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Part I: Absolutely maximally entangled states
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Motivation

How entangled can two couples get?
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Absolutely maximally entangled states

Definition (AME states)

A pure state |¢p, p) is called absolutely maximally entangled (AME),
if it shows maximal entanglement over all bipartitions.

(= all its reductions to | 7] parties are maximally mixed)
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Definition (AME states)

A pure state |¢p, p) is called absolutely maximally entangled (AME),
if it shows maximal entanglement over all bipartitions.

(= all its reductions to | 7] parties are maximally mixed)

Example
For all prime dimensions (graph states):

— arbitrary dimensions: prime-decomposition D = pi1p> ... p,:

‘¢n,D> = |¢H,P1> ® |¢)n,p2> ® e ® |¢n7pr>
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Bounds on AME state existence

For what number of parties n and local dimension D do AME states
exist?

Necessary condition for existence:

< 2(D? - 1) n even,
“|2D(D+1)-1 n odd.

A. Scott, Phys. Lett. A 69, 052330 (2004)

— Not tight!
For qubits, n < 6 (even) and n < 11 (odd). Other techniques
exclude all AME except those for n =2,3,5,6,7.

» Open problem: provide tight bounds for the existence of AME
states (and quantum codes).
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A Four-qubit AME

“Bloch-style” proof by contradiction:
Assume a 4-qubit AME state oagcp = |¢) (@] exists.

a) From Schmidt decomposition, “projector relation” holds:
1 1

2
oD > 9ABC 5 OABC

b) Decompose

1
QABC:273<]1+ Z Caﬁvaa@"’ﬁ@gv)
B yE{x,y,z}

Ps (#0)
Note that there are no terms of e.g. the form

Z CaBO'Ol@Uﬁ@UO |
a,Be{x,y,z}



3 Four-qubit AME, continued (1)

c) From projector relation QE\BC = %QABC '

1
(Ps)? = 5{Ps, Ps} = 31+42P;



3 Four-qubit AME, continued (1)

c) From projector relation QE\BC = %QABC '
> 1 !
(P3) = §{P3,P3} :3]l+2P3

d) Above, in {P3, P3} two different Paulis either
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3 Four-qubit AME, continued (1)

c) From projector relation QE\BC = %QABC '
> 1 !
(P3) = §{P3,P3} :3]l+2P3

d) Above, in {P3, P3} two different Paulis either

ojoK =i €jor, jFk
ojoj =1
e) To contribute to P3 on the RHS, three pairs of Paulis need to

produce three other Paulis. Factor of i® appears, and term
vanishes in anticommutator. Thus P; = 0. Contradiction!

= 3 four-qubit AME state. O



3 Seven-qubit AME

Proof by contradiction:
Assume a 7-qubit AME state o = |¢) (| exists.

(a) We use the Bloch decomposition and sort the correlations:

7
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3 Seven-qubit AME

Proof by contradiction:
Assume a 7-qubit AME state o = |¢) (| exists.

(a) We use the Bloch decomposition and sort the correlations:

Qai...Qp

7
o~ Z Fag,enonOay @+ Q Tapy ~ (]1®"+ZPJ) .
=4

(b) General (qubit) parity rule for {P;, Py }:

{even,even} — even
{odd,odd} — even
{odd,even} — odd.
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B Seven-qubit AME, continued (1)

(c) The four- and five-qubit reductions fulfill “projector relations”

2 1 2 1
Oy = 59(4) O(5) = ZQ(S) .

and “eigenvector relations” (from Schmidt decomposition)
©3 1 ®2 1
o@ @17 [4) = ¢ 19) o) @177 [6) = 7 |9) -

(d) Expand o) and g(s) in the Bloch basis

5
1 1 : .
0@ = 55 (L1 +Pa), 0m) = 5 (1+) Pl & 10) 4 py) .
Jj=1



B Seven-qubit AME, continued (I1)

(e) Resulting eigenvalue equations:

P @193 ¢y = 1]9), Ps @ 1% |g) = 2|g) .



B Seven-qubit AME, continued (I1)

(e) Resulting eigenvalue equations:
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B Seven-qubit AME, continued (I1)

(e) Resulting eigenvalue equations:
PIl @193 |g) = 1 Ps @ 192 |¢) =2
y @17 [¢) =1]9), 5 @ 157 [¢) =210) .

(f) Expanding gé) = %9(5) gives two equations (parity rule).

5
{Z PJ{I] ® ]I(J')7 P5} =6Ps (Odd part)
=1

(g) Multiplying with |¢) from the right:
(5-1-2+42-5-1) |¢) £6-2 ).

— 3 seven-qubit AME.
(similar contradiction found for all n # 2,3,5,6.)



A best approximation. ..

A seven qubit AME does not exist. At most 32 out of 35
three-body RDMs can be maximally mixed.

FH, O. Giihne, J. Siewert, Phys. Rev. Lett. 118, 200502 (2017)
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Bounds on higher-dimensional AME states

How to get further bounds?

» Consider correlation constraints from generalized state
inversion / shadow inequality (talk by Jens)

Tr(Zrlele) = > (-1)F"tr[gd] > 0.
SC{lL..n}

C. Eltschka, F. Huber, O. Giihne, J. Siewert, arXiv:1807.09165

Example (3 four-qubit AME)

Tr(Z1234]0]0) = 1 — Ztr(P%) + Ztr(é)i') - Z tr(p%jk) +tr(0%)

i<j i<j<k

1 1 1 1
—1-4-46-—4-+1 = —=
2+64 2+ 22‘0



Bounds on higher-dimensional AME states

Further bounds

A further 27 higher-dimensional AME states 7 (light blue).

local dim. D
N WA U oo
w
W W oW wow

12 16 20 24 28 32 36 40 44 48 52 56
number of parties n (even only)

[ |
EREENNENN
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9 13 17 21 25 29 33 37 41 45 49 53 57
number of parties n (odd only)

local dim. D
N WA U oo
U W oW oW owow

3: state exists
dark blue: excluded by Scott’'s bound
light blue: excluded by the shadow inequality



Mixed-dimensional AME states

Consider maximally entangled systems of mixed dimensions (e.g.
qubit-qutrit), with maximal entanglement across every bipartition:

2x2x2x2: P four-qubit AME (proof at the beginning)
2x2x2x3: P shadow inequality

2x2x3x3: P shadow inequality

2x3x3x3: 3 see new state below

3x3x3x3: 3 four-qutrit AME (c.f. Karol's talk)

|p333) = — [0011) — B]0012) + B]0021) + o [0022)
— £10101) + « |0102) + 30110) + o [0120)
— |0201) + 30202) — o [0210) — 3 |0220)
— B]1011) + o |1012) — o [1021) + 3 |1022)
+ a|1101) 4 B1102) — o |1110) + 3 |1120)
— B]1201) — « |1202) — 31210) + o |1220)

12(a? + %) =1,5408 =1.

FH, C. Eltschka, J. Siewert, O. Giihne, J. Phys. A: Math. Theor. 51, 175301 (2018)



Part |l: Entanglement and Quantum Codes

dimension of code space

t
((n,K,d))p— local dimension

oo

number of parties distance



Quantum codes
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Denote by Q a subspace of (C?)®" spanned by an ONB {|v;)}. Let
n= Z,K |vi)(vi| be the projector onto it, with rank(I) = K.
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Quantum codes

A quantum code is a subspace of a multipartite system:
Denote by Q a subspace of (C?)®" spanned by an ONB {|v;)}. Let
n= Z,K |vi)(vi| be the projector onto it, with rank(I) = K.

Theorem (Knill-Laflamme error-conditions)

The subspace Q is a QECC of distance at least d, if and only if for
all operators with |supp(E)| < d,

(I Ely) =6;Ce (= dytlE] “pure’)

» If distance is d, then errors on L(d—gl)J particles can be
corrected.

» Qis denoted as a (n, K, d))p code.

E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Let. 84, 2525 (2000).
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Alternative characterizations

Alternative characterizations:
Q a (pure) ((n, K, d)) code, if and only if

a) For all |¢) € Q, and all subsets |S| < d
trse(|6)(¢]) = o5 (=1/D"))

— “every vector looks locally the same”

b) Let o =TM/K. For all subsets |S| < d,
K trlog] = tr[o5] (=1/D"))
— “constraints on purities of complementary reductions”

E. Rains, IEEE Trans. Inf. Theory 44, 4 (1998)



Part Ill: QMDS codes & highly entangled
subspaces
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Highly entangled subspaces

Definition

A pure state |¢), whose reductions onto r parties are all maximally
mixed, is termed r-uniform. A r-uniform subspace (rUS) is a
subspace of (CP)®", in which every vector is at least r-uniform.



Highly entangled subspaces

Definition

A pure state |¢), whose reductions onto r parties are all maximally
mixed, is termed r-uniform. A r-uniform subspace (rUS) is a
subspace of (CP)®", in which every vector is at least r-uniform.

Observation (pure QECC = r-uniform subspace)
The following objects are equivalent:
a) a pure (n,K,d))p quantum error correcting code.
b) a (d — 1)-uniform subspace in (CP)®" of dimension K.



Bounds on codes

Theorem (Quantum Singleton bound)
Let Q be a (n,K,d))p quantum error correcting code. Then

n+2 > logp K+ 2d

E. Rains, IEEE Trans. Inf. Theory 45,6 (1999)



Bounds on codes

Theorem (Quantum Singleton bound)
Let Q be a (n,K,d))p quantum error correcting code. Then

n+2 > logp K+ 2d

E. Rains, IEEE Trans. Inf. Theory 45,6 (1999)

> If equality above, the code is called quantum maximum
distance separable (QMDS)

» Fact: QMDS codes are pure (have maximally mixed marginals).

— QMDS codes are the largest possible r-uniform subspaces.



New codes from old

New codes can be constructed from old ones:

Theorem
Let (n,K,d))p be a pure QECC with n,d > 2. Then there exists
a pure code (n—1,DK,d — 1))p.

E. Rains, IEEE Trans. Inf. Theory 44, 4 (1998)



New codes from old

New codes can be constructed from old ones:

Theorem
Let (n,K,d))p be a pure QECC with n,d > 2. Then there exists
a pure code (n—1,DK,d — 1))p.

E. Rains, IEEE Trans. Inf. Theory 44, 4 (1998)

— corresponds to taking a partial trace over one particle.



QMDS families

...apply to QMDS codes:

Example

((6, 20, 4))2 3 ((12 30 ))3 A

((57 217 3))2 3 ((11 31 ))3 A

(4,2%,2))3 (10,3%,5))5 A

((3, 23, 1))2 3 ((9’ 33, 4))5 A

((& 34, 3))3 3

((7’ 35’ 2))3 3

3 4

» Family of codes / highly entangled subspaces determined by
n+ k.

» For a given family, if the parent-AME does not exist, what is
the uppermost member?



Bound on the existence of QMDS codes

Maximal length of QMDS codes

A (n,K,d))p QMDS code of distance d > 3
[= (d — 1)-uniform subspace in (CP)®" of dimension K]
must satisfy

n<D*4+d-2, or equivalently

n+k<2(D*—-1).

FH and M. Grassl, in preparation.
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Bound on the existence of QMDS codes

Maximal length of QMDS codes

A (n,K,d))p QMDS code of distance d > 3
[= (d — 1)-uniform subspace in (CP)®" of dimension K]
must satisfy

n<D*4+d-2, or equivalently

n+k<2(D*—-1).

FH and M. Grassl, in preparation.

» Extends Scott's AME bound and stabilizer QMDS bounds to
all QMDS codes.

» Further bounds from the shadow inequality / generalized
inversion tr(Zt[p]o) > 0.



Examples

Example

All QMDS-families of local dimension D = 3:

n +k bound achieved

4
6
8
10
12
14
16

[4,0,3]3 [4,0,3]s (optimal)
[6,0,4]s [6,0,4]s (optimal)
[6,2,3]s [6,2,3]3 (optimal)
[10,0,6]s [10,0,6]3 (optimal)
[8,4,3]s [8,4,3]s (optimal)
[11,3,5]s [10,4,4]s

[11,5,4]5 [10,6,3]s




Summary of Results

» Arbitrarily strong quantum correlations are not allowed. Qubit
AME states only eX|st for n=2,3,5,6. ;

VAN OL,

FH, O. Giihne, J. Siewert, Phys. Rev. Lett. 118, 200502 (2017)




Summary of Results

» Arbitrarily strong quantum correlations are not allowed. Qubit
AME states only exist for n = 2,3,5,6.
: 4 .
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1 2
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FH, O. Giihne, J. Siewert, Phys. Rev. Lett. 118, 200502 (2017)

Tvant to be

» Constraints on higher-dimensional / mixed-dimensional AME
states.

AIE

5

o EEEEEE

<R
number of parties 1 (odd only)

FH, C. Eltschka, J. Siewert, O. Giihne, JPA: Math. Theor. 51, 175301 (2018)

local dim. D
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Summary of Results

» Arbitrarily strong quantum correlations are not allowed. Qubit
AME states only eX|st for n=2,3,5,6.

VAN OL,

FH, O. Giihne, J. Siewert, Phys. Rev. Lett. 118, 200502 (2017)

» Constraints on higher-dimensional / mixed-dimensional AME
states.

a

local dim. D

6 3

s 333

43 3

3332 [ LTI

R ]

5 9 13 17 21 25 29 33 37 a1 45 49 53 57
number of parties n (odd only)

FH, C. Eltschka, J. Siewert, O. Giihne, JPA: Math. Theor. 51, 175301 (2018)

» Bounds for the existence QMDS codes / highly entangled

subspaces
FH and M. Grassl, in preparation.
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