Multipartite Entanglement and Combinatorial Designs

Karol Życzkowski Jagiellonian University (Cracow) \& Polish Academy of Sciences (Warsaw)

> in collaboration with

Dardo Goyeneche (Concepcion/ Cracow/ Gdansk) Sara Di Martino \& Zahra Raissi (Barcelona, Spain)

Entanglement Days
 Budapest, September 26, 2018

DOI:10.1142/S1230161218770012
(c) World Scientific Publishing Company

Dénes Petz, 8.04.1953-6.02.2018

In Memory of Professor Dénes Petz,
Editor of OSID in 1992-2018

Composed systems \& entangled states

bi-partite systems: $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

- separable pure states: $|\psi\rangle=\left|\phi_{A}\right\rangle \otimes\left|\phi_{B}\right\rangle$
- entangled pure states: all states not of the above product form.

Two-qubit system: $2 \times 2=4$
Maximally entangled Bell state $\left|\varphi^{+}\right\rangle:=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Schmidt decomposition \& Entanglement measures

Any pure state from $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ can be written as

$$
|\psi\rangle=\sum_{i j} G_{i j}|i\rangle \otimes|j\rangle=\sum_{i} \sqrt{\lambda_{i}}\left|i^{\prime}\right\rangle \otimes\left|i^{\prime \prime}\right\rangle, \text { where }|\psi|^{2}=\operatorname{Tr} G G^{\dagger}=1
$$

The partial trace, $\sigma=\operatorname{Tr}_{B}|\psi\rangle\langle\psi|=G G^{\dagger}$, has spectrum given by the Schmidt vector $\left\{\lambda_{i}\right\}=$ squared singular values of G.
Entanglement entropy of $|\psi\rangle$ is equal to von Neumann entropy of the reduced state σ

$$
E(|\psi\rangle):=-\operatorname{Tr} \sigma \ln \sigma=S(\lambda) .
$$

Maximally entangled bi-partite quantum states

Bipartite systems $\mathcal{H}=\mathcal{H}^{A} \otimes \mathcal{H}^{B}=\mathcal{H}_{d} \otimes \mathcal{H}_{d}$

generalized Bell state (for two qudits),

$$
\left|\psi_{d}^{+}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}|i\rangle \otimes|i\rangle
$$

distinguished by the fact that all singular values are equal, $\lambda_{i}=1 / \sqrt{d}$, hence the reduced state is maximally mixed,

$$
\rho_{A}=\operatorname{Tr}_{B}\left|\psi_{d}^{+}\right\rangle\left\langle\psi_{d}^{+}\right|=\mathbb{1}_{d} / d
$$

This property holds for all locally equivalent states, $\left(U_{A} \otimes U_{B}\right)\left|\psi_{d}^{+}\right\rangle$.

Observations:

A) State $|\psi\rangle$ is maximally entangled if $\rho_{A}=G G^{\dagger}=\mathbb{1}_{d} / d$, which is the case if the matrix $U=G / \sqrt{d}$ of size d is unitary,
(and all its singular values are equal to 1).
B) For a bi-partite state the singular values of G characterize entanglement of the state $|\psi\rangle=\sum_{i, j} G_{i j}|i, j\rangle$.

Multipartite pure quantum states: $3 \gg 2$

States on N parties are determined by a tensor with N indices e.g. for $N=3: \quad\left|\Psi_{A B C}\right\rangle=\sum_{i, j, k} T_{i, j, k}|i\rangle_{A} \otimes|j\rangle_{B} \otimes|k\rangle_{C}$.

Mathematical problem: in general for a tensor $T_{i j k}$ there is no (unique) Singular Value Decomposition and it is not simple to find the tensor rank or tensor norms (nuclear, spectral).

Open question: Which state of N subsystems with d-levels each is the most entangled ?

example for three qubits, $\mathcal{H}^{A} \otimes \mathcal{H}^{B} \otimes \mathcal{H}^{C}=\mathcal{H}_{2}^{\otimes 3}$

$\mathbf{G H Z}$ state, $|G H Z\rangle=\frac{1}{\sqrt{2}}(|0,0,0\rangle+|1,1,1\rangle)$ has a similar property: all three one-partite reductions are maximally mixed $\rho_{A}=\operatorname{Tr}_{B C}|G H Z\rangle\langle G H Z|=\mathbb{1}_{2}=\rho_{B}=\operatorname{Tr}_{A C}|G H Z\rangle\langle G H Z|$.
(what is not the case e.g. for $|W\rangle=\frac{1}{\sqrt{3}}(|1,0,0\rangle+|0,1,0\rangle+|0,0,1\rangle$)

Geometry of Quantum States is discussed in a book

published by Cambridge University Press in 2006,

II edition (with new chapters on multipartite entanglement \& discrete structures in the Hilbert space),

August 2017

Genuinely multipartite entangled states

k-uniform states of N qudits

Definition. State $|\psi\rangle \in \mathcal{H}_{d}^{\otimes N}$ is called k-uniform if for all possible splittings of the system into k and $N-k$ parts the reduced states are maximally mixed (Scott 2001),
(also called MM-states (maximally multipartite entangled)
Facchi et al. $(2008,2010)$, Arnaud \& Cerf (2012)
Applications: quantum error correction codes, teleportation, etc...

Example: 1-uniform states of N qudits

Observation. A generalized, N-qudit $\mathbf{G H Z}$ state,

$$
\begin{aligned}
&\left|G H Z_{N}^{d}\right\rangle:=\frac{1}{\sqrt{d}}[|1,1, \ldots, 1\rangle+|2,2, \ldots, 2\rangle+\cdots+|d, d, \ldots, d\rangle] \\
& \quad \text { is } 1 \text {-uniform (but not 2-uniform!) }
\end{aligned}
$$

Examples of k-uniform states

Observation: k-uniform states may exist if $N \geq 2 k$ (Scott 2001) (traced out ancilla of size $(N-k)$ cannot be smaller than the principal k-partite system).

Hence there are no 2 -uniform states of 3 qubits.

However, there exist 2-uniform state of 4 qubits either!

Higuchi \& Sudbery (2000) - frustration like in spin systems Facchi, Florio, Marzolino, Parisi, Pascazio (2010) it is not possible to satisfy simultaneously so many constraints...

2-uniform state of 5 and 6 qubits

$$
\begin{aligned}
\left|\Phi_{5}\right\rangle= & |11111\rangle+|01010\rangle+|01100\rangle+|11001\rangle+ \\
& +|10000\rangle+|00101\rangle-|00011\rangle-|10110\rangle,
\end{aligned}
$$

related to 5-qubit error correction code by Laflamme et al. (1996)

$$
\begin{aligned}
\left|\Phi_{6}\right\rangle= & |111111\rangle+|101010\rangle+|001100\rangle+|011001\rangle+ \\
& +|110000\rangle+|100101\rangle+|000011\rangle+|010110\rangle .
\end{aligned}
$$

Combinatorial Designs

\Longrightarrow An introduction to "Quantum Combinatorics"

A classical example:

Take 4 aces, 4 kings, 4 queens and 4 jacks
and arrange them into an 4×4 array, such that
a) - in every row and column there is only a single card of each suit
b) - in every row and column there is only a single card of each rank

Combinatorial Designs

\Longrightarrow An introduction to "Quantum Combinatorics"
A classical example:
Take 4 aces, 4 kings, 4 queens and 4 jacks
and arrange them into an 4×4 array, such that
a) - in every row and column there is only a single card of each suit
b) - in every row and column there is only a single card of each rank

Two mutually orthogonal Latin squares of size $N=4$ Graeco-Latin square!

Mutually orthogonal Latin Squares (MOLS)

\&) $N=2$. There are no orthogonal Latin Square (for 2 aces and 2 kings the problem has no solution)
๑) $N=3,4,5$ (and any power of prime) \Longrightarrow there exist $(N-1)$ MOLS.
©) $N=6$. Only a single Latin Square exists (No OLS!).

Mutually orthogonal Latin Squares (MOLS)

\&) $N=2$. There are no orthogonal Latin Square
(for $\mathbf{2}$ aces and $\mathbf{2}$ kings the problem has no solution)
©) $N=3,4,5$ (and any power of prime) \Longrightarrow there exist $(N-1)$ MOLS.
©) $N=6$. Only a single Latin Square exists (No OLS!).
Euler's problem: 36 officers of six different ranks from six different units come for a military parade. Arrange them in a square such that in each row / each column all uniforms are different.

\%	5	5	?	?	?
8	${ }^{5}$	2	?	?	?
5	\%	8	?	?	?
?	?	?	?	?	?
?	?	?	?	?	?
?	?	?	?	?	?

No solution exists! (conjectured by Euler), proof by:
Gaston Terry "Le Probléme de 36 Officiers". Compte Rendu (1901).

Mutually orthogonal Latin Squares (MOLS)

An apparent solution of the $N=6$ Euler's problem of $\mathbf{3 6}$ officers.

Wawel castle in Cracow

Orthogonal Arrays

Combinatorial arrangements introduced by Rao in 1946 used in statistics and design of experiments, $\mathrm{OA}(r, N, d, \mathbf{k})$

Orthogonal arrays $\mathrm{OA}(2,2,2,1), \mathrm{OA}(4,3,2,2)$ and $\mathrm{OA}(8,4,2,3)$:
in each column each symbol occurres the same number of times.

Definition of an Orthogonal Array

An array A of size $r \times N$ with entries taken from a d-element set S is called Orthogonal array $\mathrm{OA}(r, N, d, k)$ with r runs, N factors, d levels, strength k and index λ if every $r \times k$ subarray of A contains each k-tuple of symbols from S exactly λ times as a row.

Example a) Two qubit, 1-uniform state

Orthogonal array

$$
O A(2,2,2,1)=\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}
$$

leads to the Bell state $\left|\Psi_{2}^{+}\right\rangle=|01\rangle+|10\rangle$, which is 1 -uniform

Example b) Three-qubit, 1-uniform state

Orthogonal array

$$
O A(4,3,2,2)=\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}
$$

leads to a 1-uniform state: $\left|\Phi_{3}\right\rangle=|000\rangle+|011\rangle+|101\rangle+|110\rangle$.

Orthogonal Arrays \& k-uniform states

A link between them

	orthogonal arrays	multipartite quantum state $\|\Phi\rangle$
r	Runs	Number of terms in the state
N	Factors	Number of qudits
d	Levels	dimension d of the subsystem
k	Strength	class of entanglement (k-uniform)

holds
provided an orthogonal array $\mathrm{OA}(r, N, d, k)$
satisfies additional constraints !
(this relation is NOT one-to-one)
Goyeneche, K.Ż. (2014)

k-uniform states and Orthogonal Arrays I

Consider a pure state $|\Phi\rangle$ of N qudits,

$$
|\Phi\rangle=\sum_{s_{1}, \ldots, s_{N}} a_{s_{1}, \ldots, s_{N}}\left|s_{1}, \ldots, s_{N}\right\rangle
$$

where $a_{s_{1}, \ldots, s_{N}} \in \mathbb{C}, s_{1}, \ldots, s_{N} \in S$ and $S=\{0, \ldots, d-1\}$.
Vectors $\left\{\left|s_{1}, \ldots, s_{N}\right\rangle\right\}$ form an orthonormal basis.
Density matrix ρ reads

$$
\rho_{A B}=|\Phi\rangle\langle\Phi|=\sum_{\substack{s_{1}, \ldots, s_{N} \\ s_{1}^{\prime}, \ldots, s_{N}^{\prime}}} a_{s_{1}, \ldots, s_{N}} a_{s_{1}^{\prime}, \ldots, s_{N}^{\prime}}^{*}\left|s_{1}, \ldots, s_{N}\right\rangle\left\langle s_{1}^{\prime}, \ldots, s_{N}^{\prime}\right|
$$

We split the system into two parts \mathcal{S}_{A} and \mathcal{S}_{B} containing N_{A} and N_{B} qudits, $N_{A}+N_{B}=N$, remove N_{B} subsystems to obtain reduced state $\rho_{A}=\operatorname{Tr}_{B}\left(\rho_{A B}\right)$
$=\sum_{\substack{s_{1} \ldots s_{N} \\ s_{1}^{\prime} \ldots s_{N}^{\prime}}} a_{s_{1} \ldots s_{N}} a_{s_{1}^{\prime} \ldots s_{N}^{\prime}}^{*}\left\langle s_{N_{A}+1}^{\prime}, \ldots, s_{N}^{\prime} \mid s_{N_{A}+1} \ldots s_{N}\right\rangle\left|s_{1} \ldots s_{N_{A}}\right\rangle\left\langle s_{1}^{\prime} \ldots s_{N_{A}}^{\prime}\right|$.

k-uniform states and Orthogonal Arrays II

A simple, special case: coefficients $a_{s_{1}, \ldots, s_{N}}$ are zero or one. Then $|\Phi\rangle=\left|s_{1}^{1}, s_{2}^{1}, \ldots, s_{N}^{1}\right\rangle+\left|s_{1}^{2}, s_{2}^{2}, \ldots, s_{N}^{2}\right\rangle+\cdots+\left|s_{1}^{r}, s_{2}^{r}, \ldots, s_{N}^{r}\right\rangle$, upper index i on s denotes the i - th term in $|\Phi\rangle$. These coefficients can be arranged in an array

$$
A=\begin{array}{cccc}
s_{1}^{1} & s_{2}^{1} & \ldots & s_{N}^{1} \\
s_{1}^{2} & s_{2}^{2} & \ldots & s_{N}^{2} \\
\vdots & \vdots & \ldots & \vdots \\
s_{1}^{r} & s_{2}^{r} & \ldots & s_{N}^{r}
\end{array} .
$$

i). If A forms an orthogonal array for any partition the diagonal elements of the reduced state ρ_{A} are equal.
ii). If the sequence of N_{B} symbols appearing in every row of removed columns is not repeated along the r rows (irredundant OA), the reduced density matrix ρ_{A} becomes diagonal.

Hadamard matrices \& Orthogonal Arrays

A Hadamard matrix $H_{8}=H_{2}^{\otimes 3}$ of order $N=8$ implies $\mathrm{OA}(8,7,2,2)$

$$
\left(\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) \rightarrow \begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}
$$

This Orthogonal Array of strength $k=2$ allows us to construct a 2 -uniform state of 7 qubits:

$$
\begin{aligned}
\left|\Phi_{7}\right\rangle= & |1111111\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle+ \\
& |1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle .
\end{aligned}
$$

- the simplex state $\left|\Phi_{7}\right\rangle$.

Hadamard matrices \& Orthogonal Arrays

A Hadamard matrix $H_{8}=H_{2}^{\otimes 3}$ of order $N=8$ implies $\mathrm{OA}(8,7,2,2)$

$$
\left(\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) \rightarrow \begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}
$$

This Orthogonal Array of strength $k=2$ allows us to construct a 2 -uniform state of 7 qubits:

$$
\begin{aligned}
\left|\Phi_{7}\right\rangle= & |1111111\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle+ \\
& |1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle
\end{aligned}
$$

- the simplex state $\left|\Phi_{7}\right\rangle$.

No 3-uniform states of 7 qubits: Huber, Gühne, Siewert (2017)

Heterogeneous systems (e.g. qubits \& qutrits)

generalized OA (with mixed alphabet) allow us to construct highly entangled heterogeneous states

Example: four qutrits and one qubit

$\left|\Psi_{3^{4}, 2^{1}}\right\rangle=|00000\rangle+|01211\rangle+|11120\rangle+|12001\rangle+|22210\rangle+|20121\rangle$.
Goyeneche, Bielawski, K.Ż (2016)

Absolutely maximally entangled state (AME)

Homogeneous systems (subsystems of the same kind)
Definition. A k-uniform state of N qudits is called absolutely maximally entangled $\operatorname{AME}(\mathbf{N}, \mathbf{d})$ if $k=[N / 2]$

Examples:
a) Bell state - 1 -uniform state of 2 qubits $=\operatorname{AME}(2,2)$
b) $\mathbf{G H Z}$ state -1 -uniform state of 3 qubits $=\operatorname{AME}(3,2)$
x) none - no 2-uniform state of 4 qubits Higuchi \& Sudbery (2000)
c) 2-uniform state $\left|\Psi_{3}^{4}\right\rangle$ of 4 qutrits, $\operatorname{AME}(4,3)$
d) 3 -uniform state $\left|\Psi_{4}^{6}\right\rangle$ of 6 ququarts, $\operatorname{AME}(6,4)$
e) no 3 -uniform states of 7 qubits

Huber, Gühne, Siewert (2017)

Higher dimensions: AME $(4,3)$ state of four qutrits

From $\mathrm{OA}(9,4,3,2)$ we get a 2 -uniform state of 4 qutrits:

$$
\begin{aligned}
\left|\Psi_{3}^{4}\right\rangle= & |0000\rangle+|0112\rangle+|0221\rangle+ \\
& |1011\rangle+|1120\rangle+|1202\rangle+ \\
& |2022\rangle+|2101\rangle+|2210\rangle .
\end{aligned}
$$

This state is also encoded in a pair of orthogonal Latin squares of size 3,

0α	1β	2γ				
1γ	2α	0β				
2β	0γ	1α	$=$	$A \boldsymbol{\phi}$	$K \boldsymbol{\&}$	$Q \diamond$
:---:	:---:	:---:				
$K \diamond$	$Q \boldsymbol{\phi}$	$A \boldsymbol{\&}$				
$Q \boldsymbol{\&}$	$A \diamond$	$K \boldsymbol{\downarrow}$.			

Higher dimensions: AME $(4,3)$ state of four qutrits

From $O A(9,4,3,2)$ we get a 2 -uniform state of 4 qutrits:

$$
\begin{aligned}
\left|\Psi_{3}^{4}\right\rangle= & |0000\rangle+|0112\rangle+|0221\rangle+ \\
& |1011\rangle+|1120\rangle+|1202\rangle+ \\
& |2022\rangle+|2101\rangle+|2210\rangle .
\end{aligned}
$$

This state is also encoded in a pair of orthogonal Latin squares of size 3,

0α	1β	2γ				
1γ	2α	0β				
2β	0γ	1α	$=$	$A \boldsymbol{\phi}$	$K \boldsymbol{\&}$	$Q \diamond$
:---:	:---:	:---:				
$K \diamond$	$Q \boldsymbol{\phi}$	$A \boldsymbol{\&}$				
$Q \boldsymbol{\&}$	$A \diamond$	$K \boldsymbol{\phi}$.			

Corresponding Quantum Code: $|0\rangle \rightarrow|\tilde{0}\rangle:=|000\rangle+|112\rangle+|221\rangle$
$|1\rangle \rightarrow|\tilde{1}\rangle:=|011\rangle+|120\rangle+|202\rangle$
$|2\rangle \rightarrow|\tilde{2}\rangle:=|022\rangle+|101\rangle+|210\rangle$

Why do we care about AME states?

Since they can be used for various purposes
(e.g. Quantum codes, teleportation,...)

Resources needed for quantum teleportation:
a) 2-qubit Bell state allows one to teleport $\mathbf{1}$ qubit from A to B
b) 2-qudit generalized Bell state allows one to teleport 1 qudit
c) 3-qubit GHZ state allows one to teleport $\mathbf{1}$ qubit between any users
d) 4-qutrit GHZ state allows one to teleport 1 qutrit between any two out of four users
f) 4-qutrit state $\operatorname{AME}(4,3)$ allows one to teleport 2 qutrits between any pair chosen from four users to the other pair!

- say from the pair $(A \& C)$ to ($B \& D$)

Why do we care about AME states?

Since they can be used for various purposes
(e.g. Quantum codes, teleportation,...)

Resources needed for quantum teleportation:
a) 2-qubit Bell state allows one to teleport $\mathbf{1}$ qubit from A to B
b) 2-qudit generalized Bell state allows one to teleport 1 qudit
c) 3-qubit GHZ state allows one to teleport 1 qubit between any users
d) 4-qutrit GHZ state allows one to teleport 1 qutrit between any two out of four users
f) 4-qutrit state $\operatorname{AME}(4,3)$ allows one to teleport 2 qutrits between any pair chosen from four users to the other pair!

- say from the pair ($A \& C$) to ($B \& D$)
relations between AME states and multiunitary matrices, perfect tensors and holographic codes

State $\operatorname{AME}(6,4)$ of six ququarts:

3-uniform state of 6 ququarts: read from

three Mutually orthogonal Latin cubes

$$
\left|\Psi_{4}^{6}\right\rangle=
$$

$$
\begin{aligned}
& |000000\rangle+|001111\rangle+|002222\rangle+|003333\rangle+|010123\rangle+|011032\rangle+ \\
& |012301\rangle+|013210\rangle+|020231\rangle+|021320\rangle+|022013\rangle+|023102\rangle+ \\
& |030312\rangle+|031203\rangle+|032130\rangle+|033021\rangle+|100132\rangle+|101023\rangle+ \\
& |102310\rangle+|103201\rangle+|110011\rangle+|111100\rangle+|112233\rangle+|113322\rangle+ \\
& |120303\rangle+|121212\rangle+|122121\rangle+|123030\rangle+|130220\rangle+|131331\rangle+ \\
& |132002\rangle+|133113\rangle+|200213\rangle+|201302\rangle+|202031\rangle+|203120\rangle+ \\
& |210330\rangle+|211221\rangle+|212112\rangle+|213003\rangle+|220022\rangle+|221133\rangle+ \\
& |222200\rangle+|223311\rangle+|230101\rangle+|231010\rangle+|232323\rangle+|233232\rangle+ \\
& |300321\rangle+|301230\rangle+|302103\rangle+|303012\rangle+|310202\rangle+|311313\rangle+ \\
& |312020\rangle+|313131\rangle+|320110\rangle+|321001\rangle+|322332\rangle+|323223\rangle+ \\
& |330033\rangle+|331122\rangle+|332211\rangle+|333300\rangle .
\end{aligned}
$$

State $\left|\Psi_{4}^{6}\right\rangle$ of six ququarts can be generated by three mutually orthogonal Latin cubes of order four!
(three address quarts + three cube quarts $=6$ quarts in $4^{3}=64$ terms)

Absolutely maximally entangled state (AME) II

Key issue For what number N of qudits the state $\mathbf{A M E}(\mathbf{N}, \mathbf{d})$ exist? How to construct them??
$\operatorname{AME}(5,2)$ [five qubits] and $\operatorname{AME}(6,2)$ [six qubits] do exist
but
they contain terms with negative signs \Rightarrow cannot be obtained with $O A$ new construction needed...
"every good notion can be quantized"

Absolutely maximally entangled state (AME) II

Key issue For what number N of qudits the state $\operatorname{AME}(\mathbf{N}, \mathbf{d})$ exist? How to construct them??
$\operatorname{AME}(5,2)$ [five qubits] and $\operatorname{AME}(6,2)$ [six qubits] do exist
but
they contain terms with negative signs \Rightarrow cannot be obtained with OA new construction needed...
"every good notion can be quantized"
The new notion of
Quantum Latin Square (QLS) by Musto \& Vicary (2016) (square array of N^{2} quantum states from \mathcal{H}_{N} :
every column and every row forms a basis)
inspired us to introduce
Mutually Orthogonal Quantum Latin Squares (MOQLS) and related
Quantum Orthogonal Array (QOA)

Superpositions, entangled states and "quantum designs"

orthogonal Latin square

Example of order $N=4$ by Vicary, Musto (2016)
$\left|\begin{array}{cccc}|0\rangle & |1\rangle & |2\rangle & |3\rangle \\ |3\rangle & |2\rangle & |1\rangle & |0\rangle \\ \left|\chi_{-}\right\rangle & \left|\xi_{-}\right\rangle & \left|\xi_{+}\right\rangle & \left|\chi_{+}\right\rangle \\ \left|\chi_{+}\right\rangle & \left|\xi_{+}\right\rangle & \left|\xi_{-}\right\rangle & \left|\chi_{-}\right\rangle\end{array}\right|$
where $\left|\chi_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|1\rangle \pm|2\rangle)$ denote Bell states, while $\left|\xi_{+}\right\rangle=\frac{1}{\sqrt{5}}(i|0\rangle+2|3\rangle)\left|\xi_{-}\right\rangle=\frac{1}{\sqrt{5}}(2|0\rangle+i|3\rangle)$ other entangled states.
Four states in each row \& column form an orthogonal basis in \mathcal{H}_{4}

Standard combinatorics: discrete set of symbols, $1,2, \ldots, N$, + permutation group
generalized ("Quantum") combinatorics: continuous family of states $|\psi\rangle \in \mathcal{H}_{N}+$ unitary group $U(N)$.

Quantum Orthogonal arrays and AME states

Quantum orthogonal array: (entangled strategies \rightarrow quantum games)

$$
\operatorname{QOA}(4,3+2,2,2)=\left(\begin{array}{ccc|c}
|0\rangle & |0\rangle & |1\rangle & \left|\phi^{+}\right\rangle \\
|0\rangle & |1\rangle & |0\rangle & \left|\phi^{-}\right\rangle \\
|1\rangle & |0\rangle & |0\rangle & \left|\psi^{+}\right\rangle \\
|1\rangle & |1\rangle & |1\rangle & \left|\psi^{-}\right\rangle
\end{array}\right) .
$$

constructed out of the classical $\mathrm{OA}(4,3,2,2)$ and the quantum Bell basis yields the five qubit AME state:
$\begin{aligned} \operatorname{AME}(5,2) & =O A(4,3,2,4) \cup\left\{\left|\psi_{j}\right\rangle\right\}_{j=1}^{4}= \\ & =|001\rangle \otimes\left|\phi^{+}\right\rangle+|010\rangle \otimes\left|\phi^{-}\right\rangle+|100\rangle \otimes\left|\psi^{+}\right\rangle+|111\rangle \otimes\left|\psi^{-}\right\rangle .\end{aligned}$

Orthogonal Quantum Latin Squares

"every good notion can be quantized"
Definition. A table of N^{2} bipartite states $\left|\phi_{i, j}\right\rangle \in \mathcal{H}_{N} \otimes \mathcal{H}_{N}$

$$
Q O L S=\left(\begin{array}{cccc}
\left|\phi_{11}\right\rangle & \left|\phi_{12}\right\rangle & \ldots & \left|\phi_{1 N}\right\rangle \\
\left|\phi_{21}\right\rangle & \left|\phi_{22}\right\rangle & \ldots & \left|\phi_{2 N}\right\rangle \\
\ldots & \ldots & \ldots & \ldots \\
\left|\phi_{N 1}\right\rangle & \left|\phi_{N 2}\right\rangle & \ldots & \left|\phi_{N N}\right\rangle
\end{array}\right)
$$

forms a pair of two Orthogonal Quantum Latin Squares if the 4-partite state: $\quad\left|\Psi_{4}\right\rangle:=\sum_{i=1}^{N} \sum_{j=1}^{N}|i, j\rangle \otimes\left|\phi_{i j}\right\rangle$ is 2 -uniform, so it forms the state $|\operatorname{AME}(4, N)\rangle$.
This implies that the states are orthogonal, $\left\langle\phi_{i j} \mid \phi_{k l}\right\rangle=\delta_{i k} \delta_{j l}$.

Orthogonal Quantum Latin Squares

"every good notion can be quantized" Definition. A table of N^{2} bipartite states $\left|\phi_{i, j}\right\rangle \in \mathcal{H}_{N} \otimes \mathcal{H}_{N}$

$$
Q O L S=\left(\begin{array}{cccc}
\left|\phi_{11}\right\rangle & \left|\phi_{12}\right\rangle & \ldots & \left|\phi_{1 N}\right\rangle \\
\left|\phi_{21}\right\rangle & \left|\phi_{22}\right\rangle & \ldots & \left|\phi_{2 N}\right\rangle \\
\ldots & \ldots & \ldots & \ldots \\
\left|\phi_{N 1}\right\rangle & \left|\phi_{N 2}\right\rangle & \ldots & \left|\phi_{N N}\right\rangle
\end{array}\right)
$$

forms a pair of two Orthogonal Quantum Latin Squares if the 4-partite state: $\left|\Psi_{4}\right\rangle:=\sum_{i=1}^{N} \sum_{j=1}^{N}|i, j\rangle \otimes\left|\phi_{i j}\right\rangle$ is 2 -uniform, so it forms the state $|\operatorname{AME}(4, N)\rangle$.
This implies that the states are orthogonal, $\left\langle\phi_{i j} \mid \phi_{k l}\right\rangle=\delta_{i k} \delta_{j l}$. However, the Bell square: $\quad\left|\phi^{+}\right\rangle\left|\psi^{-}\right\rangle$
$\left|\psi^{+}\right\rangle\left|\phi^{-}\right\rangle$
does not form a OQLS. Furtheremore, there are no two OQLS(2), (as there are no absolutely maximally entangled states of 4 qubits!)

Mutually Orthogonal Quantum Latin Cubes

"every good notion can be quantized"
Definition. A cube of N^{3} states $\left|\phi_{i j k}\right\rangle \in \mathcal{H}_{N}^{\otimes 3}$ forms a
Mutually Orthogonal Latin Cube if the 6-party superposition $\left|\Psi_{6}\right\rangle:=\sum_{i, j, k=1}^{N}|i, j, j\rangle \otimes\left|\phi_{i j k}\right\rangle$ is 3-uniform
(so it forms the state $|\operatorname{AME}(6, N)\rangle$).
Example. Cube of 8 states forming three-qubit GHZ basis:

leads to $\operatorname{QOA}(8,3+3,2,3)$ and six-qubit AME state of Borras

$$
|\operatorname{AME}(6,2)\rangle=\sum_{x=0}^{7}|x\rangle \otimes\left|G H Z_{x}\right\rangle .
$$

(analogy to state $|\Psi(f)\rangle=\sum_{x}|x\rangle \otimes|f(x)\rangle$ used in the Shor algorithm!)

Classical combinatorial designs... include: Orthogonal Arrays, Latin Squares, Latin Cubes

Classical combinatorial designs...
include: Orthogonal Arrays, Latin Squares, Latin Cubes

QOA

MOLS LS QLS QMOLS
 MOLC LC
 QLC
 QMOLC

More general quantum combinatorial designs include: Quantum Orthogonal Arrays, Quantum Latin Squares and Cubes Goyeneche, Raissi, Di Martino, K.Ż. Phys. Rev. A (2018)

k-uniform states and k-unitary matrices

Consider a 2-uniform state of four parties A, B, C, D with d levels each,

$$
|\psi\rangle=\sum_{i, j, l, m=1}^{d} \Gamma_{i j l m}|i, j, I, m\rangle
$$

It is maximally entangled with respect to all three partitions: $A B \mid C D$ and $A C \mid B D$ and $A D \mid B C$.

Let $\rho_{A B C D}=|\psi\rangle\langle\psi|$. Hence its three reductions are maximally mixed, $\rho_{A B}=\operatorname{Tr}_{C D} \rho_{A B C D}=\rho_{A C}=\operatorname{Tr}_{B D} \rho_{A B C D}=\rho_{A D}=\operatorname{Tr}_{B C} \rho_{A B C D}=\mathbb{1}_{d^{2}} / d^{2}$ Thus matrices $U_{\mu, \nu}$ of order d^{2} obtained by reshaping the tensor $d \Gamma_{i j k l}$ are unitary for three reorderings:
a) $\mu, \nu=i j, I m$,
b) $\mu, \nu=i m, j l$,
c) $\mu, \nu=i l, j m$.

Such a tensor Γ is called perfect.
Corresponding unitary matrix U of order d^{2} is called two-unitary if reordered matrices $U^{R_{1}}$ and $U^{R_{2}}$ remain unitary.

Unitary matrix U of order d^{k} with analogous property is called k-unitary

Exemplary multiunitary matrices

Two-unitary permutation matrix of size $9=3^{2}$ associated to $2 \operatorname{MOLS}(3)$ and 2 -uniform state $\left|\Psi_{3}^{4}\right\rangle$ of 4 qutrits

$$
U=U_{i j l}=\left(\begin{array}{ccc|ccc|ccc}
\mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\
- & - & - & - & - & - & - & - & - \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
- & - & - & - & - & - & - & - & - \\
0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0
\end{array}\right) \in U(9)
$$

Furthermore, also two reordered matrices (by partial transposition and reshuffling) remain unitary:

$$
\begin{aligned}
& U^{T_{1}}=U_{i,}^{i j}=\left(\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \in U(9) \\
& U^{R}=U_{i j}=\left(\begin{array}{lllllllll}
\mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\
0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0
\end{array}\right) \in U(9)
\end{aligned}
$$

9-sudoku \& two orthogonal Latin squares (3)

$\left[\begin{array}{lll|lll|lll}\hline 8 & 1 & 6 & \mathbf{2} & 4 & 9 & \mathbf{5} & 7 & 3 \\ \mathbf{3} & 5 & 7 & \mathbf{6} & 8 & 1 & \mathbf{9} & 2 & 4 \\ \mathbf{4} & 9 & 2 & \mathbf{7} & 3 & 5 & \mathbf{1} & 6 & 8 \\ \hline 7 & 3 & 5 & 1 & 6 & 8 & 4 & 9 & 2 \\ 2 & 4 & 9 & 5 & 7 & 3 & 8 & 1 & 6 \\ 6 & 8 & 1 & 9 & 2 & 4 & 3 & 5 & 7 \\ \hline 9 & 2 & 4 & 3 & 5 & 7 & 6 & 8 & 1 \\ 1 & 6 & 8 & 4 & 9 & 2 & 7 & 3 & 5 \\ 5 & 7 & 3 & 8 & 1 & 6 & 2 & 4 & 9 \\ \hline\end{array}\right.$
special sudoku matrix:

- each symbol appears only once in each row, each column and each box
- each location of a given symbol in each box is different!

36-sudoku \& two orthogonal Latin squares (6)

$\left.\begin{array}{lllllll|llllll|llllll|llllll|llllll|llllll}1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 0 & 0\end{array}\right]$

What goes wrong here?

36-sudoku \& two orthogonal Latin squares (6)

	1 0 0	$\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}$	0 0 0 0 0 0 0	$\begin{array}{lll}0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$	10	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0		0 0 0 0 0 0 0	0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0	0 0 0 0 0 0	0	0 0	0	0		0 0 0				$\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0\end{array}$		0 0 0	0 0 0	0	0	0 0 0 0 0	0 0 0 0 0 1
	00	0000000	0	00	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				0		0	0	0	0	0	0
		$0 \begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}$		00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0				0		0	0	0	0	0	0
	0	0		00	0	0	0		0	0	0	0	0	0	0	0	0	0	0	1	0	0				0		0	0	0	0	0	0
		000000		0	0	0	0			0	0	0	1	0	0	0	0	0	0	0	0	0				0		0	0	0	0	0	0
		0		00	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0				0				0	0	0	0
		$\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}$	0	00	0	0	0		0	0	0	0	0		0	0	0	0	0	0	1	0				0		0	0	0	0	0	0
		000		0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0				1		0			0	0	0
		000		0	0	0				0	0	0	0		0	0	0	0	0	0	0	0				0		0					0
		000		0	0	0	00			0	0	0	0	0	0	0	0	0	0	0	0					0		0				0	0
		000000	1	10	0					0	0	0	0		0	0	0	0	0	0	0	0			0	0						0	0
		000		0	0	0				0	0	0	0	0	0	0			0	0	0	0	0	0	0	0		0				0	0
0	0	0000	0	0	0	0	00						0		0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
		000	0	0	0	0	00			0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0						0	0
0	0	0000	0	00	0		00			0	0	0	00		0	0	0	0	0	0	0	0	0			0		0			0	0	0
	0	00	0	00	0					0	0	0	00		0	0	0	0	0	0	0	0	0		0	0		0			0	0	0
0	0	000	0	0	00					0	0	00	00		0	0	0	0	0	0	0	0	0	0	0	0		0	00		0	0	0
0	0	000	0	00	00	00				0	0	00			0	0	0	00	00		0				0	0					0		
0	0	00000	0	00	00	00	0				0	0			0	10	0			0	0	0	0	0	0	0		0	0	0	0	0	0
	0	00000	0	0	0		0			0	0	0	00		0	0	0	0			0	0	0	0	0	0		0	0	0	0	0	0
	0	00000	0	0	00	0	0		00	0	0	0			0	00	0	0	0	0	0					0							
	0	00000	0	00	0	0	0				00	00	00		0	00	00	0	00			0	0	0	0	0			0	0	0	0	
	0	00000	0	00	00	0	0		00	00	0	0	00			0	00	00	0					0	0	0		0	0	0	0	00	0
	0	0	0	00	0	0	0			00	00	00	00			00	0	00	0							0							
	0	00000	0	$0 \quad 1$	10	0	0		00	00	00	00	00			0	0	00	0		0	0	0	0	0	0		0			0	0	
		00000	0	00	0	0	0			0	00	00	0			00	0	00	0							0		0				00	0
	0	00000	0	00	0	0	0		0	0	0	00	0			0	00	00	0														
	00	00000		0	0	0	0		0	0	0	00	0			0	00	00	0													0	
	0	$\begin{array}{lllll}0 & 0 & 0 & 0\end{array}$		00	0	0	0		0	0	0	0	0			0	00	00	0														
	0	$\begin{array}{lllll}0 & 0 & 0 & 0\end{array}$		00	0				- 0	0	-	0	0				00	00	0														
				0						0	0	0	0		0		00	00	0		0												

What goes wrong here?

two pairs of boxes contain 1 in the same locations!

Euler was right:
 there are no two OLS(6)

In search for 36 entangled officers of Euler

Two OLS(6) would correspond to a 2-unitary permutation matrix P_{36} such that its partial transpose $P_{36}^{T_{2}}$ and reshufled matrix P_{36}^{R} are unitary.

Such matrix does not exists
(Euler) but one can look for two quantum OLS(6):
a unitary U_{36} such that its partial transpose $U_{36}^{T_{2}}$ and reshufled matrix U_{36}^{R} are unitary.
the best solution found, $\quad U_{36}=$ is still not perfect...
see also poster by W. Bruzda

A quick quiz

What quantum state can be associated with this design ?

Hints

$$
\begin{aligned}
& A \bullet \quad K \diamond \quad Q \triangleleft \quad J \boldsymbol{\phi} \\
& K \odot \\
& A \\
& J \oplus \\
& Q \diamond \\
& Q \\
& J \odot \\
& A \diamond \\
& K \boldsymbol{\wedge} \\
& J \diamond \\
& Q \\
& K \\
& A \odot
\end{aligned}
$$

Two mutually orthogonal Latin squares of size $N=4$

Hints

$$
\begin{aligned}
& A \bullet \quad K \diamond \quad Q \triangleleft \quad J \boldsymbol{\phi} \\
& K \odot \\
& A \% \\
& J \text { @ } \\
& Q \diamond \\
& Q \\
& J \varnothing \\
& A \diamond \\
& K \\
& J \diamond \\
& Q \\
& K \boldsymbol{\%} \\
& A \odot
\end{aligned}
$$

Two mutually orthogonal Latin squares of size $N=4$

Three mutually orthogonal Latin squares of size $N=4$

The answer

Bag shows three mutually orthogonal Latin squares of size $N=4$ with three attributes A, B, C of each of $4^{2}=16$ squares.
Appending two indices, $i, j=0,1,2,3$ we obtain a 16×5 table, $A_{00}, B_{00}, C_{00}, 0,0$
$A_{01}, B_{01}, C_{01}, 0,1$
$A_{33}, B_{33}, C_{33}, 3,3$.
It forms an orthogonal array $\mathrm{OA}(16,5,4,2)$
leading to the 2 -uniform state of 5 ququarts,

$$
\begin{aligned}
\left|\Psi_{4}^{5}\right\rangle=\quad & |00000\rangle+|12301\rangle+|23102\rangle+|31203\rangle \\
& |13210\rangle+|01111\rangle+|30312\rangle+|22013\rangle+ \\
& |21320\rangle+|33021\rangle+|02222\rangle+|10123\rangle+ \\
& |32130\rangle+|20231\rangle+|11032\rangle+|03333\rangle
\end{aligned}
$$

related to the Reed-Solomon code of length 5.

Concluding Remarks I

(1) Basing on Orthogonal Arrays (OA) we constructed several strongly entangled multipartite quantum pure states
(2) Generalized OA with mixed alphabets allow us to extend the construction for heterogeneous systems: e.g qubits and qutrits.
(3) We introduced the notion of Mutually Orthogonal Quantum Latin Squares (MOQLS), and Mutually Orthogonal Quantum Latin Cubes (MOQLC), which allow us to identify several Absolutely Maximally Entangled states (AME)
(9) MOQLS and MOQLC form special cases of Quantum Orthogonal Arrays (QOA), which generalize the combinatorial notion of orthogonal arrays and lead to a vast garden of highly entangled multipartite states.

Open Questions

(1) For what number N of subsystems with d levels each an Absolutely Maximally Entangled state $|\operatorname{AME}(N, d)\rangle$ exists?
(2) Are all $|\operatorname{AME}(N, d)\rangle$ states related to Quantum Orthogonal Arrays ?
(3) Are there two Orthogonal Quantum Latin Squares for $N=6$, $\operatorname{AME}(4,6)=36$ entangled officers of Euler?

Open Questions

(1) For what number N of subsystems with d levels each an Absolutely Maximally Entangled state $|\operatorname{AME}(N, d)\rangle$ exists?
(2) Are all $|\operatorname{AME}(N, d)\rangle$ states related to Quantum Orthogonal Arrays ?
(3) Are there two Orthogonal Quantum Latin Squares for $N=6$, $\operatorname{AME}(4,6)=36$ entangled officers of Euler?
numerical results \Longrightarrow possibly not (but the question is open!)
(3) Find further applications of Absolutely Maximally Entangled states for quantum error correction codes, quantum protocols, quantum computing and multiuser quantum games.
(5) A speculation whether

Open Questions

(1) For what number N of subsystems with d levels each an Absolutely Maximally Entangled state $|\operatorname{AME}(N, d)\rangle$ exists?
(2) Are all $|\operatorname{AME}(N, d)\rangle$ states related to Quantum Orthogonal Arrays ?
(3) Are there two Orthogonal Quantum Latin Squares for $N=6$, $\operatorname{AME}(4,6)=36$ entangled officers of Euler?
numerical results \Longrightarrow possibly not (but the question is open!)
(9) Find further applications of Absolutely Maximally Entangled states for quantum error correction codes, quantum protocols, quantum computing and multiuser quantum games.
(3) A speculation whether Quantum Combinatorics will evolve someday into a mature research field for its own?

Kraków -

just on the other side of the mountains...

