## Identification and characterization of solid state single photon emitters by means of ab-initio methods

Adam Gali<sup>a, c</sup>

Students:

Viktor Ivády<sup>a,b</sup> Hugo Pinto<sup>a</sup> Márton Vörös<sup>c</sup> Acknowledgments Jeronimo Maze Igor Abrikosov





Wigner 111 Symposium, Budapest (Hungary), November 12, 2013



<sup>a</sup> Wigner Research Centre for Physics, Budapest, Hungary



<sup>b</sup>Linköping University, Linköping, Sweden



<sup>c</sup>Budapest University of Technology and Economics, Budapest, Hungary

## Outline



- 1. Motivation
- 2. Experimental results of the qubits and single photon sources in diamond and 4H-SiC
- 3. Theoretical approach for deeper understanding
- 4. Summary of our findings

#### NV in diamond: qubit and ultrasensitive sensor



Magnetometry Nature 455 (2008) pp648-651



Quantum bit Science 316 (2007) pp1312-1316



Photonics Nature Photonics 5 (2011) pp397-405



Nanosize biomarker Nature Nano. 6 (2001) pp358-363





Nanothermometer PNAS 110 (2013) pp8417–8421 Nano Letters, Nature, Science

## SPE in diamond: NV is not perfect



#### alternative centers might be useful

# Methodology

- High precision DFT calculations for converged electronic structures of the point defects
  - Point defects are embedded in large supercells of 500-600 atoms
  - Plane wave bases (E<sub>cut</sub> = 420eV) and PAW potentials are used as implemented in VASP code
  - Γ-point sampling of the Brillouin-zone
  - Exchange correlation functional: GGA-PBE, hybrid-HSEo6
- Hyperfine: Fermi-contact + dipol-dipol (+ core polarization)
- We have *implemented* a code to calculate *zero-field* splitting form first principles.
  - The code independent implementation follows the method of Rayson et. al., Phys. Rev. B 77, 035119 (2008)

#### Issue 1:

# Split silicon-vacancy center in diamond



<sup>a</sup> Wigner Research Centre for Physics, Budapest, Hungary 1/10/2013



<sup>b</sup> Linköping University, Linköping, Sweden



<sup>c</sup>Budapest University of Technology and Economics, Budapest, Hungary

# Bright NIR emitter: SiV defect in diamond

1.68-eV PL center as a single source [Wang *et al.*, At. Mol. Opt. **39** 37]
1.68-eV PL center ↔ *negatively charged* SiV defect [Goss *et al.*, PRL **77** 3041]
1.31-eV PL center ↔ *neutral* SiV defect [D'Haenens-Johansson *et al.*, PRB **82** 155205]



#### SiV defect in diamond: electronic structure





## Hydrogenated nanodiamonds



#### SiV defect in hydrogenated nanodiamonds



#### SiV defect in hydrogenated nanodiamonds: quantum confinement



SiV(–) ZPL: 1.85 eV 1.82 eV 1.78 eV ... 1.68 eV

#### SiV in nanodiamonds: a gift from universe

Efremovka (CV3) and Orgueil (CI) meteorites



#### ssue 2:

# Carbon-antisite vacancy pair in 4H silicon carbide



<sup>a</sup> Wigner Research Centre for Physics, Budapest, Hungary



<sup>b</sup>Linköping University, Linköping, Sweden



<sup>c</sup> Budapest University of Technology and Economics, Budapest, Hungary

#### **SPE in SiC: Experimental results I.** Castelletto, Johnson, Stavrias, Umeda, Ohshima

- 8 observed AB lines
  - 6 AB lines found and associated with C<sub>Si</sub>V<sub>C</sub> [Steeds, PRB 80 245202 (2009)]
- Emission polarization:
  - A<sub>1</sub> and A<sub>3</sub> are *E* || *c* polarized
  - $A_2$  and  $A_4$  are dominantly  $E \perp c$  polarized
  - $B_{2}$ ,  $B_{3}$  and  $B_{4}$  are  $\boldsymbol{E} \perp \boldsymbol{c}$  polarized
  - Only B<sub>1</sub> shows *E* || *c*



## SPE in SiC: Experimental results II.

#### Castelletto, Johnson, Stavrias, Umeda, Ohshima

- Single defect can be isolated
- Excited state lifetime: 1.2 ns
- Quantum efficiency: 70%
- Extreme bright: max 2×10<sup>6</sup> count/s
- Of them 45% blinks
- More blinks at 532-nm excitation than at 660-nm excitation



## SPE in SiC: First principles results



- In (C<sub>Si</sub>V<sub>C</sub>)<sup>o</sup>: ~ 1 eV is enough to excite an electron to CB
- No ZPL at ~1.9 eV (678-648 nm) from (C<sub>Si</sub>V<sub>C</sub>)°

| In (C <sub>Si</sub> V <sub>C</sub> ) <sup>+</sup> : (++/+) CTL: |       |       |       |  |  |
|-----------------------------------------------------------------|-------|-------|-------|--|--|
| hh                                                              | hk    | kk    | kh    |  |  |
| -1.91                                                           | -1.85 | -1.83 | -1.82 |  |  |
| A2                                                              | A4    | B2    | Β4    |  |  |

- Red ZPL is feasible from (C<sub>Si</sub>V<sub>C</sub>)<sup>+</sup>
- 2.35-eV vs. 1.88-eV
   1.88eV is more photo-stable

Method: HSEo6-DFT, 576-atom supercell, Γ-point PAW-potentials with 420 eV plane wave cutoff

# SPE in SiC: (C<sub>si</sub>V<sub>c</sub>)<sup>+</sup> as model





Ground state

Excited state



## Group theory considerations I.

- 8 observed AB lines =
  - = 2×2 from Jahn-Teller distorted axial configurations +

+ 2×2 from ab ovo  $C_{1h}$  configurations





 $C_{1h} \rightarrow$  transversal spin-orbit interaction  $\rightarrow$  mix <sup>2</sup>A' and <sup>2</sup>A" excited states via the ground state No 100% spin-polarization for <sup>2</sup>A" excited state!

# Group theory considerations II.

 From the calculated ionization energy + group theory considerations:



# Group theory considerations III.

- In the ground state only 1 electron is in the gap.
- To form S = 3/2 shelving state, one electron must be taken from the valence band ( $\rightarrow$  *loosely bound hole*)
- Split VBM edge has a<sub>1</sub> symmetry

|          | Shelving state                                                                             | Ground state                                                                        | Excited state                                                              |
|----------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| $C_{3v}$ | 4 <i>E</i>                                                                                 | <sup>2</sup> A <sub>1</sub>                                                         | <sup>2</sup> E                                                             |
| J.       | $oldsymbol{a}_{1(\mathcal{V}\!\mathcal{B})}^{(1)}oldsymbol{a}_{1}^{(1)}oldsymbol{e}^{(1)}$ | $oldsymbol{a}_{ m l(\textit{VB})}^{(2)}oldsymbol{a}_{ m l}^{(1)}oldsymbol{e}^{(0)}$ | $oldsymbol{a}_{ m l(VB)}^{(2)}oldsymbol{a}_{ m l}^{(0)}oldsymbol{e}^{(1)}$ |

- Axial spin-orbit may link  $a_1$  orbitals  $\rightarrow$  mix  ${}^4E$  and  ${}^2E$
- Transverse spin-orbit may link *e* and  $a_1$  orbitals  $\rightarrow {}^4E$  and  ${}^2A_1$
- In  $C_{1h}$ : states can be mixed in the basis of  $C_{3v}$  symm.
- In all configuration <sup>4</sup>E can be coupled to <sup>2</sup>A<sub>1</sub>

#### **Summary on SPE in SiC**

- We find that our model can describe the AB PL centers well.
- The dominant polarization both in excitation and radiative emission is perpendicular to the c-axis.
- The occurrence of the metastable shelving state and the process of nonradiative decay via spin-orbit coupling
- The shelving state involves a loosely bound hole near the valance band edge, which may be responsible for the detected large dispersion of lifetimes of the shelving state, as if the hole temporarily leaves the defect then the lifetime of the "dark state" appears longer.
- The nature of the shelving state may also be responsible for the blinking properties.

#### A Silicon Carbide Room Temperature Single Photon Source, Nature Materials, accepted

## Thank you for your kind attention!

Contact: Adam Gali, gali.adam@wigner.mta.hu