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Marginal problem Even and odd correlations

The Bloch representation
Consider the state |GHZ〉 ∝ |000〉+ |111〉, expand in terms of Pauli
operators:

ρGHZ ∝ 1⊗1⊗1+Z⊗Z⊗1+Z⊗1⊗Z+1⊗Z⊗Z︸ ︷︷ ︸
P2

+X⊗X⊗X−X⊗Y ⊗Y −Y ⊗X⊗Y −Y ⊗Y ⊗X︸ ︷︷ ︸
P3

Question: Are there any relations between P1, P2 and P3?
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The Bloch representation
Consider the state |GHZ〉 ∝ |000〉+ |111〉, expand in terms of Pauli
operators:

ρGHZ ∝ 111+ZZ1+Z1Z+ 1ZZ︸ ︷︷ ︸
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+XXX−XY Y −Y XY −Y Y X︸ ︷︷ ︸
P3
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Bloch representation cont’d

I Define the weight (wt) of a Pauli tensor product as number of
particles it acts on nontrivially, e.g.

wt(1Z1) = 1, wt(XY 1) = 2, wt(ZY Y ) = 3

I Group terms by the weight (Pk = all terms of weight k):

ρ= 1
2n

(1⊗n +
n∑

k=1
Pk).
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Marginal problem
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Marginals

Definition
Let S ⊂ {1, . . .n}, define the |S|-body
marginal of parties S as

ρS := Tr{1,...,n}\S(ρ)

Note: A k-body marginal is a function of
P1, . . . ,Pk of the original state only.

Question: Given the k-body marginals (P1, . . .Pk), can one
uniquely reconstruct the state (Pk+1, . . .Pn)?
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Marginal problem Even and odd correlations

UDP and UDA
Definition
A pure state |ψ〉 is called k-UDP (uniquely determined among
pure states) if there is no other pure state |φ〉 with the same
k-body marginals.

|ψ〉〈ψ| −→ {ρk}
?←− |φ〉〈φ|

Definition
A pure state |ψ〉 is called k-UDA (uniquely determined among all
states) if there is no other mixed or pure state ρ′ with the same
k-body marginals.

|ψ〉〈ψ| −→ {ρk}
?←− ρ′
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Two-body systems
I Consider a two-particle pure state in

Schmidt decomposition

|ψ〉=
d∑

j=1

√
λj |j〉A⊗|j〉B .

I Then the reduced states are given by

ρA/B =
∑

λj |j〉〈j|A/B .

But there are many compatible states:

|ψ〉=
d∑

j=1
exp(iϕj)

√
λj |j〉A⊗|j〉B .
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n-body systems

Theorem (Linden, Popescu,
Wootters (2002))
Almost all three-qubit pure
states are 2-UDA.

Theorem (Jones et al. (2005))
Almost all n-qudit pure states are UDA by

⌊
n
2
⌋
of their

(
⌈

n
2
⌉

+ 1)-body marginals.
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Four-body systems

I Jones: almost all 4-particle states are determined by two of
their 3-body marginals.

I How about having just the 2-body marginals?
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Main result I
Theorem
Almost all 4-qudit pure states are 2-UDP by certain sets of three
of the six 2-body marginals.
Proof works for certain sets of three two-body marginals:
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n-particle states

Corollary
For n≥ 4, almost all n-qudit pure states are (n−2)-UDP by
certain sets of three of the (n−2)-body marginals.

TL;DR: (Parts of) P1, . . . ,Pn−2 determine Pn−1 and Pn in
pure states.
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Even and odd correlations

PRA 97, 060101 (2018)
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Even and odd correlations
I Recall: Write ρ as (Pk = all terms of weight k):

ρ= 1
2n

(1⊗n +
n∑

k=1
Pk).

I It will be particularly useful to group terms with an even and
an odd number of Paulis:

Pe :=
∑

i even
Pi, Po :=

∑
i odd

Pi,

I From Pauli commutation relations:1

{Pe,P
′
e}= only even Paulis, {Po,P

′
o}= only even Paulis,

{Pe,P
′
o}= only odd Paulis.

1F. Huber, O. Gühne, J. Siewert, PRL 118, 200502 (2017)
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Bloch representation for pure states

I For pure states, write ρ= 1
2n (1+Pe +Po) and expand ρ2 = ρ.

I Sort in even and odd components:

0 = (2n−1)1+ (2n−2)Pe− (P 2
e +P 2

o ),
0 = (2n−2)Po−{Pe,Po}.

I Can we get more information on Pe and Po?
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State inversion

I Define universal state inversion (spin flipped state):

ρ̃ := Y ⊗nρ̄Y ⊗n.

I In terms of correlations:

ρ̃= 1
2n

(1+Pe−Po).

I Key observation: If n is odd,
ρρ̃= 0.

https://nicholgroup.weebly.com/uploads/8/0/4/0/80404544/spinchain2.png
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Main result II
Expand ρρ̃= 0 in terms of even and odd components:
Theorem
For pure states of n parties, where n is odd holds:

(1+Pe)2 = P 2
o ,

[Pe,Po] = 0.

Use additional equations from ρ2 = ρ:
Theorem
For pure states of n parties, where n is odd, the even correlations
are uniquely determined by the odd correlations:

1+Pe = P 2
o

2n−1 .
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Main result II

Example:

ρGHZ∝111+ZZ1+Z1Z+1ZZ︸ ︷︷ ︸
P2

+XXX−XY Y −Y XY −Y Y X︸ ︷︷ ︸
P3

Check:

(XXX−XY Y −Y XY −Y Y X)2 = 4(111+ZZ1+Z1Z+1ZZ)
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Previous results and extensions

I Linden, Popescu, Wootters (2002): P1 and P2 determine P3
(almost always).

I Here: P1 and P3 determine P2.

Corollary
A pure state of n parties, where n is odd, is UDA by its odd
correlations (i.e., there is no other mixed or pure state with the
same Po).
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The case of even n
If n is even, the state inversion does not map to orthogonal states.
Define the n-concurrence Cn := | 〈ψ|ψ̃〉 |, then

Theorem
For pure states of n parties, where n is even and Cn > 0, the odd
correlations are uniquely determined up to the sign by the even
correlations.
Summary:

n even and 0<Cn < 1 n odd or Cn = 0
Po given One-dimensional Pe is uniquely de-

solution space for Pe termined (even UDA)
Pe given ±Po is uniquely de- Two-dimensional

termined up to the sign solution space for Po
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Marginal problem Even and odd correlations

Applications
Structure of ground states of Hamiltonians, robustness under white
noise, entanglement structure and unitary time evolution under
odd Hamiltonians.
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Odd Hamiltonians

Corollary
Let Ho be a Hamiltonian that contains odd body interactions only.
Then the n-concurrence Cn of a state ρ is constant under unitary
time evolution w.r.t. Ho.

Corollary
Let n be even. Starting with a state |ψ(0)〉 with Cn(|ψ(0)〉) = 0
and using an odd Hamiltonian Ho, then the fidelity of |ψ(t)〉 with
|GHZ〉 never exceeds 50%.

I Can be used to check for the presence of even terms in
Hamiltonians.
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Summary/Outlook

I Bloch decomposition is a powerful tool to gain insight into
correlations in pure quantum states.

I Often, subsets of correlations determine the rest (4-qubit
states det. by P1 and P2, ...)

I Natural decomposition in even and odd correlations (odd
determine even correlations for n=odd states).

I What about states beyond qubits?
I What about inversions on subsets of particles?
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Thank you for your attention!

N. Wyderka, F. Huber, O. Gühne
Almost all four-particle pure states are
determined by their two-body
marginals.
PRA 96 , 010102 (2017)

N. Wyderka, F. Huber, O. Gühne
Constraints on correlations in
multiqubit systems.
PRA 97 , 060101 (2018)
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Appendix

Backup Slides (Noise robustness)

I Let ρ= 1
2n (1+Pe +Po) be a pure state with Cn = α. Then

for the eigenvalues holds

n even: σ(Pe) = (2n−1(1 +α)−1,2n−1(1−α)−1,−1,−1, . . .)
n odd: σ(Po) = (2n−1,−2n−1,0,0, . . .)

I Add white noise: ρp = pρ+ (1−p)
2n 1 = 1

2n (1+pPe +pPo):

n even: p(Pe) = (λ1 +λ2)/(2n−2)
n odd: p(Po) = (λ1−λ2)/2n
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Appendix

Backup Slides (Fidelity test)

I Start with |ψ0〉 with Cn(|ψ0〉) = 0. Then

|ψt〉= e−iHot |ψ0〉

=
√
F |GHZ〉+

√
1−F |χ〉

with 〈χ|GHZ〉= 0. Then

Cn(|ψt〉) = | 〈ψ̃t|ψt〉 |
= |F + (1−F )〈χ̃|χ〉 |
≥ F − (1−F ).

Thus, if F > 50%, Cn 6= 0 and even terms must have been
present in Ho.
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