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 Measurement uncertainty relations: Reply to critics (in preparation)
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“It is the theory that decides
what can be observed”

— Albert Einstein, according to Werner Heisenberg
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Quantum Uncel’falhfy— three guises

e Preparation Uncertainty (PUR)

. | .
(Width of @Q,) (Width of P,) > 5 v

e Joint Measurement Error Trade-off Relation (MUR)

(Q — Error) (P — error) .

e Error-Disturbance Trade-off Relation (EDR)
(@ — Error) (P — disturbance)
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How (not) to “disprove” Heisenberg's EDR
1. DO: Put words in his mouth (or read his thoughts)
Envo(Asp)eno(B,p) X [{[A,Bl)p] ~ WRONG! (No-H)
2. DO: Correct the wrong, creating your own inequality
cvo(4:0)xo (B, 9) + Exo(A )AED) + A(ENero (Bp) > 5 [([A, B
(Ozawa 2003-2013) (NO-O)
3. DO: Make an experiment to disprove (No-H) and confirm (NO-O)

4. DON'T: question the meaning of ¢
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Experimental demonstration of a universally
valid error-disturbance uncertainty relation
In spin measurements
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Violation of Heisenberg’s Measurement-Disturbance Relationship by Weak Measurements

Lee A. Rozema, Ardavan Darabi, Dylan H. Mahler, Alex Hayat, Yasaman Soudagar, and Aephraim M. Steinberg

Centre for Quantum Information & Quantum Control and Institute for Optical Sciences, Department of Physics, 60 St. George Street,
University of Toronto, Toronto, Ontario, Canada M5S 1A7
(Received 4 July 2012; published 6 September 2012; publisher error corrected 23 October 2012)

While there is a rigorously proven relationship about uncertainties intrinsic to any quantum system,
often referred to as “Heisenberg’s uncertainty principle,” Heisenberg originally formulated his ideas in
terms of a relationship between the precision of a measurement and the disturbance it must create.
Although this latter relationship is not rigorously proven, it is commonly believed (and taught) as an
aspect of the broader uncertainty principle. Here, we experimentally observe a violation of Heisenberg’s
“measurement-disturbance relationship”, using weak measurements to characterize a quantum system
before and after it interacts with a measurement apparatus. Our experiment implements a 2010 proposal of
Lund and Wiseman to confirm a revised measurement-disturbance relationship derived by Ozawa in 2003.
Its results have broad implications for the foundations of quantum mechanics and for practical issues in
quantum measurement.



Press reactions ... in an age of uncertainty

Quantenphysik
Der groBBe Heisenberg irrte

17.11.2012 - Werner Heisenberg wollte seine berithmte Unbestimmtheitsbeziehung
auch in den Storungen wiedererkennen, die ein Messung verursacht. Diesen Schluss
haben kanadische Forscher widerlegt.

Von RAINER SCHARF

Artikel  Bilder (3 Lesermeinungen (31
ie von Werner Heisenberg 1927 E 300
formulierte Unscharfebeziehung . A P :"-\(] ~h
hd pisenbergsche
ist trotz ihrer Tiefgriindigkeit und ¢ Unechitrostation

Abstraktheit das wohl bekannteste
Gesetz der Quantenphysik. Sie besagt
vereinfacht, dass man nicht gleichzeitig
die Geschwindigkeit und den Ort etwa
eines Elektrons mit beliebiger

Priizision bestimmen kann. Fiir die Werner Heisenber'g und seine Unthérferelation sind
sogar auf einer Briefmarke verewigt

Deutschland

Popularitat dieses Gesetzes hat vor

allem eine ebenfalls von Heisenberg stammende bildhafte Erlauterung gesorgt,
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Common Interpretation of
Heisenberg's Uncertainty Principle Is
Proved False

A new experiment shows that measuring a quantum system does not necessarily introduce
uncertainty
By Geoff Brumfiel
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Heisenberg uncertainty principle stressed
in new test

By Jason Palmer

Science and technology reporter, BEC News
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The expenment requires preparing pa
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rs of "entangled” photons, the particles from which light is

Pioneering experiments have cast doubt on a founding idea of

the branch of physics called quantum mechanics. Related Stories



Challenging Uncertainty: What It Takes

Let QM tell us what limitations there are!
(invoke Heisenberg’s/Einstein’s spirits
instead of trying to read their minds)

NEEDED:

* Language to describe approximate measurements V'

Notion of joint approximate measurement of incompatible observables v
 Measures of approximation error and disturbance X

 These measures need to be operationally significant X
* MURs and EDRs as consequences of QM — testable! v

Y =agree; X =disagree with O.



Timeline:
towards a quantum theory
of approximate joint measurements

— Anw Homage to- TP Wigner —

1925: (), P| = ih — Pauli 1926: g-eye & p-eye —> going crazy

1927 AQ AP ~ h
idea of approximate joint measurement and uncontrollable disturbance
(Heisenberg effect) — Pauli: day is dawning in QM

1927-1930: Kennard-Weyl-Robertson-Schrodinger UR (for state preparations)
1931: measurements of 1st & 2nd kind (Landau-Peierls; Pauli)

1932: “no sharp joint measurement'' / no positive joint probability
(Wigner, von Neumann); vN model of approximate position measurement



Timeline:

1940: example of positive semidefinite phase space probability
representation of quantum states (Husimi)

1940s: theory of selfadjoint dilations of symmetric operators, positive operator
valued measures (Naimark)

1950, 1952: WWW, WAY: measurement limitations due to SSR and symmetries
Wigner: notion of unsharp measurement (POVM implicit)

1960-70s: covariant phase space POVMs as joint approximate measurements
of position and momentum (Ludwig, Davies & Lewis, Prugovecki et al)
— quantum foundations

1962: noise operator approach for guantum optical theory of linear amplifiers
(Haus & Mullen)

1965: model of simultaneous measurement of position and momentum, as an
extension of the von Neumann model (Arthurs & Kelly)



Timeline:

1982: Arthurs-Kelly model as realisation of phase space POVMs,
Heisenberg's MUR made rigorous for special cases (PB)

1986—... : quantum optical realisations of phase space measurements
(homodyne/heterodyne detection)

1990s: growing awareness of joint measurement concept and POVM in
quantum optics community

1998: position-momentum joint uncertainty relations for noise-operator based
error measure -- model independent (Appleby)

2003-2013: Ozawa's inequality for noise-operator based error measure, and
claim of violation of Heisenberg’s error-error & error-disturbance relations

2003—... : Critique of noise-operator based error/disturbance measures and
rigorous general measurement uncertainty relations — thoroughly ignored
(R Werner; PB & P Lahti & collaborators)



Timeline:

e 2012: Experimental confirmation of Ozawa inequality
claims of violation of “Heisenberg'’s relation” (Vienna, Toronto)
several other groups following suit; also some criticisms

 2013:

Physics

spotlighting exceptional research
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Synopsis: Rescuing Heisenberg

Proof of Heisenberg's Error-Disturbance Relation

Paul Busch, Pekka Lahti, and Reinhard F. Werner
Phys. Rev. Lett. 111, 160405 (2013)

Published October 17, 2013

APS/Alan Stonebraker

The popular conception of the Heisenberg uncertainty principle is that measurement is unavoidably invasive. We disturb an
object when we observe it, thus introducing error into subsequent measurements. However, recent experiments (see 6
September 2012 Synopsis) claim to have measurement errors below the Heisenberg limit. To address this apparent
contradiction, a paper in Physical Review Letters reports a new formulation of the uncertainty principle in which measurement
disturbance depends on the performance of the measuring device, which is quantified as the maximum possible change in the
state of the object.



Timeline:
Wigner's sbirik...
.... or: his influence on the development of measurement theory
* jgnoring the “measurement = repeatable measurement” dogma
“measurement: state —— eigenstate”
* freedom to work with non-orthodox unsharp measurement paradigm

* freedom to work with impossible” phase space picture

* (to name just a few points)



Timeline:

Wigner’s sbinik...and influence

In memory of Eugene P. Wigner l

(1995)
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Approximate Measurements: POVMs
(positive operator valued measure(ment))

N.
e pi(m{.)ﬁﬁ

preparation measurement registration  statistics

outcome w; — A; (positive operator), Z A, =1

)

probability : w; — pﬁ‘ (w;) = Trace|pA;] = (A;), = A, (w;)



Covariant Phase Space Measurement

Observables E, F are jointly measurable if
they are marginals of an observable G:

E(X) = G(X x ), F(Y)=G(Q, xY)

Does not require commutativity!

dad
27rh/qu )*mW (q, p) dqdp

m = a positive operator of trace 1 (NOT(!) a ‘state’)

W(q,p) = exp (;(Pq = Qp))

B(R*) > Z — G(2) =



Covariant Phase Space Measurement

Covariance:

Wi(q,p)*G(Z2)W (q,p) = G(Z + (q,p))

Marginals:
Gm(X X R) = Qu(X) u(X) = Trace[IlImIIQ(X )|
Gn(RxY)=P,(Y) v(Y) = Trace|lImIIP(Y )]

II = parity operation

Smeared position and momentum observables

A(WA®W) = A(Q,m) A(P,m) > ’Z_’ Cov-MUR

Consequence of PUR



Error & Disturbance:
operational definition




Error & Disturbance:
an instance of joint measurement

. @ /\,\ A(A,C)
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Defining measurement error (|):
how not to do it

EO(Z,A;U)@&) — <(U*I®ZU—A®I)2>,}U/®%G X

= Exo (4, P) (w=p, a=o)
Motivation:
e similar to classical Gauss RMS error;

* similar to noise operator approach for linear amplifiers

BUT:
Zowt =UT® ZU and A;, = A® I may not commute!

Hence: €, (A, p) is NOT determined by distributions
of Zout and Az’n



Flaws of €,o (4, p)

* Can be zero where input and output distributions differ

* Can be arbitrarily large where input and output
distributions are identical

* |s adequate for linear models or unbiased measurements

A Must be used JUDICIOUSLY

NOT suitable for “universally valid” MURs




Defining measurement error (l):
Wasserstein 2-distance

D" (p,v) = (/(fﬂ —y)° dv(x,y)) §
D(p,v) := inf Dy (4, v)
A(A,B) :=supD(A,,B,)

[,

v is any coupling of the probability measures 1, v
» operational: direct comparison of probability
distributions A,, B,
e quantum generalisation of Gauss’ RMS error



Compare with €,,(A4, p)

evo (4, E;p)” = tr [p(E[z] — A)°] + tr[p(E[z"] — E[z]")]

intrinsic noise

_ / / (z' — )2 Retr [pE(de’)EA (dz)]

bi-measure

* Here E is the actually measured (estimator) observable
* non-positive bi-measure when E and A do not commute

« when commutative:
evo(A,E;p) > A(E, ES)



Error measures: state dependent or not?

» State-dependent: D(A,,C,), ¢,,(A,C;p)

trade-off inequality gives necessary error for fixed
disturbance threshold — and vice versa

+ State-independent:  A(A, (), e, (A, O)

trade-off inequality gives guarantee for maximal
error/disturbance
figure of merit characterising measuring device



Error measures: state dependent or not?

* Violation of (No-H) is unsurprising — to be expected
Envo (A, p)eno(B,p) = [(|A,Bl)p|  WRONG!

(No-H)
« Similarly for Wasserstein:

D(4,,C,) D(B,,D,) > 0

e accurate A measurement (C=A) with constant
output channel p — pg has

D(A[MCP) = 0 = D(BPaDP) it P = Po

Hence, violation of (No-H) is nothing exciting...



Measurement Uncertainty Relations (1):
Position and Momentum

THEOREM

For every observable G on phase space with
A(Gl, Q) < 0OQ, A(GQ, P) < OO
there is a covariant G, such that

A(Gla Q) Z AQ(Gm,la Q)a A(G27 P) > AQ(Gm,Qa P)

and therefore

AGHLQ)AGP) >

. PUR — MUR
e (proof uses “invariant mean”; technically involved)



Measurement Uncertainty Relations (I1):
Qubit Observables

Sharp +/- 1 valued qubit observables A, B approximated by C, D:

A :

1

1 Ay = (I+a-o)

C:+1+—>C’+:§(col—|—c-a), —-1—=C_=1-Cy4

B :

-1 — B-
1

1

. =—-U+b-o)

2

D:+1—=Dy=>(dpl+d-0), —1—D_=1-D,
T 9

» Optimal approximations found among C, D with ¢y = dg = 1

e Such C, D are covariant under shifts 7 : =1 — 1

U-=u-o:

Cj: — -

:,D:: F—>D::, u C, d




Measurement Uncertainty Relations (11):
Qubit Observables

A(A, 0)2 = 2|1 —Co‘

2||la —cf| = 2[ja—c]

A(B,D)” = 2|1 —do| +2|[b—d| >2|b—d|

A(C,A)° + A(D,B)” > v2[|a—b| + |la+b]| —2]

incompatibility (A, B)

* Tight lower bound, required by the constraint that

C, D must be compatible:

lc—d| + flc+df| <2



Measurement Uncertainty Relations (I1):
Proof of Qubit MUR

1. Reduction to covariant case
2. Diagram:

PUR — MUR



Measurement Uncertainty Relations (Il1):
Uncertainty Relations: additive?!

* Bound for error product is trivial: =0
* PUR for uncertainty sums?

A(4,p) +A(B,p) 2 [laxb| = 2[|[Ay, B,

A(A,p)? +A(B,p)?> 2 1—Ja-b| =1 — /1 ax b|]

—1-I-4][A, B,]|?



Measurement Uncertainty Relations (Il1):
Uncertainty Relations: additive?!

* Can have additive relations for position and momentum

Ah?
x—%A(Q,P)Q + 5 A(P, p)* > 2h°
—

2H
—A(Q, p) +xoA(P, p) 2 2h

L0
=
h
A(Q, p) A(P.p) 2 5
* Finding minimiser of quadratic error sum is equivalent to
finding minimiser of Harmonic Oscillator Hamiltonian



Measurement Uncertainty Relations (IV):
Alternative error measures

Wasserstein 2-distance —— Wasserstein a-distance
11/

Do (p,v) := inf [/ z —y|* dv(z,y)

Y

(BWL 2013; R Werner, 2004: ¢/=1)

 Error-bar-width & calibration errors
(PB, DB Pearson, 2007)

* Entropic error measures:
bounds for combined in-out correlations (calibration)
(Buscemi, Hall, Ozawa, Wilde, arXiv:1310.6603



Ozawa vs Wasserstein:
Qubit case

A(A,C)° =21 — co| +2]a—c|| > 2[la—c|

2
Eno (Aa C; P) — (1 — HCH)2 T Hb — dH2
1

=U(0)* + ;A(4, c)*
Eno (C,A;p) T Eno (D,B;p) > T[Ha_bu + [|[a + b _2]
— 1mc:ompatibility(A, B)
lrony: 2

» State Independent!
* Satisfies Heisenberg-type MUR



CONCLUSION

Error/error & error/disturbance trade-off relations
for position/momentum and qubit observables

in terms of quantum RMS error
fully in Heisenberg’s spirit:
(error of A) (error of B) =~ incompatibility(A,B)

Ozawa’s error overestimates quantum RMS error
(in qubit case); satisfies MUR

...and No End to Uncertainty



