Quantum state redistribution with local coherence

A. Anshu¹, R. Jain¹, <u>A. Streltsov^{2,3}</u>

¹National University of Singapore, Singapore ²Gdańsk University of Technology, Poland ³National Quantum Information Centre in Gdańsk, Poland

Budapest University of Technology and Economics September 26, 2018

Free states: quantum states which are easy to create

^aHorodecki and Oppenheim, Int. J. Mod. Phys. B 27, 1345019 (2013)

quantum states which are not free

^aHorodecki and Oppenheim, Int. J. Mod. Phys. B 27, 1345019 (2013)

Free operations:

easy implementable state transformations, transform free states into free states

^aHorodecki and Oppenheim, Int. J. Mod. Phys. B 27, 1345019 (2013)

State conversion problem:

determining if a state σ can be obtained from ρ

^aHorodecki and Oppenheim, Int. J. Mod. Phys. B 27, 1345019 (2013)

Resource theory of entanglement:

Local operations and classical communication + separable states

^aHorodecki and Oppenheim, Int. J. Mod. Phys. B 27, 1345019 (2013)

• Entanglement^a: LOCC + separable states

^aHorodecki et al., Rev. Mod. Phys. 81, 865 (2009)

- Entanglement^a: LOCC + separable states
- Quantum coherence^b: incoherent operations + states

^aHorodecki *et al.*, Rev. Mod. Phys. **81**, 865 (2009) ^bStreltsov *et al.*, Rev. Mod. Phys. **89**, 041003 (2017)

- Entanglement^a: LOCC + separable states
- Quantum coherence^b: incoherent operations + states
- Quantum thermodynamics^c: thermal operations + states

^aHorodecki *et al.*, Rev. Mod. Phys. **81**, 865 (2009) ^bStreltsov *et al.*, Rev. Mod. Phys. **89**, 041003 (2017) ^cLostaglio *et al.*, Phys. Rev. X **5**, 021001 (2015)

- Entanglement^a: LOCC + separable states
- Quantum coherence^b: incoherent operations + states
- Quantum thermodynamics^c: thermal operations + states
- Purity^d: unital operations + maximally mixed state

^aHorodecki *et al.*, Rev. Mod. Phys. **81**, 865 (2009)
 ^bStreltsov *et al.*, Rev. Mod. Phys. **89**, 041003 (2017)
 ^cLostaglio *et al.*, Phys. Rev. X **5**, 021001 (2015)
 ^dHorodecki *et al.*, Phys. Rev. A **67**, 062104 (2003)

Resource theory of quantum coherence^{ab}

Free states: incoherent (diagonal) states

$$\hat{
ho} = \sum_{i} p_{i} |i\rangle\langle i| = \begin{pmatrix}
ho_{11} & 0 \\ 0 &
ho_{22} \end{pmatrix}$$

^aBaumgratz, Cramer, Plenio, Phys. Rev. Lett. **113**, 140401 (2014) ^bStreltsov, Adesso, Plenio, Rev. Mod. Phys. **89**, 041003 (2017)

Resource theory of quantum coherence^{ab}

Free states: incoherent (diagonal) states

$$\hat{
ho} = \sum_{i} p_{i} |i\rangle\langle i| = \begin{pmatrix}
ho_{11} & 0 \\ 0 &
ho_{22} \end{pmatrix}$$

Maximally coherent state:

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

^aBaumgratz, Cramer, Plenio, Phys. Rev. Lett. **113**, 140401 (2014) ^bStreltsov, Adesso, Plenio, Rev. Mod. Phys. **89**, 041003 (2017) Resource theory of quantum coherenceab

Free states: incoherent (diagonal) states

$$\hat{\rho} = \sum_{i} p_{i} |i\rangle \langle i| = \begin{pmatrix} \rho_{11} & 0 \\ 0 & \rho_{22} \end{pmatrix}$$

Maximally coherent state:

Incoherent operations:

^aBaumgratz, Cramer, Plenio, Phys. Rev. Lett. **113**, 140401 (2014) ^bStreltsov, Adesso, Plenio, Rev. Mod. Phys. **89**, 041003 (2017)

Quantum coherence in quantum technology

Quantum computation: direct relation between coherence and precision of DQC1 algorithm, noisy quantum computation with little entanglement^{ab}

^aKnill and Laflamme, Phys. Rev. Lett. **81**, 5672 (1998) ^bMatera *et al.*, Quantum Sci. Technol. **1** 01LT01 (2016)

Quantum coherence in quantum technology

Quantum communication: local coherence reduces entanglement consumption in quantum communication^a

^aStreltsov, Chitambar, Rana, Bera, Winter, Lewenstein, Phys. Rev. Lett. **116**, 240405 (2016)

Resource theories of quantum coherence

a) Incoherent operations (IO)^a:

$$\Lambda_{\rm IO}[\rho] = \sum_{i} \kappa_{i} \rho \kappa_{i}^{\dagger} \tag{1}$$

with incoherent Kraus operators $K_i |m\rangle \sim |n\rangle$

^aBaumgratz et al., Phys. Rev. Lett. 113, 140401 (2014)

Resource theories of quantum coherence

b) Maximally incoherent operations (MIO)^b:

$$\Lambda_{\rm MIO}[\hat{\rho}] = \hat{\sigma} \tag{2}$$

with incoherent states $\hat{\rho}$ and $\hat{\sigma}$

^aBaumgratz et al., Phys. Rev. Lett. **113**, 140401 (2014)

^bAberg, arXiv:quant-ph/0612146

Coherence and entanglement in quantum communication

Shared entanglement and **local coherence** are resources for quantum communication^{ab}

^aBennett *et al.*, Phys. Rev. Lett. **70**, 1895 (1993) ^bStreltsov *et al.*, Phys. Rev. Lett. **116**, 240405 (2016) Coherence and entanglement in quantum communication

Shared entanglement and local coherence are resources for quantum communication^{ab}

^aBennett *et al.*, Phys. Rev. Lett. **70**, 1895 (1993) ^bStreltsov *et al.*, Phys. Rev. Lett. **116**, 240405 (2016) Coherence and entanglement in quantum communication

Shared entanglement and local coherence are resources for quantum communication^{ab}

^aBennett *et al.*, Phys. Rev. Lett. **70**, 1895 (1993) ^bStreltsov *et al.*, Phys. Rev. Lett. **116**, 240405 (2016)

^aBennett et al., Phys. Rev. Lett. 70, 1895 (1993)

Entanglement consumption rate:

• with local coherence^b: $E = S(\rho^A)$

^aBennett *et al.*, Phys. Rev. Lett. **70**, 1895 (1993) ^bSchumacher, Phys. Rev. A **51**, 2738 (1995)

Entanglement consumption rate:

- with local coherence^b: $E = S(\rho^A)$
- without local coherence^c: $E' = S(\rho_{diag}^{A}) \ge E$

^aBennett *et al.*, Phys. Rev. Lett. **70**, 1895 (1993) ^bSchumacher, Phys. Rev. A **51**, 2738 (1995) ^cStreltsov *et al.*, Phys. Rev. Lett. **116**, 240405 (2016)

Entanglement consumption rate:

- with local coherence^b: $E = S(\rho^A)$
- without local coherence^c: $E' = S(\rho_{diag}^{A}) \ge E$

• Tradeoff^c:
$$E + C \ge S(\rho_{\text{diag}}^{A})$$

^aBennett *et al.*, Phys. Rev. Lett. **70**, 1895 (1993)
 ^bSchumacher, Phys. Rev. A **51**, 2738 (1995)
 ^cStreltsov *et al.*, Phys. Rev. Lett. **116**, 240405 (2016)

^aHorodecki et al., Nature 436, 673 (2005)

Entanglement consumption rate:

• with local coherence^a: $E = S(A|B)_{\rho} = S(\rho^{AB}) - S(\rho^{B})$

^aHorodecki et al., Nature 436, 673 (2005)

Entanglement consumption rate:

- with local coherence^a: $E = S(A|B)_{\rho} = S(\rho^{AB}) S(\rho^{B})$
- without local coherence^b: $E' = S(A|B)_{\rho_{\text{diag}}} \ge E$

^aHorodecki *et al.*, Nature **436**, 673 (2005)

^bStreltsov et al., Phys. Rev. Lett. **116**, 240405 (2016)

Entanglement consumption rate:

- with local coherence^a: $E = S(A|B)_{\rho} = S(\rho^{AB}) S(\rho^{B})$
- without local coherence^b: $E' = S(A|B)_{\rho_{\text{diag}}} \ge E$
- Tradeoff^b: $E + C \ge S(A|B)_{\rho_{\text{diag}}}$

^bStreltsov et al., Phys. Rev. Lett. **116**, 240405 (2016)

^aHorodecki et al., Nature **436**, 673 (2005)

^aDevetak and Yard, Phys. Rev. Lett. 100, 230501 (2008)

Quantum communication rate:

• with local coherence^a: $Q = \frac{1}{2}I(C:R|B)$

^aDevetak and Yard, Phys. Rev. Lett. 100, 230501 (2008)

Quantum communication rate:

- with local coherence^a: $Q = \frac{1}{2}I(C:R|B)$
- without coherence^b: $Q' = \frac{1}{2} \left\{ I(C:R|B) + R_c(\rho^{BC}) R_c(\rho^B) \right\}$

^aDevetak and Yard, Phys. Rev. Lett. **100** , 230501 (2008) ^bAnshu, Jain, Streltsov, arXiv:1804.04915

Quantum communication rate:

- with local coherence^a: $Q = \frac{1}{2}I(C:R|B)$
- without coherence^b: $Q' = \frac{1}{2} \left\{ I(C:R|B) + R_c(\rho^{BC}) R_c(\rho^B) \right\}$
- Conditional mutual information: I(C:R|B) = S(R|B) - S(R|BC)

^aDevetak and Yard, Phys. Rev. Lett. **100** , 230501 (2008) ^bAnshu, Jain, Streltsov, arXiv:1804.04915

Quantum communication rate:

- with local coherence^a: $Q = \frac{1}{2}I(C:R|B)$
- without coherence^b: $Q' = \frac{1}{2} \left\{ I(C:R|B) + R_c(\rho^{BC}) R_c(\rho^B) \right\}$
- Relative entropy of coherence^{cd}: $R_c(\rho) = S(\rho_{\text{diag}}) S(\rho)$

^aDevetak and Yard, Phys. Rev. Lett. **100**, 230501 (2008)
 ^bAnshu, Jain, Streltsov, arXiv:1804.04915
 ^cBaumgratz, Cramer, Plenio, Phys. Rev. Lett. **113**, 140401 (2014)
 ^dWinter and Yang, Phys. Rev. Lett. **116**, 120404 (2016)

without side information and coherence

without side information and coherence

• Quantum communication rate^a: $Q = \frac{1}{2} \{ S(\rho^A) + S(\rho^A_{diag}) \}$

^aAnshu, Jain, Streltsov, arXiv:1804.04915

without side information and coherence

- Quantum communication rate^a: $Q = \frac{1}{2} \{ S(\rho^A) + S(\rho^A_{diag}) \}$
- Optimal singlet rate^b: $E = S(\rho^A)$

^aAnshu, Jain, Streltsov, arXiv:1804.04915 ^bSchumacher, Phys. Rev. A **51**, 2738 (1995)

without side information and coherence

- Quantum communication rate^a: $Q = \frac{1}{2} \{ S(\rho^A) + S(\rho^A_{diag}) \}$
- Optimal singlet rate^b: $E = S(\rho^A)$
- Singlet rate in absence of coherence^c: E = S(p^A_{diag})

^aAnshu, Jain, Streltsov, arXiv:1804.04915

^bSchumacher, Phys. Rev. A **51**, 2738 (1995)

^cStreltsov et al., Phys. Rev. Lett. 116, 240405 (2016)

Entanglement is useful for local coherence extraction

Entanglement is useful for local coherence extraction

• Alice and Bob share a pure state $|\psi
angle$

Entanglement is useful for local coherence extraction

- Alice and Bob share a pure state $|\psi
 angle$
- With assistance of Alice^{ab}: $C_a = S(\rho_{diag}^B)$

^aChitambar *et al.*, Phys. Rev. Lett. **116**, 070402 (2016) ^bStreltsov *et al.*, Phys. Rev. X **7**, 011024 (2017)

Entanglement is useful for local coherence extraction

- Alice and Bob share a pure state $|\psi
 angle$
- With assistance of Alice^{ab}: $C_a = S(\rho_{diag}^B)$
- Without assistance^c: $C = S(\rho_{diag}^B) S(\rho^B) \le C_a$

^aChitambar *et al.*, Phys. Rev. Lett. **116**, 070402 (2016) ^bStreltsov *et al.*, Phys. Rev. X **7**, 011024 (2017) ^cWinter and Yang, Phys. Rev. Lett. **116**, 120404 (2016)

Entanglement is useful for local coherence extraction

- Alice and Bob share a pure state $|\psi
 angle$
- With assistance of Alice^{ab}: $C_a = S(\rho_{diag}^B)$
- Without assistance^c: $C = S(\rho_{diag}^B) S(\rho^B) \le C_a$
- Non-asymptotic assisted coherence distillation^d

^aChitambar *et al.*, Phys. Rev. Lett. **116**, 070402 (2016) ^bStreltsov *et al.*, Phys. Rev. X **7**, 011024 (2017) ^cWinter and Yang, Phys. Rev. Lett. **116**, 120404 (2016) ^dRegula, Lami, Streltsov, arXiv:1807.04705

Conversion of entanglement into coherence

Conversion of entanglement into coherence

- Free classical communication:
 - E shared singlets $\rightarrow E$ maximally coherent states^a

^aChitambar et al., Phys. Rev. Lett. 116, 070402 (2016)

Conversion of entanglement into coherence

Free classical communication: *E* shared singlets → *E* maximally coherent states^a

No free classical communication:
 E shared singlets and *Q* qubits of quantum communication
 → *C* = *Q* + min{*E*, *Q*} maximally coherent states^b

^aChitambar *et al.*, Phys. Rev. Lett. **116**, 070402 (2016) ^bAnshu, Jain, Streltsov, arXiv:1804.04915

• Local quantum coherence useful for quantum state merging and quantum state redistribution

^aAnshu, Jain, Streltsov, arXiv:1804.04915 ^bStreltsov *et al.*, Phys. Rev. Lett. **116**, 240405 (2016)

- Local quantum coherence useful for quantum state merging and quantum state redistribution
- Both processes are possible also without local coherence at a higher cost

^aAnshu, Jain, Streltsov, arXiv:1804.04915 ^bStreltsov *et al.*, Phys. Rev. Lett. **116**, 240405 (2016)

- Local quantum coherence useful for quantum state merging and quantum state redistribution
- Both processes are possible also without local coherence at a higher cost
- Quantum state redistribution: quantum communication cost without local coherence^a

$$Q = \frac{1}{2} \left\{ I(C:R|B) + R_c(\rho^{BC}) - R_c(\rho^{B}) \right\}$$
(3)

^aAnshu, Jain, Streltsov, arXiv:1804.04915 ^bStreltsov *et al.*, Phys. Rev. Lett. **116**, 240405 (2016)

- Local quantum coherence useful for quantum state merging and quantum state redistribution
- Both processes are possible also without local coherence at a higher cost
- Quantum state redistribution: quantum communication cost without local coherence^a

$$Q = \frac{1}{2} \left\{ I(C:R|B) + R_c(\rho^{BC}) - R_c(\rho^{B}) \right\}$$
(3)

 Quantum state merging: entanglement cost without local coherence^b

$$\mathsf{E} = \mathsf{S}(\mathsf{A}|\mathsf{B})_{\rho_{\mathrm{diag}}} \tag{4}$$

^aAnshu, Jain, Streltsov, arXiv:1804.04915

^bStreltsov et al., Phys. Rev. Lett. **116**, 240405 (2016)