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Introduction

Groups in classical and quantum mechanics.
Why classical symmetry groups are not quantized?

Well-known answer: this is because classical symmetry
groups acting on a phase space preserve Poisson
brackets.

Anomalous Poisson brackets: this is when the group
action fails to preserve them.

Anomalous Poisson bracket relations arise in practice in
connection with dynamical symmetry groups.

The notion of dynamical symmetry group is a bit vague;
it’s a group which is not directly related to the geometric
symmetry of the problem. An interesting example
related to the Poisson brackets anomaly arises in the
theory of the celebrated Korteweg–de Vries equation.
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KdV equation and its phase space

KdV equation is ut = 6uux + uxxx. Its phase space may
be identified with the space of Schroedinger operators
on the line or on the circle. The algebra of observables
consists of local functionals of the potential u.

The phase space carries a natural Poisson structure
related to the famous Virasoro algebra. For this reason
the KdV phase space is also related to models of
2d-gravity.

Is there a natural Poisson structure on the space of
wave functions of a Schroedinger operator?

This question is in fact of practical interest in application
to a family of KdV-like equation.
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Schwarzian Derivative

Let us recall a nice geometric way to restore the potential
from the wave functions.

For a given u the space of solutions of the Schroedinger
equation

−ψ′′ − uψ = 0

is 2-dimensional; any two solutions φ, ψ have constant
wronskian W = φψ′ − φ′ψ.

Set η(x) = φ(x)/ψ(x). The potential u may be restored
from η by the formula

u = 1
2S(η), where S(η) =

η′′′

η′
− 3

2

(
η′′

η′

)2

is the Schwarzian derivative.
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Projective group

Change of basis amounts to linear transformation
(φ, ψ) �→ (φ, ψ)g, g ∈ SL(2) and to fractional linear
transformation of η = φ/ψ

S(u) is projective invariant: if η̃ = aη+c
bη+d , then S(η̃) = S(u).

A tower of KdV-like equations. The KdV equation is
included into an interesting family of “KdV-like equations”
related to projective group and its subgroups. Atop the
tower of these “KdV-like equations” is the “Schwarz–KdV
equation”

ηt = S(η)ηx, S(η) =
η′′′

η′
− 3

2

(
η′′

η′

)2
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Tower of KdV-like equations

Claim:
if η is its solution, so is aη+c

bη+d for all g =
(
a b
c d

) ∈ SL(2).

Original KdV holds for u = S(η) which is
PSL(2)-invariant.
Other KdV-like equations hold for the invariants of
various subgroups of PSL(2).

More formally:
We identify observables of KdV with local densities
which are rational functions of u and its derivatives;
in a similar way, observables for Schwarz–KdV are
rational functions of η and its derivatives (in finite
number)
The group G = SL(2) acts on this algebra of
observables and commutes with derivation ∂x.
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Point of view of differential Galois theory

We define the differential field C〈ψ1, ψ2〉 as a free
algebra of rational functions in an infinite set of
variables ψ1, ψ2, ψ

′
1, ψ

′
2, ψ

′′
1 , ψ

′′
2 , . . . with a formal

derivation ∂ such that ∂ψ(n)
i = ψ

(n+1)
i .

A differential automorphism is an automorphism of
C〈ψ1, ψ2〉 (as an algebra) which commutes with ∂. All
differential automorphisms are induced by linear
transformations (ψ1, ψ2) �→ (ψ1, ψ2) · g, g ∈ GL(2,C).

Let (W ) be the differential ideal in C〈ψ1, ψ2〉 generated
by ψ1ψ

′
2 − ψ′

1ψ2 − 1. Automorphisms which preserve W
belong to G = SL(2).

The differential subfield of G-invariants coincides with
C〈u〉.
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Intermediate differential fields

Let Z = {±1} be the center of G and N , A, B = AN its
standard subgroups (nilpotent, split Cartan & Borel). The
subfields of invariants are freely generated differential
algebras:

C〈φ, ψ〉Z = C〈η〉, η = φ/ψ,

C〈η〉A = C〈ρ〉, ρ = η′/η,

C〈η〉N = C〈θ〉, θ = η′,

C〈η〉B = C〈v〉, v = η′′/η′,

C〈η〉G = C〈u〉, u = S(η).
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Tower of KdV-like flows

Tower of compatible integrable KdV-like equations
associated with subgroups of PSL(2):
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Extension Tower

C〈η〉

C〈η〉A
� �

�����������
C〈η〉N��

�����������

C〈η〉B
� �

�������������

�����������
��

��

C〈η〉G
��

��

Inclusions in this diagram match with “differential
substitutions” listed above and with the tower of KdV-like
equations
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Differential Galois theory

Question: Put this picture into the Hamiltonian framework.
As well known, the space of 2nd order differential operators
carries a natural Poisson structure (incidentally, this is the
Poisson–Virasoro algebra).
Question: Extend this Poisson structure to the space of
wave functions in such a way that all arrows in the diagram
above become Poisson maps.

The answer to this question is non-trivial: All arrows go
in wrong direction! (Poisson structure cannot be pulled
back!) Still, the lift is possible (and even almost unique);
however, the resulting brackets are anomalous: they
are not projective invariant. Instead, a new axiom holds
true: the projective group becomes a Poisson Lie group
(and eventually a quantum group); all brackets are
Poisson covariant.
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Basic Poisson bracket relations

In our paper with Ian Marshall we explored this question for
the KdV case. The resulting Poisson brackets are listed
below:

Basic Poisson bracket relations for differential Galois
invariants:

{η(x), η(y)} = η(x)2− η(y)2− sign(x− y) (η(x)− η(y))2.
For θ = η′ we have

{θ(x), θ(y)} = 2 sign(x− y)θ(x)θ(y).

For v = 1
2η

′′/η′ = 1
2θ

′/θ we have

{v(x), v(y)} = 1
2δ

′(x− y).
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Basic Poisson bracket relations

For u = 1
2v

′ − v2 = S(η) we have

{u(x), u(y)} = 1
2δ

′′′(x− y) + δ′(x− y)
[
u(x) + u(y)

]
. (1)

The Poisson bracket for u is the Poisson–Virasoro algebra.
In these formulas sign(x− y) is the distribution kernel of the
operator ∂−1

x and δ′(x− y) is the distribution kernel of ∂x.
Poisson brackets for η are not projective invariant : there are
correction terms which mean that this action is Poisson,
with the group SL(2) itself carrying the so called standard
(Sklyanin) Poisson bracket.
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Reformulation

In a sense, on has to guess the Poisson brackets for η. The
situation becomes more transparent if we pass to 1st order
matrix differential operators and then to difference
operators, which are the main subject of the present talk.

As well known, 2nd order differential operators may be
written as 1st order 2× 2 matrix differential operators.
One can start with arbitrary 1st order matrix differential
operators; to get the correct Poisson bracket relations
for 2nd order operators on needs a reduction procedure
(Drinfeld–Sokolov theory).

Again, the choice of a Poisson structure in the space of
wave functions is nontrivial.

We shall put the theory on a lattice replacing differential
operators with difference operators. (This also leads to
an interesting deformation of Virasoro algebra.)
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Abstract difference operators

To set up a general framework for the difference case let us
assume that G is a Lie group equipped with an
automorphism τ Let G = Gτ be the group of
“quasi-constants”, G = {g ∈ G; gτ = g}.
The “auxiliary linear problem” reads:

ψτψ−1 = L.

There is a natural action of G on itself by left multiplication
which induces gauge transformations for L:

g : ψ �→ g · ψ,L �→ gτLg−1.

The quasi-constants act by right multiplications, ψ �→ ψh
and leave L invariant.
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Natural realizations

There are several natural realizations of this scheme:

G consists of functions on a lattice Z with values in a
matrix group G and τ is a shift operator; it is also
possible to introduce multi-dimensional lattices with
several commuting shift automorphisms.

G consists of functions on the line with gτ (x) = g(x+ 1).

G consists of functions which are meromorphic in C∗
and τ acts by gτ (z) = g(qz), q �= 1.

In the first case, the group of quasi-constants consists of
genuine constant functions on the lattice with values in G, in
the second case it consists of G-valued periodic functions,
in the 3d case it consists of G-valued functions on the
elliptic curve Eq = C∗/qZ.
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Poisson framework

There is a natural Poisson structure on the space of 1st
order differential operators on the line (Schwinger
bracket) and the gauge action is Hamiltonian.

In the difference case the gauge action is not
Hamiltonian; the gauge group is a Poisson Lie group;
the Poisson structure on the gauge group is fixed by the
choice of a classical r-matrix.

Once r is chosen, there is a unique Poisson structure
on the space of 1st order difference operators which is
Poisson covariant with respect to the gauge action. This
is the “discrete current algebra” discovered by Alexeev,
Faddeev, Volkov and myself (both in Poisson and in
Quantum group setting)
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Choice of a Poisson structure

We shall define the Poisson structure directly on the space
of wave functions.

Consistency check:
It should be Poisson covariant with respect to left
translations (gauge action) and also with respect to
right translations.
It should yield the correct Poisson structure on the
space of potentials L = ψτψ−1.

Definition. For f ∈ Fun(G) we denote by ∇f ,∇′
f its left

and right gradients defined by

〈∇f (ψ), ξ〉 = d

dt

∣∣∣∣
t=0

f(etξψ), 〈∇′
f (ψ), ξ〉 =

d

dt

∣∣∣∣
t=0

f(ψetξ).
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Choice of a Poisson structure – 2

We put

{f1, f2} = 〈l(∇f1),∇f2〉+ 〈r(∇′
f1),∇′

f2〉.

Here l and r are two (a priori, different) classical r-matrices.
In tensor form this formula may be written as

{ψ1, ψ2} = l12ψ1ψ2+ψ1ψ2r12, where ψ1 = ψ⊗I, ψ2 = I⊗ψ.
This may be regarded as an abstract version of the
Exchange algebra introduced in the early 1990’s (notably,
by Babelon). The main question, of course, is to restrict and
explain the choice of l and r.
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Contribution of l

Easy observations.

For a given l the gauge action becomes Poisson if the
gauge group carries the Sklyanin bracket associated
with l.

Left and right bracket are almost independent, but they
are linked via the Jacoby/Yang–Baxter identity.

A simple computation. We look at the contribution of l to
the Poisson brackets of potentials. Suppose that
f(ψ) = F (ψτψ−1). We denote by XF , X

′
F left and right

gradients of F . Then

{f1, f2}l (ψ) = 〈l(X1), X2〉+〈l(X ′
1), X

′
2〉−〈l◦τ−1(X1), X

′
2〉−〈τ◦l(X ′

1), X2〉

Wigner-111. November 2013. Budapest Poisson Geometry of Difference Lax Operators,and Difference Galois Theory,or Quantum groups from Poisson brackets anomalies – p. 20/28



Contribution of l

In tensor notation, this yields for L = ψτψ−1:

{L1, L2}l = lL1L2 + L1L2l − L1l
τL2 − L2l

τ−1

L1.

This formula resembles the “discrete current algebra”, but it
lacks some crucial terms.
The rescue comes through the choice of r which appears to
be very rigid.
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The role of r

Key observation. The mapping ψ �→ ψτψ−1 is Poisson if
and only if :

r = r0+
τ + I

τ − I
, where r0 acts in the subspace of quasi-constants.

Explanation. Left gradient of f(ψ) = F (ψτψ−1) depends
only on left and right gradients of F (regarded as a function
of L = ψτψ−1). By contrast, its right gradient depends on ψ.
After some calculations, one gets explicitly:

{f1, f2}r (ψ) = 〈(r − τ · r + r − r · τ−1)Adψ−1X ′
1,Adψ

−1X ′
2〉.

Our mapping is Poisson if and only if Adψ−1 cancels.
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The role of r

Remarkably, this cancellation is achieved by a simple and
unique choice r = τ+I

τ−I if we assume that τ − I is invertible.
Morever, we have:
Proposition. Assume that τ − I is invertible. Then r = τ+I

τ−I

satisfies the modified classical Yang–Baxter identity

[rX, rY ]− r([rX, Y ] + [X, rY ]) + [X,Y ] = 0;

It is skew iff τ is orthogonal.
With our choice of r, the contribution of the right bracket
finally becomes

{f1, f2}r (ψ) = 〈X1, τX
′
2〉 − 〈τX ′

1, X2〉.
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The role of r

Easy observation.

The above formula precisely provides the missing terms
to convert the left bracket for L’s into the correct lattice
algebra.

If l also satisfies the modified Yang–Baxter identity, the
full bracket satisfies Jacoby.

The formula we derived fixes the choice of r up to the
subspace of quasi-constants.
One more crucial step:

r is a singular integral operator; one has to define its
regularization.
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Regularization of r

Example: τ is a shift operator on the line,
τf(x) = f(x+ 1). Then

rf(x) =
1

2π

∫ ∞

−∞
cotan (k/2)f̂(k)eikx dk.

Choose a finite dimensional r-matrix r0 acting in the
space of values.
We set 0r± = 1

2(r0 ± t), so that

0r+ +0r− = r0,
0r+ −0r− = t,
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Regularization of r

The correct regularization of r is given by

(rf)(x) =0 r+

(
1

2πi

∫ ∞

−∞
f̂(k)cotan (k + i0)eikx dk

)
+

0r−
(

1

2πi

∫ ∞

−∞
f̂(k)cotan (k − i0)eikx dk

)
, (2)
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Regularization of r

Set

F (x) =

∞∑
n=−∞

f(x+ n) =

∞∑
n=−∞

f̂(2πn)e2πinx.

F is a quasiconstant lying in the kernel of τ . Using the
Sokhotsky and Poisson formulas. we can rewrite (2) in
equivalent form:

(rf)(x) = r0(F (x)) + v.p.
1

2π

∫ ∞

−∞
cotan (k/2)f̂(k)eikx dk, (3)

where r0 is acting pointwise in the subspace of
quasiconstants.
For q-difference operators the kernel of r is expressed
through theta functions.
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q-deformed Drinfeld–Sokolov theory

Reduction to the case of higher order scalar difference is
non-trivial. It allows to fix both l and r0 completely.
Unfortunately, it is already impossible to give explicit
formulas, due to the lack of time.

Thank you for your attention!
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