QUARK-GLUON PLASMA: UNIVERSAL HADRONIZATION

Michal Petran and Johann Rafelski

Department of Physics, The University of Arizona

November12, 2013

Wigner111, 11/11/13 Budapest; Session: Nuclear Physics

Part of: Ph.D. Defense Presentation by Michal Petran, Tucson, November 5, 2013

OUTLINE

- 1. Quark-gluon plasma (QGP) new state of matter
- 2. Description of particle production in HI experiments
- 3. QGP fireball physical properties at break-up
- 4. Universal Hadronization Conditions
- 5. Summary and Outlook

New State of Matter created at CERN

10 Feb 2000

At a special seminar on 10 February, spokespersons from the experiments on CERN* 's Heavy Ion programme presented compelling evidence for the existence of a new state of matter in which quarks, instead of being bound up into more complex particles such as protons and neutrons, are liberated to roam freely.

QUARK-GLUON PLASMA – QGP

- NEW STATE OF MATTER

WHAT IS QGP?

- Hot soup of quarks and gluons
- Extremely hot and dense matter $T > 150 \text{MeV} \simeq 1.710^{12} \text{ K}, 10^5 \times T_{sun})$
- Strongly interacting medium color charge propagating – new state and <u>a new form</u> of matter

WHERE TO FIND QGP?

- Early Universe made of QGP, until $\mathcal{O}(15) \, \mu s$
- In laboratory, QGP created in relativistic heavy-ion collisions

- 1. Nuclei collide dominantly u, d quark content
- parton scattering rescattering, thermalization, formation of QGP, m_s < T_{init} < m_c
- 3. QGP fireball expands, cools down, thermal production of u, d, s-quarks by gluon fusion $GG \rightarrow q\bar{q}$; surviving charm primordial
- 4. Hadronization, quarks bind into colorless hadrons QGP properties imprinted on produced hadrons, at LHC $O(10^5)$

- 1. Nuclei collide dominantly u, d quark content
- 2. parton scattering rescattering, thermalization, formation of QGP, $m_s < T_{init} < m_c$
- 3. QGP fireball expands, cools down, thermal production of u, d, s-quarks by gluon fusion $GG \rightarrow q\bar{q}$; surviving charm primordial
- 4. Hadronization, quarks bind into colorless hadrons QGP properties imprinted on produced hadrons, at LHC $O(10^5)$

- 1. Nuclei collide dominantly u, d quark content
- parton scattering rescattering, thermalization, formation of QGP, m_s < T_{init} < m_c
- 3. QGP fireball expands, cools down, thermal production of u, d, s-quarks by gluon fusion $GG \rightarrow q\bar{q}$; surviving charm primordial
- 4. Hadronization, quarks bind into colorless hadrons QGP properties imprinted on produced hadrons, at LHC $O(10^5)$

- 1. Nuclei collide dominantly u, d quark content
- 2. parton scattering rescattering, thermalization, formation of QGP, $m_s < T_{init} < m_c$
- 3. QGP fireball expands, cools down, thermal production of u, d, s-quarks by gluon fusion $GG \rightarrow q\bar{q}$; surviving charm primordial
- 4. Hadronization, quarks bind into colorless hadrons QGP properties imprinted on produced hadrons, at LHC $O(10^5)$

CENTRALITY OF HEAVY-ION COLLISION

IMPACT PARAMETER *b* analogue expressions

- *N_{part}* number of participants
 - number of nucleons that interact at least once
- N_{bin} number of 1-on-1 nucleon reactions (Glauber model)
- Central collision: $b \rightarrow 0 \Leftrightarrow N_{part} \rightarrow 400, N_{bin} \rightarrow 1900$

(PSEUDO)RAPIDITY AND SPATIAL DISTRIBUTION OF PARTICLES

REPRESENTATIVE CENTRAL (PSEUDO)RAPIDITY UNIT

- Corresponds to $\pm 27.5^{\circ}$ from transverse (xy) plane
- Represents a fraction of invariant particle yield $N \longrightarrow \frac{dN}{dv}$
- Fit produces normalization $V \longrightarrow \frac{dV}{dv}$
- # charged particles in study $\frac{dN_{ch}}{dy}$ \simeq 1601 \pm 60 << 15000 (ALICE Pb–Pb at 2.76TeV 0-5%)

PARTICLE ABUNDANCES

- Experiments report average particle abundances over many collision events
- Model calculations to describe an average event
- STATISTICAL HADRONIZATION MODEL (SHM)
 - Assuming equal hadron production strength irrespective of produced hadron type
 - Particle yields depend only on available phase space
 - Micro-canonical Fermi model
 - fixed energy and number of particles
 - Canonical fixed number of particles, average energy: T
 - Grand-canonical + average number of particles: $\mu \Leftrightarrow \Upsilon = e^{(\mu/T)}$
 - Exploration of source properties in particle co-moving frame collective matter flow irrelevant

 Average per collision yield of hadron *i* is calculated from integral of the distribution over phase space

$$\langle N_i \rangle \to \frac{dN_i}{dy} = g_i \frac{dV}{dy} \int \frac{d^3p}{(2\pi)^3} n_i; \quad n_i \left(\varepsilon_i; T, \Upsilon_i\right) = \frac{1}{\Upsilon_i^{-1} e^{\varepsilon_i/T} \pm 1}$$

$$= \frac{g_i T^3}{2\pi^2} \frac{dV}{dy} \sum_{n=1}^{\infty} \frac{(\pm 1)^{n-1} (\Upsilon_i)^n}{n^3} \left(\frac{nm_i}{T}\right)^2 K_2 \left(\frac{nm_i}{T}\right)$$

Hadron mass

PDG Tables

- Degeneracy (spin), $g_i = (2J + 1)$
- Overall normalization

- Hadronization temperature
- Fugacity Υ_i for each hadron see next slide

 Average per collision yield of hadron *i* is calculated from integral of the distribution over phase space

$$\langle N_i \rangle \to \frac{dN_i}{dy} = g_i \frac{dV}{dy} \int \frac{d^3p}{(2\pi)^3} n_i; \quad n_i \left(\varepsilon_i; T, \Upsilon_i\right) = \frac{1}{\Upsilon_i^{-1} e^{\varepsilon_i/T} \pm 1}$$

$$= \frac{g_i T^3}{2\pi^2} \frac{dV}{dy} \sum_{n=1}^{\infty} \frac{(\pm 1)^{n-1} (\Upsilon_i)^n}{n^3} \left(\frac{nm_i}{T}\right)^2 K_2 \left(\frac{nm_i}{T}\right)$$

Hadron mass

PDG Tables

- Degeneracy (spin), $g_i = (2J + 1)$
- Overall normalization

- Hadronization temperature
- Fugacity Υ_i for each hadron see next slide

 Average per collision yield of hadron *i* is calculated from integral of the distribution over phase space

$$\langle N_i \rangle \to \frac{dN_i}{dy} = g_i \frac{dV}{dy} \int \frac{d^3p}{(2\pi)^3} n_i; \quad n_i \left(\varepsilon_i; T, \Upsilon_i\right) = \frac{1}{\Upsilon_i^{-1} e^{\varepsilon_i/T} \pm 1}$$

$$= \frac{g_i T^3}{2\pi^2} \frac{dV}{dy} \sum_{n=1}^{\infty} \frac{(\pm 1)^{n-1} (\Upsilon_i)^n}{n^3} \left(\frac{nm_i}{T}\right)^2 K_2 \left(\frac{nm_i}{T}\right)$$

Hadron mass

PDG Tables

- Degeneracy (spin), $g_i = (2J + 1)$
- Overall normalization

- Hadronization temperature
- Fugacity Υ_i for each hadron see next slide

 Average per collision yield of hadron *i* is calculated from integral of the distribution over phase space

$$\langle N_i \rangle \to \frac{dN_i}{dy} = g_i \frac{dV}{dy} \int \frac{d^3p}{(2\pi)^3} n_i; \quad n_i \left(\varepsilon_i; T, \Upsilon_i\right) = \frac{1}{\Upsilon_i^{-1} e^{\varepsilon_i/T} \pm 1}$$

$$= \frac{g_i T^3}{2\pi^2} \frac{dV}{dy} \sum_{n=1}^{\infty} \frac{(\pm 1)^{n-1} (\Upsilon_i)^n}{n^3} \left(\frac{nm_i}{T}\right)^2 K_2 \left(\frac{nm_i}{T}\right)$$

Hadron mass

PDG Tables

- Degeneracy (spin), $g_i = (2J + 1)$
- Overall normalization
- Hadronization temperature
- Fugacity Υ_i for each hadron see next slide

 Average per collision yield of hadron *i* is calculated from integral of the distribution over phase space

$$\langle N_i \rangle \to \frac{dN_i}{dy} = g_i \frac{dV}{dy} \int \frac{d^3p}{(2\pi)^3} n_i; \quad n_i \left(\varepsilon_i; T, \Upsilon_i\right) = \frac{1}{\Upsilon_i^{-1} e^{\varepsilon_i/T} \pm 1}$$

$$= \frac{g_i T^3}{2\pi^2} \frac{dV}{dy} \sum_{n=1}^{\infty} \frac{(\pm 1)^{n-1} (\Upsilon_i)^n}{n^3} \left(\frac{nm_i}{T}\right)^2 K_2 \left(\frac{nm_i}{T}\right)$$

Hadron mass

PDG Tables

- Degeneracy (spin), $g_i = (2J + 1)$
- Overall normalization

- Hadronization temperature
- Fugacity Υ_i for each hadron see next slide

 Average per collision yield of hadron *i* is calculated from integral of the distribution over phase space

$$\langle N_i \rangle \to \frac{dN_i}{dy} = g_i \frac{dV}{dy} \int \frac{d^3p}{(2\pi)^3} n_i; \quad n_i \left(\varepsilon_i; T, \Upsilon_i\right) = \frac{1}{\Upsilon_i^{-1} e^{\varepsilon_i/T} \pm 1}$$

$$= \frac{g_i T^3}{2\pi^2} \frac{dV}{dy} \sum_{n=1}^{\infty} \frac{(\pm 1)^{n-1} (\Upsilon_i)^n}{n^3} \left(\frac{nm_i}{T}\right)^2 K_2 \left(\frac{nm_i}{T}\right)$$

Hadron mass

PDG Tables

- Degeneracy (spin), $g_i = (2J + 1)$
- Overall normalization
- Hadronization temperature
- Fugacity Υ_i for each hadron see next slide

FUGACITY AND QUARK FLAVOR CHEMISTRY

- FLAVOR CONSERVATION FACTOR $\lambda_{q} = e^{\mu/T}$
 - controls difference between quarks and antiquark of same flavor $q \bar{q}$
 - "Relative" chemical equilibrium

FLAVOR YIELD FACTOR γ_{q}

- phase spaces occupancy: absolute abundance of flavor q
- controls number of $q + \bar{q}$ pairs
- "Absolute" chemical equilibrium

Overall fugacity $\Upsilon=\gamma\lambda$

- product of constituent quark flavor Υ_i
- example: $\Lambda(uds) (q = u, d)$ $\Upsilon_{\Lambda(uds)} = \gamma_q^2 \gamma_s \lambda_q^2 \lambda_s$ $\Upsilon_{\overline{\Lambda}(\overline{uds})} = \gamma_q^2 \gamma_s \lambda_q^{-2} \lambda_s^{-1}$

HADRON RATIOS — CONCEPTUAL TEST OF SHM depend on few(er)SHM parameters, easy to compare with data:

Petran et al, Phys.Rev.C 82 (2010),

 $\frac{\Xi}{K} \propto \gamma_s \qquad \frac{\Xi}{\pi} \propto \frac{\gamma_s^2}{\gamma_q}$ $\frac{\phi}{K} \propto \frac{\gamma_s}{\gamma_q} \qquad \frac{\phi}{\pi} \propto \frac{\gamma_s^2}{\gamma_q^2}$

- Same T_{QGP} $\equiv /\phi \Rightarrow \gamma_q = \text{const.}$
- Ratios $\propto \gamma_s$ change $\Rightarrow \gamma_s$ change

HADRON RATIOS — CONCEPTUAL TEST OF SHM depend on few(er)SHM parameters, easy to compare with data:

$$\frac{\Xi}{\phi} \equiv \sqrt{\frac{\Xi^{-}(ssd)\overline{\Xi}^{+}(\bar{s}\bar{s}\bar{d})}{\phi(s\bar{s})\phi(s\bar{s})}} = \sqrt{\frac{\gamma_{s}^{4}\gamma_{q}^{2}}{\gamma_{s}^{4}}\frac{\lambda_{s}^{2}\lambda_{q}\lambda_{s}^{-2}\lambda_{q}^{-1}}{\lambda_{s}^{2}\lambda_{s}^{-2}}}\frac{V_{\Xi}}{V_{\phi}}f(T, m_{\Xi}, m_{\phi})$$
$$= \gamma_{q}f(T, m_{\Xi}, m_{\phi}).$$
OTHER BATIOS

 γ_{s}

Same T_{OGP}

 $\Rightarrow \gamma_{s}$ change

 $\Xi/\phi \Rightarrow \gamma_q = \text{const.}$

Ratios $\propto \gamma_s$ change

Petran et al, Phys.Rev.C 82 (2010),

STANDARDIZED PROGRAM TO FIT SHM PARAMETERS

Statistical HAdronization with REsonances: (SHARE)

 SHM implementation in publicly available program
 G. Torrieri et al, Arizona + Krakow; SHAREv1 (2004), SHAREv2 (2006, added fluctuations, + Montreal)
 M. Petran SHARE(s) with CHARM: (2007–present)

SHARE INCORPORATES

- Hadron mass spectrum > 500 hadrons (PDG 2012)
- Hadron decays > 2500 channels (PDG 2012)
- Integrated hadron yields, ratios and decay cascades
- OUT:Experimentally observable \lesssim 30 hadron species
- AND: Physical properties of the source at hadronization – also as input in fit e.g. constraints:

$$Q/B \simeq 0.39, \; \langle s - ar{s}
angle = 0$$

PROCEDURE - FITTING SHM PARAMETERS TO DATA

- 1. Input: T, V, γ_q , γ_s , λ_q , λ_s . λ_3
- 2. Compute yields of all hadrons
- Decay feeds

 particles
 experiment
 observes
- 4. Compare to exp. data (χ^2)
- 5. Including bulk properties and constraints
- 6. Tune parameters to match data (minimize χ^2)

SHM DESCRIPTION OF CENTRAL RHIC 62

SHM results: Petran et al., Acta Phys.Polon.Supp. 5 (2012) 255-262 Data from: [STAR Collaboration], Phys.Rev.C79, 034909 (2009) [STAR Collaboration], Phys.Rev.C79, 064903 (2009).

MODEL PARAMETERS

- $T = 140 \, \text{MeV}$
- $dV/dy = 850 \, {\rm fm}^3$

•
$$\gamma_q = 1.6$$

•
$$\gamma_{s} = 2.2$$

•
$$\lambda_q = 1.16$$

•
$$\Rightarrow \mu_B = 62.8 \,\mathrm{MeV}$$

•
$$\chi^2 / ndf = 0.38$$

PHYS. PROPERTIES

• $\varepsilon = 0.5 \, \mathrm{GeV/fm}^3$

•
$$P = 82 \, {\rm MeV} / {\rm fm}^3$$

•
$$\sigma = 3.3 \, {\rm fm}^{-3}$$

Describing RHIC 62 GeV across centrality: two approaches (semi)equilibrium $\gamma_q = 1$ and 'nonequilibrium' $\gamma_q \neq 1$ QGP breakup

- Au–Au collisions at $\sqrt{s_{NN}} = 62.4 \text{ GeV}$ at RHIC
- π,K,p,φ,Λ,Ξ and Ω fitted across centrality
- γ_s ≠ 1 necessary to describe multistrange particles ⇒ excludes chemical equilibrium
- γ_s > 1 in central collisions strangeness overpopulation

PHYSICAL PROPERTIES AT RHIC 62 GEV

Non-equilibrium result $\gamma_q \neq 1$: constant physical properties

SAME UNIVERSAL HADRONIZATION CONDITIONS AS AT SPS J.Phys. G36 (2009) 064017

- Entropy density $\sigma = 3.3 \, {\rm fm}^{-3}$
- Energy density $\varepsilon = 0.5 \, {\rm GeV/fm^3}$
- Critical pressure $P = 82 \,\mathrm{MeV/fm^3}$
- s/S near QGP value $s/S \simeq 0.03$

LHC – $45 \times$ higher energy (than RHIC 62)

Does SHM describe particle production at LHC?

Does the QGP fireball hadronizes at the same 'universal' hadronization conditions as at SPS and RHIC 62?

FIT TO LHC HADRON YIELDS WORKS PERFECTLY and nearly same parameters as RHIC 62

- Data from: Pb–Pb at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
- Non-equilibrium SHM describes
 data across centrality
- Hadron yield range spans 5 orders of magnitude from central to peripheral

MODEL PARAMETERS AT LHC COMPARED TO RHIC

Petran et al., Phys. Rev. C 88, 034907 (2013)

IMPORTANT DIFFERENCES: ENTROPY, STRANGENESS VS. CENTRALITY

Petran et al., Phys. Rev. C 88, 034907 (2013)

- LHC steeper than linear
- Additional centrality dependent entropy production

Petran et al., Phys. Rev. C 88, 034907 (2013)

- For small *N*_{part} rapid increase of strangeness
- For large *N*_{part} steady level of strangeness

PRECISE DATE DEMANDS CHEMICAL NON-EQUILIBRIUM OF LIGHT u, d and strange s quarks, $\gamma_i \neq 1$

Petran et al., Phys. Rev. C 88, 034907 (2013)

• $\frac{p(uud)}{\pi(ud)} \propto \gamma_q$ • $\frac{p(uud)}{\pi(ud)} \simeq 0.05 \Rightarrow \gamma_q \simeq 1.6$ Petran et al., Phys. Rev. C 88, 034907 (2013)

- $\gamma_q = 1$ no special importance
- $4 \times$ smaller χ^2 for $\gamma_q = 1.6$

Only non-equilibrium describes all LHC data

UNIVERSAL HADRONIZATION CONDITIONS: RHIC vs LHC

Petran et al., Phys. Rev. C 88, 021901(R) (2013) Petran et al., Phys. Rev. C 88, 034907 (2013)

SUMMARY UP, DOWN, STRANGE

- Only non-equilibrium $\gamma_q \simeq 1.6$ SHM describes LHC data
- Universal hadronization conditions (ε, P, σ) of QGP at LHC, RHIC and SPS and at most centralities

NOT REPORTED

SHARE with CHARM shows consistency with charm decay feed to hadron yields

OUTLOOK

- Trace anomaly $\frac{\varepsilon 3P}{T^4}$ investigation in progress
- Isospin-3 iso-states (e.g. K[±] vs K⁰) not equally abundant seen hadron mass differences: given precise LHC data fit of γ_u, γ_d possible
 - required to measure $\mu_{B}^{\rm LHC}$
- Beam Energy Scan from RHIC, $\mathcal{O}(10)$ GeV,
 - look for onset of QGP creation,
 - test Universal Hadronization Conditions.