, ψ̇αn = τ̇nĤαβψ
β
n ...

is mapped to continuous time Schrödinger equation:

D̂l−D̂−l

2
ψα(t) = sinh(l∂t)ψ

α(t) = 1

i
Hαβψ

β(t) ,

with D̂T f (t) := f (t + T ) and employing τ̇n ≡ 2 .

correction terms, |∂kψ/∂tk |
?
� l−k = (ωmax/π)k

stationary states, sin(Eαl) = εα , for Ĥ → diag(ε0, ε1, . . . )
⇒ spectrum cut o� by |Eα| ≤ π/2l = ωmax/2



13 � SAMPLING THEORY

Conservation Laws: discrete CA ↔ continuous QM

CA & QM equations are both linear! � Then, CA → QM by

ψ̇n := ψn+1 − ψn−1 −→ 1

i
sin(il∂t)ψ(t) , suggests ...

Theorem: For any Ĝ with [Ĝ , Ĥ] = 0 , it holds that

ψ∗αGαβ sin(il∂t)ψ
β + [sin(il∂t)ψ

∗α]Gαβψ
β = 0 .

In particular, wave function normalization conserved

ψ∗α sin(il∂t)ψ
α + [sin(il∂t)ψ

∗α]ψα = 0 .

same commutator [Ĝ , Ĥ] = 0 ⇒ CA & QM conserv. laws!

in all modi�ed QM equations, continuum limit l → 0 works.



14 � QUESTIONS

Some things to �nd out ...

CA properties that become unitary symmetries in QM?

CA Hamiltonians have interesting spectra?

QM approximation scheme with bandwidth limited wave fct.s?

What is relativistic/QFT version of CA ↔ QM map?

How gauge �elds come in?



15 � CONCLUSIONS

On the relation between Hamiltonian CA and QM ...

MAP: CA ↔ QM based on

� integer valued action principle with arbitrary variations

� sampling theory, i.e. bandwidth limited wave functions

→ replaces Jordan's separability assumption (⇒ linearity)

Schrödinger equation with correction terms, ∼ (l∂t)
k ,

� incorporating discreteness scale l

[Ĝ , Ĥ] = 0 → corresp. conservation laws for CA & QM

= • =


