Entanglement and Codes

C. Eltschka, O. Gühne, M. Grassl, <u>F. Huber</u>, J. Siewert ICFO Barcelona

Part I: Absolutely maximally entangled states

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Part II: Entanglement and codes

Part III: Highly entangled subspaces / QMDS codes

Part I: Absolutely maximally entangled states

▲ロ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ④ < ⊙

How entangled can two couples get?

A. Higuchi, A. Sudbery *

Dept. of Mathematics, University of York, Heslington, York, YO10 5DD, UK

Received 9 June 2000; accepted 12 July 2000 Communicated by P.R. Holland

A. Higuchi and A. Sudbery, Phys. Lett. A 273, 213 (2000)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Absolutely maximally entangled states

Definition (AME states)

A pure state $|\phi_{n,D}\rangle$ is called *absolutely maximally entangled* (AME), if it shows maximal entanglement over all bipartitions.

(\equiv all its reductions to $\lfloor \frac{n}{2} \rfloor$ parties are maximally mixed)

Absolutely maximally entangled states

Definition (AME states)

A pure state $|\phi_{n,D}\rangle$ is called *absolutely maximally entangled* (AME), if it shows maximal entanglement over all bipartitions.

(\equiv all its reductions to $\lfloor \frac{n}{2} \rfloor$ parties are maximally mixed)

Example

For all prime dimensions (graph states):

 \rightarrow arbitrary dimensions: prime-decomposition $D = p_1 p_2 \dots p_r$:

 $|\phi_{n,D}\rangle = |\phi_{n,p_1}\rangle \otimes |\phi_{n,p_2}\rangle \otimes \ldots \otimes |\phi_{n,p_r}\rangle$

Bounds on AME state existence

For what number of parties n and local dimension D do AME states exist?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For what number of parties n and local dimension D do AME states exist?

Necessary condition for existence:

$$n \leq egin{cases} 2(D^2-1) & n ext{ even}, \\ 2D(D+1)-1 & n ext{ odd}. \end{cases}$$

A. Scott, Phys. Lett. A 69, 052330 (2004)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For what number of parties n and local dimension D do AME states exist?

Necessary condition for existence:

$$n \leq egin{cases} 2(D^2-1) & n ext{ even}, \\ 2D(D+1)-1 & n ext{ odd}. \end{cases}$$

A. Scott, Phys. Lett. A 69, 052330 (2004)

⇒ Not tight! For qubits, $n \le 6$ (even) and $n \le 11$ (odd). Other techniques exclude all AME except those for n = 2, 3, 5, 6, 7. For what number of parties n and local dimension D do AME states exist?

Necessary condition for existence:

$$n \leq egin{cases} 2(D^2-1) & n ext{ even}, \\ 2D(D+1)-1 & n ext{ odd}. \end{cases}$$

A. Scott, Phys. Lett. A 69, 052330 (2004)

⇒ Not tight! For qubits, $n \le 6$ (even) and $n \le 11$ (odd). Other techniques exclude all AME except those for n = 2, 3, 5, 6, 7.

 Open problem: provide tight bounds for the existence of AME states (and quantum codes).

\nexists Four-qubit AME

"Bloch-style" proof by contradiction:

Assume a 4-qubit AME state $\rho_{ABCD} = |\phi\rangle\langle\phi|$ exists.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

\nexists Four-qubit AME

"Bloch-style" proof by contradiction:

Assume a 4-qubit AME state $\rho_{ABCD} = |\phi\rangle\langle\phi|$ exists.

a) From Schmidt decomposition, "projector relation" holds:

$$\varrho_D = \frac{1}{2} \implies \varrho_{ABC}^2 = \frac{1}{2} \varrho_{ABC} \,.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

\nexists Four-qubit AME

"Bloch-style" proof by contradiction:

Assume a 4-qubit AME state $\rho_{ABCD} = |\phi\rangle\langle\phi|$ exists.

a) From Schmidt decomposition, "projector relation" holds:

$$\varrho_D = \frac{1}{2} \implies \varrho_{ABC}^2 = \frac{1}{2} \varrho_{ABC} \,.$$

b) Decompose

$$\varrho_{ABC} = \frac{1}{2^3} \Big(\mathbb{1} + \sum_{\substack{\alpha, \beta, \gamma \in \{x, y, z\} \\ P_3}} c_{\alpha\beta\gamma} \sigma_{\alpha} \otimes \sigma_{\beta} \otimes \sigma_{\gamma} \Big) \Big)$$

Note that there are no terms of e.g. the form

$$\sum_{\alpha,\beta\in\{x,y,z\}} c_{\alpha\beta} \, \sigma_{\alpha} \otimes \sigma_{\beta} \otimes \sigma_{0} \quad !$$

\nexists Four-qubit AME, continued (I)

c) From projector relation $\varrho^2_{ABC}=\frac{1}{2}\varrho_{ABC}$,

$$(P_3)^2 = \frac{1}{2} \{P_3, P_3\} \stackrel{!}{=} 3 \, \mathbb{1} + 2P_3$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

\nexists Four-qubit AME, continued (I)

c) From projector relation $\varrho^2_{ABC}=\frac{1}{2}\varrho_{ABC}$,

$$(P_3)^2 = \frac{1}{2} \{P_3, P_3\} \stackrel{!}{=} 3 \mathbb{1} + 2P_3$$

d) Above, in $\{P_3, P_3\}$ two different Paulis either

$$\sigma_j \sigma_k = i \epsilon_{jkl} \sigma_l, \quad j \neq k$$
$$\sigma_j \sigma_j = \mathbb{1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

\nexists Four-qubit AME, continued (I)

c) From projector relation $\varrho^2_{ABC}=\frac{1}{2}\varrho_{ABC}$,

$$(P_3)^2 = \frac{1}{2} \{P_3, P_3\} \stackrel{!}{=} 3 \mathbb{1} + 2P_3$$

d) Above, in $\{P_3, P_3\}$ two different Paulis either

$$\sigma_j \sigma_k = i \epsilon_{jkl} \sigma_l, \quad j \neq k$$
$$\sigma_j \sigma_j = \mathbb{1}$$

- e) To contribute to P_3 on the RHS, three pairs of Paulis need to produce three other Paulis. Factor of i^3 appears, and term vanishes in anticommutator. Thus $P_3 = 0$. Contradiction!
- $\implies \nexists$ four-qubit AME state.

\nexists Seven-qubit AME

Proof by contradiction:

Assume a 7-qubit AME state $\varrho = |\phi\rangle\langle\phi|$ exists.

(a) We use the Bloch decomposition and sort the correlations:

$$\varrho \sim \sum_{\alpha_1...\alpha_n} r_{\alpha_1,...,\alpha_n} \sigma_{\alpha_1} \otimes \cdots \otimes \sigma_{\alpha_N} \sim \left(\mathbb{1}^{\otimes n} + \sum_{j=4}^{\prime} P_j \right).$$

7

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

\nexists Seven-qubit AME

Proof by contradiction:

Assume a 7-qubit AME state $\rho = |\phi\rangle\langle\phi|$ exists.

(a) We use the Bloch decomposition and sort the correlations:

$$\varrho \sim \sum_{\alpha_1...\alpha_n} r_{\alpha_1,...,\alpha_n} \sigma_{\alpha_1} \otimes \cdots \otimes \sigma_{\alpha_N} \sim \left(\mathbb{1}^{\otimes n} + \sum_{j=4}^{\prime} P_j \right).$$

(b) General (qubit) parity rule for $\{P_j, P_k\}$:

$$\begin{array}{rcl} \{ even, even \} & \longrightarrow & even \\ \{ odd, odd \} & \longrightarrow & even \\ \{ odd, even \} & \longrightarrow & odd \, . \end{array}$$

\nexists Seven-qubit AME, continued (I)

(c) The four- and five-qubit reductions fulfill "projector relations"

$$\varrho_{(4)}^2 = \frac{1}{8}\varrho_{(4)} \qquad \qquad \varrho_{(5)}^2 = \frac{1}{4}\varrho_{(5)} \,.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

\nexists Seven-qubit AME, continued (I)

(c) The four- and five-qubit reductions fulfill "projector relations"

$$\varrho_{(4)}^2 = \frac{1}{8}\varrho_{(4)} \qquad \qquad \varrho_{(5)}^2 = \frac{1}{4}\varrho_{(5)} \,.$$

and "eigenvector relations" (from Schmidt decomposition)

$$arrho_{(4)}\otimes \mathbbm{1}^{\otimes 3} \ket{\phi} = rac{1}{8} \ket{\phi} \qquad \quad arrho_{(5)}\otimes \mathbbm{1}^{\otimes 2} \ket{\phi} = rac{1}{4} \ket{\phi} \,.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(c) The four- and five-qubit reductions fulfill "projector relations"

$$\varrho_{(4)}^2 = \frac{1}{8}\varrho_{(4)} \qquad \qquad \varrho_{(5)}^2 = \frac{1}{4}\varrho_{(5)} \,.$$

and "eigenvector relations" (from Schmidt decomposition)

$$\varrho_{(4)} \otimes \mathbb{1}^{\otimes 3} |\phi\rangle = \frac{1}{8} |\phi\rangle \qquad \quad \varrho_{(5)} \otimes \mathbb{1}^{\otimes 2} |\phi\rangle = \frac{1}{4} |\phi\rangle \;.$$

(d) Expand $\varrho_{(4)}$ and $\varrho_{(5)}$ in the Bloch basis

$$arrho_{(4)} = rac{1}{2^4} (\mathbbm{1} + P_4), \qquad arrho_{(5)} = rac{1}{2^5} (\mathbbm{1} + \sum_{j=1}^5 P_4^{[j]} \otimes \mathbbm{1}^{(j)} + P_5).$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

[∄] Seven-qubit AME, continued (II)

(e) Resulting eigenvalue equations:

$$\mathcal{P}_4^{[j]} \otimes \mathbb{1}^{\otimes 3} \ket{\phi} = 1 \ket{\phi}, \qquad \mathcal{P}_5 \otimes \mathbb{1}^{\otimes 2} \ket{\phi} = 2 \ket{\phi}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

[∄] Seven-qubit AME, continued (II)

(e) Resulting eigenvalue equations:

$$P_4^{[j]} \otimes \mathbb{1}^{\otimes 3} \ket{\phi} = \mathbb{1} \ket{\phi}, \qquad P_5 \otimes \mathbb{1}^{\otimes 2} \ket{\phi} = 2 \ket{\phi}.$$

(f) Expanding $\varrho_{(5)}^2 = \frac{1}{4}\varrho_{(5)}$ gives *two* equations (parity rule).

$$\{\sum_{j=1}^{5} P_{4}^{[j]} \otimes \mathbb{1}^{(j)}, P_{5}\} = 6P_{5}$$
 (odd part)

[∄] Seven-qubit AME, continued (II)

(e) Resulting eigenvalue equations:

$$\mathcal{P}_4^{[j]} \otimes \mathbb{1}^{\otimes 3} \ket{\phi} = 1 \ket{\phi}, \qquad \mathcal{P}_5 \otimes \mathbb{1}^{\otimes 2} \ket{\phi} = 2 \ket{\phi}.$$

(f) Expanding $\rho_{(5)}^2 = \frac{1}{4}\rho_{(5)}$ gives *two* equations (parity rule).

$$\{\sum_{j=1}^{5} P_4^{[j]} \otimes \mathbb{1}^{(j)}, P_5\} = 6P_5$$
 (odd part)

(g) Multiplying with $|\phi\rangle$ from the right:

 $(5 \cdot 1 \cdot 2 + 2 \cdot 5 \cdot 1) |\phi\rangle \neq 6 \cdot 2 |\phi\rangle$.

⇒ \nexists seven-qubit AME. (similar contradiction found for all $n \neq 2, 3, 5, 6$.)

A best approximation...

Result

A seven qubit AME does not exist. At most 32 out of 35 three-body RDMs can be maximally mixed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

FH, O. Gühne, J. Siewert, Phys. Rev. Lett. 118, 200502 (2017)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

How to get further bounds?

How to get further bounds?

 Consider correlation constraints from generalized state inversion / shadow inequality (talk by Jens)

$$\operatorname{Tr}(\mathcal{I}_{\mathcal{T}}[\varrho]\varrho) = \sum_{S \subseteq \{1...n\}} (-1)^{|S \cap \mathcal{T}|} \operatorname{tr}[\varrho_{S}^{2}] \geq 0.$$

C. Eltschka, F. Huber, O. Gühne, J. Siewert, arXiv:1807.09165

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How to get further bounds?

 Consider correlation constraints from generalized state inversion / shadow inequality (talk by Jens)

$$\operatorname{Tr}(\mathcal{I}_{\mathcal{T}}[\varrho]\varrho) = \sum_{S \subseteq \{1...n\}} (-1)^{|S \cap \mathcal{T}|} \operatorname{tr}[\varrho_{S}^{2}] \geq 0.$$

C. Eltschka, F. Huber, O. Gühne, J. Siewert, arXiv:1807.09165

Example (\nexists four-qubit AME)

$$\operatorname{Tr}(\mathcal{I}_{1234}[\varrho]\varrho) = 1 - \sum_{i} \operatorname{tr}(\rho_i^2) + \sum_{i < j} \operatorname{tr}(\varrho_{ij}^2) - \sum_{i < j < k} \operatorname{tr}(\rho_{ijk}^2) + \operatorname{tr}(\varrho^2)$$

$$= 1 - 4\frac{1}{2} + 6\frac{1}{4} - 4\frac{1}{2} + 1 = -\frac{1}{2} \not\ge 0$$

Further bounds

A further 27 higher-dimensional AME states \nexists (light blue).

- 31

 \exists : state exists

dark blue: excluded by Scott's bound

Mixed-dimensional AME states

Consider maximally entangled systems of mixed dimensions (e.g. qubit-qutrit), with maximal entanglement across every bipartition:

- 2x2x2x2: \nexists four-qubit AME (proof at the beginning)
- 2x2x2x3: \nexists shadow inequality
- $2x2x3x3: \nexists$ shadow inequality
- $2x3x3x3: \exists$ see new state below
- $3x3x3x3: \exists$ four-qutrit AME (c.f. Karol's talk)

$$\begin{split} |\phi_{2333}\rangle &= -\alpha |0011\rangle - \beta |0012\rangle + \beta |0021\rangle + \alpha |0022\rangle \\ &-\beta |0101\rangle + \alpha |0102\rangle + \beta |0110\rangle + \alpha |0120\rangle \\ &-\alpha |0201\rangle + \beta |0202\rangle - \alpha |0210\rangle - \beta |0220\rangle \\ &-\beta |1011\rangle + \alpha |1012\rangle - \alpha |1021\rangle + \beta |1022\rangle \\ &+\alpha |1101\rangle + \beta |1102\rangle - \alpha |1110\rangle + \beta |1120\rangle \\ &-\beta |1201\rangle - \alpha |1202\rangle - \beta |1210\rangle + \alpha |1220\rangle \\ &12(\alpha^2 + \beta^2) = 1, 54\alpha\beta = 1. \end{split}$$

FH, C. Eltschka, J. Siewert, O. Gühne, J. Phys. A: Math. Theor. 51, 175301 (2018)

Part II: Entanglement and Quantum Codes

dimension of code space

$$((n, K, d))_D \rightarrow \text{local dimension}$$

number of parties distance

(ロ)、(型)、(E)、(E)、 E) の(の)

Quantum codes

A quantum code is a *subspace* of a multipartite system: Denote by Q a subspace of $(\mathbb{C}^d)^{\otimes n}$ spanned by an ONB $\{|v_i\rangle\}$. Let $\Pi = \sum_{i}^{K} |v_i\rangle \langle v_i|$ be the projector onto it, with rank $(\Pi) = K$.

- ロ ト - 4 回 ト - 4 □ - 4

Quantum codes

A quantum code is a *subspace* of a multipartite system: Denote by Q a subspace of $(\mathbb{C}^d)^{\otimes n}$ spanned by an ONB $\{|v_i\rangle\}$. Let $\Pi = \sum_{i}^{K} |v_i\rangle \langle v_i|$ be the projector onto it, with rank $(\Pi) = K$.

Theorem (Knill-Laflamme error-conditions)

The subspace Q is a QECC of distance at least d, if and only if for all operators with |supp(E)| < d,

$$\langle \mathbf{v}_i | E | \mathbf{v}_j \rangle = \delta_{ij} C_E$$
 (= $\delta_{ij} \operatorname{tr}[E]$ "pure")

Quantum codes

A quantum code is a *subspace* of a multipartite system: Denote by Q a subspace of $(\mathbb{C}^d)^{\otimes n}$ spanned by an ONB $\{|v_i\rangle\}$. Let $\Pi = \sum_{i}^{K} |v_i\rangle \langle v_i|$ be the projector onto it, with rank $(\Pi) = K$.

Theorem (Knill-Laflamme error-conditions)

The subspace Q is a QECC of distance at least d, if and only if for all operators with |supp(E)| < d,

$$\langle v_i | E | v_j \rangle = \delta_{ij} C_E$$
 (= $\delta_{ij} \operatorname{tr}[E]$ "pure")

- If distance is d, then errors on L^(d−1)/₂ particles can be corrected.
- Q is denoted as a $((n, K, d))_D$ code.

E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Let. 84, 2525 (2000).

Alternative characterizations

Alternative characterizations: Q a (pure) ((n, K, d)) code, if and only if

Alternative characterizations

Alternative characterizations: Q a (pure) ((n, K, d)) code, if and only if

a) For all $|\phi
angle \in \mathcal{Q}$, and all subsets |S| < d

$$\operatorname{tr}_{\mathcal{S}^{c}}(|\phi\rangle\langle\phi|) = \varrho_{\mathcal{S}} \quad (= \mathbb{1} / D^{|\mathcal{S}|})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \longrightarrow "every vector looks locally the same"

Alternative characterizations

Alternative characterizations: Q a (pure) ((n, K, d)) code, if and only if

a) For all $|\phi
angle \in \mathcal{Q}$, and all subsets $|\mathcal{S}| < d$

$$\operatorname{tr}_{\mathcal{S}^{c}}(|\phi\rangle\langle\phi|) = \varrho_{\mathcal{S}} \quad (= \mathbb{1} / D^{|\mathcal{S}|})$$

 \longrightarrow "every vector looks locally the same"

b) Let $\rho = \Pi/K$. For all subsets |S| < d,

$$K \operatorname{tr}[\varrho_{S^c}^2] = \operatorname{tr}[\varrho_S^2] \quad (= 1/D^{|S|})$$

 \longrightarrow "constraints on purities of complementary reductions"

E. Rains, IEEE Trans. Inf. Theory 44, 4 (1998)

Part III: QMDS codes & highly entangled subspaces

$$\begin{bmatrix} 1 & 0 & 0 & 1 & \omega & \omega \\ 0 & 1 & 0 & \omega & 1 & \omega \\ 0 & 0 & X^{1} & \mu & 1 \\ \omega & 0 & I^{0} & X & 1 & 2 \\ 0 & \omega & I^{0} & X & 1 & 2 \\ 0 & \omega & I^{0} & \mu & X & 2 \\ 0 & 0 & Y & I & 2 & Z \\ V & I & I & Y & Z & Z \\ I & I & Y & Z & Z & Y \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A pure state $|\phi\rangle$, whose reductions onto *r* parties are all maximally mixed, is termed *r*-uniform. A *r*-uniform subspace (rUS) is a subspace of $(\mathbb{C}^D)^{\otimes n}$, in which every vector is at least *r*-uniform.

Definition

A pure state $|\phi\rangle$, whose reductions onto *r* parties are all maximally mixed, is termed *r*-uniform. A *r*-uniform subspace (rUS) is a subspace of $(\mathbb{C}^D)^{\otimes n}$, in which every vector is at least *r*-uniform.

Observation (pure QECC \equiv r-uniform subspace) The following objects are equivalent:

- a) a pure $((n, K, d))_D$ quantum error correcting code.
- b) a (d-1)-uniform subspace in $(\mathbb{C}^D)^{\otimes n}$ of dimension K.

Theorem (Quantum Singleton bound) Let Q be a $((n, K, d))_D$ quantum error correcting code. Then

$$n+2 \ge \log_D K + 2d$$

E. Rains, IEEE Trans. Inf. Theory 45,6 (1999)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Quantum Singleton bound)

Let Q be a $((n, K, d))_D$ quantum error correcting code. Then

$$n+2 \ge \log_D K + 2d$$

E. Rains, IEEE Trans. Inf. Theory 45,6 (1999)

- If equality above, the code is called *quantum maximum* distance separable (QMDS)
- Fact: QMDS codes are pure (have maximally mixed marginals).
- \longrightarrow QMDS codes are the largest possible *r*-uniform subspaces.

New codes can be constructed from old ones:

Theorem

Let $((n, K, d))_D$ be a pure QECC with $n, d \ge 2$. Then there exists a pure code $((n - 1, DK, d - 1))_D$.

E. Rains, IEEE Trans. Inf. Theory 44, 4 (1998)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

New codes can be constructed from old ones:

Theorem Let $((n, K, d))_D$ be a pure QECC with $n, d \ge 2$. Then there exists a pure code $((n - 1, DK, d - 1))_D$.

E. Rains, IEEE Trans. Inf. Theory 44, 4 (1998)

 \longrightarrow corresponds to taking a partial trace over one particle.

QMDS families

...apply to QMDS codes:

Example

$$((6, 2^{0}, 4))_{2} \exists \qquad ((12, 3^{0}, 7))_{3} \not\exists \\ ((5, 2^{1}, 3))_{2} \exists \\ ((4, 2^{2}, 2))_{2} \exists \\ ((3, 2^{3}, 1))_{2} \exists \\ ((10, 3^{2}, 5))_{3} \not\exists \\ ((9, 3^{3}, 4))_{3} \not\exists \\ ((8, 3^{4}, 3))_{3} \exists \\ ((7, 3^{5}, 2))_{3} \exists \\ ((6, 3^{6}, 1))_{3} \exists \\ \end{cases}$$

- Family of codes / highly entangled subspaces determined by n+k.
- For a given family, if the parent-AME does not exist, what is the uppermost member?

Bound on the existence of QMDS codes

Maximal length of QMDS codes

A $((n, K, d))_D$ QMDS code of distance $d \ge 3$ [$\equiv (d - 1)$ -uniform subspace in $(\mathbb{C}^D)^{\otimes n}$ of dimension K] must satisfy

$$n \le D^2 + d - 2$$
, or equivalently $n + k < 2(D^2 - 1)$.

FH and M. Grassl, in preparation.

Bound on the existence of QMDS codes

Maximal length of QMDS codes

A $((n, K, d))_D$ QMDS code of distance $d \ge 3$ [$\equiv (d - 1)$ -uniform subspace in $(\mathbb{C}^D)^{\otimes n}$ of dimension K] must satisfy

$$n \le D^2 + d - 2$$
, or equivalently $n + k \le 2(D^2 - 1)$.

FH and M. Grassl, in preparation.

 Extends Scott's AME bound and stabilizer QMDS bounds to all QMDS codes.

Bound on the existence of QMDS codes

Maximal length of QMDS codes

A $((n, K, d))_D$ QMDS code of distance $d \ge 3$ $[\equiv (d-1)$ -uniform subspace in $(\mathbb{C}^D)^{\otimes n}$ of dimension K] must satisfy $n < D^2 + d - 2$ or equivalently

$$n \le D^2 + d - 2$$
, or equivalently $n + k \le 2(D^2 - 1)$.

FH and M. Grassl, in preparation.

- Extends Scott's AME bound and stabilizer QMDS bounds to all QMDS codes.
- Further bounds from the shadow inequality / generalized inversion tr(I_T[ℓ]ℓ) ≥ 0.

Examples

Example

All QMDS-families of local dimension D = 3:

$\mathbf{n} + \mathbf{k}$	bound	achieved	
4	$[\![4,0,3]\!]_3$	$[\![4,0,3]\!]_3$	(optimal)
6	$[\![6,0,4]\!]_3$	$[\![6,0,4]\!]_3$	(optimal)
8	$[\![6,2,3]\!]_3$	$[\![6,2,3]\!]_3$	(optimal)
10	$[\![10,0,6]\!]_3$	$[\![10,0,6]\!]_3$	(optimal)
12	$[\![8,4,3]\!]_3$	$[\![8,4,3]\!]_3$	(optimal)
14	$[\![11,3,5]\!]_3$	$[\![10,4,4]\!]_3$	
16	$[\![11,5,4]\!]_3$	$[\![10,6,3]\!]_3$	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Summary of Results

5

Arbitrarily strong quantum correlations are not allowed. Qubit AME states only exist for n = 2, 3, 5, 6.

FH, O. Gühne, J. Siewert, Phys. Rev. Lett. 118, 200502 (2017)

otanale

Summary of Results

5

Arbitrarily strong quantum correlations are not allowed. Qubit AME states only exist for n = 2, 3, 5, 6.

FH, O. Gühne, J. Siewert, Phys. Rev. Lett. 118, 200502 (2017)

 Constraints on higher-dimensional / mixed-dimensional AME states.

イロト 不得 トイヨト イヨト

otaoale

FH, C. Eltschka, J. Siewert, O. Gühne, JPA: Math. Theor. 51, 175301 (2018)

Summary of Results

Arbitrarily strong quantum correlations are not allowed. Qubit AME states only exist for n = 2, 3, 5, 6.

FH, O. Gühne, J. Siewert, Phys. Rev. Lett. 118, 200502 (2017)

 Constraints on higher-dimensional / mixed-dimensional AME states.

FH, C. Eltschka, J. Siewert, O. Gühne, JPA: Math. Theor. 51, 175301 (2018)

 Bounds for the existence QMDS codes / highly entangled subspaces

FH and M. Grassl, in preparation.

化口压 化塑料 化管料 化管料 一营

ntanale

Thank you for your attention ...

... and thanks to my collaborators!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●