Entanglement and Codes

C. Eltschka, O. Gühne, M. Grassl, F. Huber, J. Siewert

ICFO Barcelona

Overview

Part I: Absolutely maximally entangled states
Part II: Entanglement and codes
Part III: Highly entangled subspaces / QMDS codes

Part I: Absolutely maximally entangled states

Motivation

How entangled can two couples get?

A. Higuchi, A. Sudbery *
Dept. of Mathematics, University of York, Heslington, York, YO10 5DD, UK
Received 9 June 2000; accepted 12 July 2000
Communicated by P.R. Holland

A. Higuchi and A. Sudbery, Phys. Lett. A 273, 213 (2000)

Absolutely maximally entangled states

Definition (AME states)
A pure state $\left|\phi_{n, D}\right\rangle$ is called absolutely maximally entangled (AME), if it shows maximal entanglement over all bipartitions.
(\equiv all its reductions to $\left\lfloor\frac{n}{2}\right\rfloor$ parties are maximally mixed)

Absolutely maximally entangled states

Definition (AME states)
A pure state $\left|\phi_{n, D}\right\rangle$ is called absolutely maximally entangled (AME), if it shows maximal entanglement over all bipartitions.

$$
\text { (} \equiv \text { all its reductions to }\left\lfloor\frac{n}{2}\right\rfloor \text { parties are maximally mixed) }
$$

Example

For all prime dimensions (graph states):

\longrightarrow arbitrary dimensions: prime-decomposition $D=p_{1} p_{2} \ldots p_{r}$:

$$
\left|\phi_{n, D}\right\rangle=\left|\phi_{n, p_{1}}\right\rangle \otimes\left|\phi_{n, p_{2}}\right\rangle \otimes \ldots \otimes\left|\phi_{n, p_{r}}\right\rangle
$$

Bounds on AME state existence

For what number of parties n and local dimension D do AME states exist?

Bounds on AME state existence

For what number of parties n and local dimension D do AME states exist?

Necessary condition for existence:

$$
n \leq \begin{cases}2\left(D^{2}-1\right) & n \text { even } \\ 2 D(D+1)-1 & n \text { odd }\end{cases}
$$

A. Scott, Phys. Lett. A 69, 052330 (2004)

Bounds on AME state existence

For what number of parties n and local dimension D do AME states exist?

Necessary condition for existence:

$$
n \leq \begin{cases}2\left(D^{2}-1\right) & n \text { even } \\ 2 D(D+1)-1 & n \text { odd }\end{cases}
$$

A. Scott, Phys. Lett. A 69, 052330 (2004)
\Longrightarrow Not tight!
For qubits, $n \leq 6$ (even) and $n \leq 11$ (odd). Other techniques exclude all AME except those for $n=2,3,5,6,7$.

Bounds on AME state existence

For what number of parties n and local dimension D do AME states exist?

Necessary condition for existence:

$$
n \leq \begin{cases}2\left(D^{2}-1\right) & n \text { even } \\ 2 D(D+1)-1 & n \text { odd }\end{cases}
$$

A. Scott, Phys. Lett. A 69, 052330 (2004)
\Longrightarrow Not tight!
For qubits, $n \leq 6$ (even) and $n \leq 11$ (odd). Other techniques exclude all AME except those for $n=2,3,5,6,7$.

- Open problem: provide tight bounds for the existence of AME states (and quantum codes).

\nexists Four-qubit AME

"Bloch-style" proof by contradiction:
Assume a 4-qubit AME state $\varrho_{A B C D}=|\phi\rangle\langle\phi|$ exists.

\nexists Four-qubit AME

"Bloch-style" proof by contradiction:
Assume a 4-qubit AME state $\varrho_{A B C D}=|\phi\rangle\langle\phi|$ exists.
a) From Schmidt decomposition, "projector relation" holds:

$$
\varrho_{D}=\frac{1}{2} \quad \Longrightarrow \quad \varrho_{A B C}^{2}=\frac{1}{2} \varrho_{A B C} .
$$

\nexists Four-qubit AME

"Bloch-style" proof by contradiction:
Assume a 4-qubit AME state $\varrho_{A B C D}=|\phi\rangle\langle\phi|$ exists.
a) From Schmidt decomposition, "projector relation" holds:

$$
\varrho_{D}=\frac{\mathbb{1}}{2} \quad \Longrightarrow \quad \varrho_{A B C}^{2}=\frac{1}{2} \varrho_{A B C} .
$$

b) Decompose

$$
\varrho_{A B C}=\frac{1}{2^{3}}(\mathbb{1}+\underbrace{\sum_{\alpha, \beta, \gamma \in\{x, y, z\}} c_{\alpha \beta \gamma} \sigma_{\alpha} \otimes \sigma_{\beta} \otimes \sigma_{\gamma}}_{P_{3}(\neq 0)})
$$

Note that there are no terms of e.g. the form

$$
\sum_{\alpha, \beta \in\{x, y, z\}} c_{\alpha \beta} \sigma_{\alpha} \otimes \sigma_{\beta} \otimes \sigma_{0} \quad!
$$

\nexists Four-qubit AME, continued (I)

c) From projector relation $\varrho_{A B C}^{2}=\frac{1}{2} \varrho_{A B C}$,

$$
\left(P_{3}\right)^{2}=\frac{1}{2}\left\{P_{3}, P_{3}\right\} \stackrel{!}{=} 3 \mathbb{1}+2 P_{3}
$$

\nexists Four-qubit AME, continued (I)

c) From projector relation $\varrho_{A B C}^{2}=\frac{1}{2} \varrho_{A B C}$,

$$
\left(P_{3}\right)^{2}=\frac{1}{2}\left\{P_{3}, P_{3}\right\} \stackrel{!}{=} 3 \mathbb{1}+2 P_{3}
$$

d) Above, in $\left\{P_{3}, P_{3}\right\}$ two different Paulis either

$$
\begin{aligned}
\sigma_{j} \sigma_{k} & =i \epsilon_{j k l} \sigma_{l}, \quad j \neq k \\
\sigma_{j} \sigma_{j} & =\mathbb{1}
\end{aligned}
$$

\nexists Four-qubit AME, continued (I)

c) From projector relation $\varrho_{A B C}^{2}=\frac{1}{2} \varrho_{A B C}$,

$$
\left(P_{3}\right)^{2}=\frac{1}{2}\left\{P_{3}, P_{3}\right\} \stackrel{!}{=} 3 \mathbb{1}+2 P_{3}
$$

d) Above, in $\left\{P_{3}, P_{3}\right\}$ two different Paulis either

$$
\begin{aligned}
\sigma_{j} \sigma_{k} & =i \epsilon_{j k l} \sigma_{l}, \quad j \neq k \\
\sigma_{j} \sigma_{j} & =\mathbb{1}
\end{aligned}
$$

e) To contribute to P_{3} on the RHS, three pairs of Paulis need to produce three other Paulis. Factor of i^{3} appears, and term vanishes in anticommutator. Thus $P_{3}=0$. Contradiction!
$\Longrightarrow \nexists$ four-qubit AME state.

\nexists Seven-qubit AME

Proof by contradiction:
Assume a 7-qubit AME state $\varrho=|\phi\rangle\langle\phi|$ exists.
(a) We use the Bloch decomposition and sort the correlations:

$$
\varrho \sim \sum_{\alpha_{1} \ldots \alpha_{n}} r_{\alpha_{1}, \ldots, \alpha_{n}} \sigma_{\alpha_{1}} \otimes \cdots \otimes \sigma_{\alpha_{N}} \sim\left(\mathbb{1}^{\otimes n}+\sum_{j=4}^{7} P_{j}\right)
$$

\nexists Seven-qubit AME

Proof by contradiction:
Assume a 7-qubit AME state $\varrho=|\phi\rangle\langle\phi|$ exists.
(a) We use the Bloch decomposition and sort the correlations:

$$
\varrho \sim \sum_{\alpha_{1} \ldots \alpha_{n}} r_{\alpha_{1}, \ldots, \alpha_{n}} \sigma_{\alpha_{1}} \otimes \cdots \otimes \sigma_{\alpha_{N}} \sim\left(\mathbb{1}^{\otimes n}+\sum_{j=4}^{7} P_{j}\right)
$$

(b) General (qubit) parity rule for $\left\{P_{j}, P_{k}\right\}$:

$$
\begin{array}{rll}
\text { \{even, even }\} & \longrightarrow & \text { even } \\
\{\text { odd, odd }\} & \longrightarrow & \text { even } \\
\{\text { odd, even }\} & \longrightarrow & \text { odd } .
\end{array}
$$

\nexists Seven-qubit AME, continued (I)

(c) The four- and five-qubit reductions fulfill "projector relations"

$$
\varrho_{(4)}^{2}=\frac{1}{8} \varrho_{(4)} \quad \varrho_{(5)}^{2}=\frac{1}{4} \varrho_{(5)} .
$$

\nexists Seven-qubit AME, continued (I)

(c) The four- and five-qubit reductions fulfill "projector relations"

$$
\varrho_{(4)}^{2}=\frac{1}{8} \varrho_{(4)} \quad \varrho_{(5)}^{2}=\frac{1}{4} \varrho_{(5)}
$$

and "eigenvector relations" (from Schmidt decomposition)

$$
\varrho_{(4)} \otimes \mathbb{1}^{\otimes 3}|\phi\rangle=\frac{1}{8}|\phi\rangle \quad \varrho_{(5)} \otimes \mathbb{1}^{\otimes 2}|\phi\rangle=\frac{1}{4}|\phi\rangle .
$$

\nexists Seven-qubit AME, continued (I)

(c) The four- and five-qubit reductions fulfill "projector relations"

$$
\varrho_{(4)}^{2}=\frac{1}{8} \varrho_{(4)} \quad \varrho_{(5)}^{2}=\frac{1}{4} \varrho_{(5)} .
$$

and "eigenvector relations" (from Schmidt decomposition)

$$
\varrho_{(4)} \otimes \mathbb{1}^{\otimes 3}|\phi\rangle=\frac{1}{8}|\phi\rangle \quad \varrho_{(5)} \otimes \mathbb{1}^{\otimes 2}|\phi\rangle=\frac{1}{4}|\phi\rangle .
$$

(d) Expand $\varrho_{(4)}$ and $\varrho_{(5)}$ in the Bloch basis

$$
\varrho_{(4)}=\frac{1}{2^{4}}\left(\mathbb{1}+P_{4}\right), \quad \varrho_{(5)}=\frac{1}{2^{5}}\left(\mathbb{1}+\sum_{j=1}^{5} P_{4}^{[j]} \otimes \mathbb{1}^{(j)}+P_{5}\right) .
$$

\nexists Seven-qubit AME, continued (II)

(e) Resulting eigenvalue equations:

$$
P_{4}^{[j]} \otimes \mathbb{1}^{\otimes 3}|\phi\rangle=1|\phi\rangle, \quad P_{5} \otimes \mathbb{1}^{\otimes 2}|\phi\rangle=2|\phi\rangle .
$$

\nexists Seven-qubit AME, continued (II)

(e) Resulting eigenvalue equations:

$$
P_{4}^{[j]} \otimes \mathbb{1}^{\otimes 3}|\phi\rangle=1|\phi\rangle, \quad P_{5} \otimes \mathbb{1}^{\otimes 2}|\phi\rangle=2|\phi\rangle .
$$

(f) Expanding $\varrho_{(5)}^{2}=\frac{1}{4} \varrho_{(5)}$ gives two equations (parity rule).

$$
\left\{\sum_{j=1}^{5} P_{4}^{[j]} \otimes \mathbb{1}^{(j)}, P_{5}\right\}=6 P_{5} \quad \text { (odd part) }
$$

\nexists Seven-qubit AME, continued (II)

(e) Resulting eigenvalue equations:

$$
P_{4}^{[j]} \otimes \mathbb{1}^{\otimes 3}|\phi\rangle=1|\phi\rangle, \quad P_{5} \otimes \mathbb{1}^{\otimes 2}|\phi\rangle=2|\phi\rangle
$$

(f) Expanding $\varrho_{(5)}^{2}=\frac{1}{4} \varrho_{(5)}$ gives two equations (parity rule).

$$
\left\{\sum_{j=1}^{5} P_{4}^{[j]} \otimes \mathbb{1}^{(j)}, P_{5}\right\}=6 P_{5} \quad \text { (odd part) }
$$

(g) Multiplying with $|\phi\rangle$ from the right:

$$
(5 \cdot 1 \cdot 2+2 \cdot 5 \cdot 1)|\phi\rangle \neq 6 \cdot 2|\phi\rangle .
$$

$\Longrightarrow \nexists$ seven-qubit AME. (similar contradiction found for all $n \neq 2,3,5,6$.)

A best approximation...

Result

A seven qubit AME does not exist. At most 32 out of 35 three-body RDMs can be maximally mixed.

FH, O. Gühne, J. Siewert, Phys. Rev. Lett. 118, 200502 (2017)

Bounds on higher-dimensional AME states

How to get further bounds?

Bounds on higher-dimensional AME states

How to get further bounds?

- Consider correlation constraints from generalized state inversion / shadow inequality (talk by Jens)

$$
\operatorname{Tr}\left(\mathcal{I}_{T}[\varrho] \varrho\right)=\sum_{S \subseteq\{1 \ldots n\}}(-1)^{|S \cap T|} \operatorname{tr}\left[\varrho_{S}^{2}\right] \geq 0
$$

C. Eltschka, F. Huber, O. Gühne, J. Siewert, arXiv:1807.09165

Bounds on higher-dimensional AME states

How to get further bounds?

- Consider correlation constraints from generalized state inversion / shadow inequality (talk by Jens)

$$
\operatorname{Tr}\left(\mathcal{I}_{T}[\varrho] \varrho\right)=\sum_{S \subseteq\{1 \ldots n\}}(-1)^{|S \cap T|} \operatorname{tr}\left[\varrho_{S}^{2}\right] \geq 0
$$

C. Eltschka, F. Huber, O. Gühne, J. Siewert, arXiv:1807.09165

Example (\nexists four-qubit AME)

$$
\begin{aligned}
\operatorname{Tr}\left(\mathcal{I}_{1234}[\varrho] \varrho\right) & =1-\sum_{i} \operatorname{tr}\left(\rho_{i}^{2}\right)+\sum_{i<j} \operatorname{tr}\left(\varrho_{i j}^{2}\right)-\sum_{i<j<k} \operatorname{tr}\left(\rho_{i j k}^{2}\right)+\operatorname{tr}\left(\varrho^{2}\right) \\
& =1-4 \frac{1}{2}+6 \frac{1}{4}-4 \frac{1}{2}+1=-\frac{1}{2} \nsucceq 0
\end{aligned}
$$

Bounds on higher-dimensional AME states

Further bounds

A further 27 higher-dimensional AME states \nexists (light blue).

\exists : state exists
dark blue: excluded by Scott's bound
light blue: excluded by the shadow inequality

Mixed-dimensional AME states

Consider maximally entangled systems of mixed dimensions (e.g. qubit-qutrit), with maximal entanglement across every bipartition:
$2 \times 2 \times 2 \times 2$: \nexists four-qubit AME (proof at the beginning)
$2 \times 2 \times 2 \times 3$: \nexists shadow inequality
$2 \times 2 \times 3 \times 3$: \nexists shadow inequality
$2 \times 3 \times 3 \times 3$: \exists see new state below
$3 \times 3 \times 3 \times 3$: \exists four-qutrit AME (c.f. Karol's talk)

$$
\begin{aligned}
\left|\phi_{2333}\right\rangle= & -\alpha|0011\rangle-\beta|0012\rangle+\beta|0021\rangle+\alpha|0022\rangle \\
& -\beta|0101\rangle+\alpha|0102\rangle+\beta|0110\rangle+\alpha|0120\rangle \\
& -\alpha|0201\rangle+\beta|0202\rangle-\alpha|0210\rangle-\beta|0220\rangle \\
& -\beta|1011\rangle+\alpha|1012\rangle-\alpha|1021\rangle+\beta|1022\rangle \\
& +\alpha|1101\rangle+\beta|1102\rangle-\alpha|1110\rangle+\beta|1120\rangle \\
& -\beta|1201\rangle-\alpha|1202\rangle-\beta|1210\rangle+\alpha|1220\rangle \\
& 12\left(\alpha^{2}+\beta^{2}\right)=1,54 \alpha \beta=1 .
\end{aligned}
$$

FH, C. Eltschka, J. Siewert, O. Gühne, J. Phys. A: Math. Theor. 51, 175301 (2018)

Part II: Entanglement and Quantum Codes

Quantum codes

A quantum code is a subspace of a multipartite system: Denote by \mathcal{Q} a subspace of $\left(\mathbb{C}^{d}\right)^{\otimes n}$ spanned by an ONB $\left\{\left|v_{i}\right\rangle\right\}$. Let $\Pi=\sum_{i}^{K}\left|v_{i}\right\rangle\left\langle v_{i}\right|$ be the projector onto it, with $\operatorname{rank}(\Pi)=K$.

Quantum codes

A quantum code is a subspace of a multipartite system: Denote by \mathcal{Q} a subspace of $\left(\mathbb{C}^{d}\right)^{\otimes n}$ spanned by an ONB $\left\{\left|v_{i}\right\rangle\right\}$. Let $\Pi=\sum_{i}^{K}\left|v_{i}\right\rangle\left\langle v_{i}\right|$ be the projector onto it, with $\operatorname{rank}(\Pi)=K$.

Theorem (Knill-Laflamme error-conditions)

The subspace \mathcal{Q} is a QECC of distance at least d, if and only if for all operators with $|\operatorname{supp}(E)|<d$,

$$
\left\langle v_{i}\right| E\left|v_{j}\right\rangle=\delta_{i j} C_{E} \quad\left(=\delta_{i j} \operatorname{tr}[E] \text { "pure" }\right)
$$

Quantum codes

A quantum code is a subspace of a multipartite system:
Denote by \mathcal{Q} a subspace of $\left(\mathbb{C}^{d}\right)^{\otimes n}$ spanned by an ONB $\left\{\left|v_{i}\right\rangle\right\}$. Let $\Pi=\sum_{i}^{K}\left|v_{i}\right\rangle\left\langle v_{i}\right|$ be the projector onto it, with $\operatorname{rank}(\Pi)=K$.

Theorem (Knill-Laflamme error-conditions)

The subspace \mathcal{Q} is a QECC of distance at least d, if and only if for all operators with $|\operatorname{supp}(E)|<d$,

$$
\left\langle v_{i}\right| E\left|v_{j}\right\rangle=\delta_{i j} C_{E} \quad\left(=\delta_{i j} \operatorname{tr}[E] \text { "pure" }\right)
$$

- If distance is d, then errors on $\left\lfloor\frac{(d-1)}{2}\right\rfloor$ particles can be corrected.
- \mathcal{Q} is denoted as a $((n, K, d))_{D}$ code.

$$
\text { E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Let. 84, } 2525 \text { (2000). }
$$

Alternative characterizations

Alternative characterizations:
\mathcal{Q} a (pure) $((n, K, d))$ code, if and only if

Alternative characterizations

Alternative characterizations:
\mathcal{Q} a (pure) $((n, K, d))$ code, if and only if
a) For all $|\phi\rangle \in \mathcal{Q}$, and all subsets $|S|<d$

$$
\operatorname{tr}_{s c}(|\phi\rangle\langle\phi|)=\varrho_{s} \quad\left(=\mathbb{1} / D^{|S|}\right)
$$

\longrightarrow "every vector looks locally the same"

Alternative characterizations

Alternative characterizations:
\mathcal{Q} a (pure) $((n, K, d))$ code, if and only if
a) For all $|\phi\rangle \in \mathcal{Q}$, and all subsets $|S|<d$

$$
\operatorname{tr}_{S^{c}}(|\phi\rangle\langle\phi|)=\varrho_{S} \quad\left(=\mathbb{1} / D^{|S|}\right)
$$

\longrightarrow "every vector looks locally the same"
b) Let $\varrho=\Pi / K$. For all subsets $|S|<d$,

$$
K \operatorname{tr}\left[\varrho_{S^{c}}^{2}\right]=\operatorname{tr}\left[\varrho_{S}^{2}\right] \quad\left(=1 / D^{|S|}\right)
$$

\longrightarrow "constraints on purities of complementary reductions"
E. Rains, IEEE Trans. Inf. Theory 44, 4 (1998)

Part III: QMDS codes \& highly entangled subspaces

Highly entangled subspaces

Definition

A pure state $|\phi\rangle$, whose reductions onto r parties are all maximally mixed, is termed r-uniform. A r-uniform subspace (rUS) is a subspace of $\left(\mathbb{C}^{D}\right)^{\otimes n}$, in which every vector is at least r-uniform.

Highly entangled subspaces

Definition

A pure state $|\phi\rangle$, whose reductions onto r parties are all maximally mixed, is termed r-uniform. A r-uniform subspace (rUS) is a subspace of $\left(\mathbb{C}^{D}\right)^{\otimes n}$, in which every vector is at least r-uniform.

Observation (pure QECC $\equiv \mathrm{r}$-uniform subspace)

The following objects are equivalent:
a) a pure $((n, K, d))_{D}$ quantum error correcting code.
b) a $(d-1)$-uniform subspace in $\left(\mathbb{C}^{D}\right)^{\otimes n}$ of dimension K.

Bounds on codes

Theorem (Quantum Singleton bound)
Let \mathcal{Q} be a $((n, K, d))_{D}$ quantum error correcting code. Then

$$
n+2 \geq \log _{D} K+2 d
$$

E. Rains, IEEE Trans. Inf. Theory 45,6 (1999)

Bounds on codes

Theorem (Quantum Singleton bound)
Let \mathcal{Q} be a $((n, K, d))_{D}$ quantum error correcting code. Then

$$
n+2 \geq \log _{D} K+2 d
$$

E. Rains, IEEE Trans. Inf. Theory 45,6 (1999)

- If equality above, the code is called quantum maximum distance separable (QMDS)
- Fact: QMDS codes are pure (have maximally mixed marginals).
\longrightarrow QMDS codes are the largest possible r-uniform subspaces.

New codes from old

New codes can be constructed from old ones:
Theorem
Let $((n, K, d))_{D}$ be a pure QECC with $n, d \geq 2$. Then there exists a pure code $((n-1, D K, d-1))_{D}$.
E. Rains, IEEE Trans. Inf. Theory 44, 4 (1998)

New codes from old

New codes can be constructed from old ones:
Theorem
Let $((n, K, d))_{D}$ be a pure QECC with $n, d \geq 2$. Then there exists a pure code $((n-1, D K, d-1))_{D}$.
E. Rains, IEEE Trans. Inf. Theory 44, 4 (1998)
\longrightarrow corresponds to taking a partial trace over one particle.

QMDS families

...apply to QMDS codes:
Example

$$
\begin{array}{l|l}
\left(\left(6,2^{0}, 4\right)\right)_{2} \exists & \left(\left(12,3^{0}, 7\right)\right)_{3} \nexists \\
\left(\left(5,2^{1}, 3\right)\right)_{2} \exists & \left(\left(11,3^{1}, 6\right)\right)_{3} \nexists \\
\left(\left(4,2^{2}, 2\right)\right)_{2} \exists & \left(\left(10,3^{2}, 5\right)\right)_{3} \nexists \\
\left(\left(3,2^{3}, 1\right)\right)_{2} \exists & \left(\left(9,3^{3}, 4\right)\right)_{3} \\
& \nexists \\
& \left(\left(8,3^{4}, 3\right)\right)_{3} \\
& \exists \\
& \left(\left(7,3^{5}, 2\right)\right)_{3} \\
& \exists \\
& \left(\left(6,3^{6}, 1\right)\right)_{3} \\
\exists
\end{array}
$$

- Family of codes / highly entangled subspaces determined by $n+k$.
- For a given family, if the parent-AME does not exist, what is the uppermost member?

Bound on the existence of QMDS codes

Maximal length of QMDS codes

$\mathrm{A}((n, K, d))_{D}$ QMDS code of distance $d \geq 3$
$\left[\equiv(d-1)\right.$-uniform subspace in $\left(\mathbb{C}^{D}\right)^{\otimes n}$ of dimension $\left.K\right]$ must satisfy

$$
\begin{aligned}
n & \leq D^{2}+d-2, \quad \text { or equivalently } \\
n+k & \leq 2\left(D^{2}-1\right) .
\end{aligned}
$$

FH and M. Grassl, in preparation.

Bound on the existence of QMDS codes

Maximal length of QMDS codes

A $((n, K, d))_{D}$ QMDS code of distance $d \geq 3$
$\left[\equiv(d-1)\right.$-uniform subspace in $\left(\mathbb{C}^{D}\right)^{\otimes n}$ of dimension $\left.K\right]$ must satisfy

$$
\begin{aligned}
n & \leq D^{2}+d-2, \quad \text { or equivalently } \\
n+k & \leq 2\left(D^{2}-1\right) .
\end{aligned}
$$

FH and M. Grassl, in preparation.

- Extends Scott's AME bound and stabilizer QMDS bounds to all QMDS codes.

Bound on the existence of QMDS codes

Maximal length of QMDS codes

A $((n, K, d))_{D}$ QMDS code of distance $d \geq 3$
$\left[\equiv(d-1)\right.$-uniform subspace in $\left(\mathbb{C}^{D}\right)^{\otimes n}$ of dimension $\left.K\right]$ must satisfy

$$
\begin{aligned}
n & \leq D^{2}+d-2, \quad \text { or equivalently } \\
n+k & \leq 2\left(D^{2}-1\right) .
\end{aligned}
$$

FH and M. Grassl, in preparation.

- Extends Scott's AME bound and stabilizer QMDS bounds to all QMDS codes.
- Further bounds from the shadow inequality / generalized inversion $\operatorname{tr}\left(\mathcal{I}_{T}[\varrho\rfloor \varrho\right) \geq 0$.

Examples

Example
All QMDS－families of local dimension $D=3$ ：

n＋k	bound	achieved	
4	［4， $0,3 \rrbracket_{3}$	【4， $0,3 \rrbracket_{3}$	（optimal）
6	［6， $0,4 \rrbracket_{3}$	［6， $0,4 \rrbracket_{3}$	（optimal）
8	［6， $2,3 \rrbracket_{3}$	［6， $2,3 \rrbracket_{3}$	（optimal）
10	【10， $0,6 \rrbracket_{3}$	【10， $0,6 \rrbracket_{3}$	（optimal）
12	［ $8,4,3 \rrbracket_{3}$	【8， $4,3 \rrbracket_{3}$	（optimal）
14	【11， $3,5 \rrbracket_{3}$	$\llbracket 10,4,4 \rrbracket_{3}$	
16	$\llbracket 11,5,4 \rrbracket_{3}$	$\llbracket 10,6,3 \rrbracket_{3}$	

Summary of Results

- Arbitrarily strong quantum correlations are not allowed. Qubit AME states only exist for $n=2,3,5,6$.

Summary of Results

- Arbitrarily strong quantum correlations are not allowed. Qubit AME states only exist for $n=2,3,5,6$.

FH, O. Gühne, J. Siewert, Phys. Rev. Lett. 118, 200502 (2017)

- Constraints on higher-dimensional / mixed-dimensional AME states.

FH, C. Eltschka, J. Siewert, O. Gühne, JPA: Math. Theor. 51, 175301 (2018)

Summary of Results

- Arbitrarily strong quantum correlations are not allowed. Qubit AME states only exist for $n=2,3,5,6$.

FH, O. Gühne, J. Siewert, Phys. Rev. Lett. 118, 200502 (2017)

- Constraints on higher-dimensional / mixed-dimensional AME states.

FH, C. Eltschka, J. Siewert, O. Gühne, JPA: Math. Theor. 51, 175301 (2018)

- Bounds for the existence QMDS codes / highly entangled subspaces

FH and M. Grassl, in preparation.

Thank you for your attention ...

... and thanks to my collaborators!

FNSNF

Swiss National Science Foundation DFG CEELEX

IR

Universität Regensburg

