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Composed systems & entangled states

bi-partite systems: H = HA ⊗HB

separable pure states: |ψ〉 = |φA〉 ⊗ |φB〉
entangled pure states: all states not of the above product form.

Two–qubit system: 2× 2 = 4

Maximally entangled Bell state |ϕ+〉 := 1√
2

(
|00〉+ |11〉

)
Schmidt decomposition & Entanglement measures

Any pure state from HA ⊗HB can be written as
|ψ〉 =

∑
ij Gij |i〉 ⊗ |j〉 =

∑
i

√
λi |i ′〉 ⊗ |i”〉, where |ψ|2 = TrGG † = 1.

The partial trace, σ = TrB |ψ〉〈ψ| = GG †, has spectrum given by the
Schmidt vector {λi} = squared singular values of G .
Entanglement entropy of |ψ〉 is equal to von Neumann entropy of the
reduced state σ

E (|ψ〉) := −Tr σ lnσ = S(λ).

The more mixed partial trace, the more entangled initial pure state...
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Maximally entangled bi–partite quantum states

Bipartite systems H = HA ⊗HB = Hd ⊗Hd

generalized Bell state (for two qud its),

|ψ+
d 〉 =

1√
d

d∑
i=1

|i〉 ⊗ |i〉

distinguished by the fact that all singular values are equal, λi= 1/
√
d ,

hence the reduced state is maximally mixed,
ρA = TrB |ψ+

d 〉〈ψ
+
d | = 1d/d .

This property holds for all locally equivalent states, (UA ⊗ UB)|ψ+
d 〉.

Observations:
A) State |ψ〉 is maximally entangled if ρA = GG † = 1d/d ,
which is the case if the matrix U = G/

√
d of size d is unitary,

(and all its singular values are equal to 1).
B) For a bi–partite state the singular values of G characterize

entanglement of the state |ψ〉 =
∑

i ,j Gij |i , j〉.
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Multipartite pure quantum states: 3� 2

States on N parties are determined by a tensor with N indices
e.g. for N = 3 : |ΨABC 〉 =

∑
i ,j ,k Ti ,j ,k |i〉A ⊗ |j〉B ⊗ |k〉C .

Mathematical problem: in general for a tensor Tijk there is no (unique)
Singular Value Decomposition and it is not simple to find the tensor
rank or tensor norms (nuclear, spectral).

Open question: Which state of N subsystems with d–levels each
is the most entangled ?

example for three qubits, HA ⊗HB ⊗HC = H⊗32

GHZ state, |GHZ 〉 = 1√
2

(|0, 0, 0〉+ |1, 1, 1〉) has a similar property:

all three one-partite reductions are maximally mixed
ρA = TrBC |GHZ 〉〈GHZ | = 12 = ρB = TrAC |GHZ 〉〈GHZ |.

(what is not the case e.g. for |W 〉 = 1√
3

(|1, 0, 0〉+ |0, 1, 0〉+ |0, 0, 1〉)

KŻ (IF UJ/CFT PAN ) Multipartite entanglement & combinatorial design 10.12.2017 5 / 43



Geometry of Quantum States is discussed in a book

published by Cambridge University Press in 2006,

II edition (with new chapters on multipartite
entanglement & discrete structures in the Hilbert space),

August 2017
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Genuinely multipartite entangled states

k-uniform states of N qud its

Definition. State |ψ〉 ∈ H⊗Nd is called k-uniform
if for all possible splittings of the system into k and N − k parts the
reduced states are maximally mixed (Scott 2001),
(also called MM-states (maximally multipartite entangled)
Facchi et al. (2008,2010), Arnaud & Cerf (2012)

Applications: quantum error correction codes, teleportation, etc...

Example: 1–uniform states of N qud its

Observation. A generalized, N–qud it GHZ state,

|GHZd
N〉 := 1√

d

[
|1, 1, ..., 1〉+ |2, 2, ...., 2〉+ · · ·+ |d , d , ..., d〉

]
is 1–uniform (but not 2–uniform!)
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Examples of k–uniform states

Observation: k–uniform states may exist if N ≥ 2k (Scott 2001)
(traced out ancilla of size (N − k) cannot be smaller than the principal
k–partite system).

Hence there are no 2-uniform states of 3 qubits.

However, there exist no 2-uniform state of 4 qubits either!

Higuchi & Sudbery (2000) - frustration like in spin systems –
Facchi, Florio, Marzolino, Parisi, Pascazio (2010) –

it is not possible to satisfy simultaneously so many constraints...

2-uniform state of 5 and 6 qubits
|Φ5〉 = |11111〉+ |01010〉+ |01100〉+ |11001〉+

+|10000〉+ |00101〉 − |00011〉 − |10110〉,
related to 5–qubit error correction code by Laflamme et al. (1996)

|Φ6〉 = |111111〉+ |101010〉+ |001100〉+ |011001〉+
+|110000〉+ |100101〉+ |000011〉+ |010110〉.
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Combinatorial Designs

=⇒ An introduction to ”Quantum Combinatorics”

A classical example:
Take 4 aces, 4 kings, 4 queens and 4 jacks
and arrange them into an 4× 4 array, such that

a) - in every row and column there is only a single card of each suit

b) - in every row and column there is only a single card of each rank

Two mutually orthogonal Latin squares of size N = 4
Graeco–Latin square !
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Mutually orthogonal Latin Squares (MOLS)

♣) N = 2. There are no orthogonal Latin Square
(for 2 aces and 2 kings the problem has no solution)

♥) N = 3, 4, 5 (and any power of prime) =⇒ there exist (N − 1) MOLS.
♠) N = 6. Only a single Latin Square exists (No OLS!).

Euler’s problem: 36 officers of six different ranks from six different units
come for a military parade. Arrange them in a square such that in each
row / each column all uniforms are different.

No solution exists ! (conjectured by Euler), proof by:
Gaston Terry ”Le Probléme de 36 Officiers”. Compte Rendu (1901).
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Mutually orthogonal Latin Squares (MOLS)

An apparent solution of the N = 6 Euler’s problem of 36 officers.
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Wawel castle in Cracow
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Orthogonal Arrays

Combinatorial arrangements introduced by Rao in 1946 used in statistics
and design of experiments, OA(r ,N, d , k)

Orthogonal arrays OA(2,2,2,1), OA(4,3,2,2) and OA(8,4,2,3):

in each column each symbol occurres the same number of times.
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Definition of an Orthogonal Array

An array A of size r × N with entries taken from a d–element set S is
called Orthogonal array OA(r ,N, d , k) with r runs, N factors, d levels,
strength k and index λ if every r × k subarray of A contains each
k−tuple of symbols from S exactly λ times as a row.

Example a) Two qubit, 1–uniform state

Orthogonal array

OA(2, 2, 2, 1) =
0 1
1 0

leads to the Bell state |Ψ+
2 〉 = |01〉+ |10〉, which is 1–uniform

Example b) Three–qubit, 1–uniform state

Orthogonal array

OA(4, 3, 2, 2) =

0 0 0
0 1 1
1 0 1
1 1 0

leads to a 1–uniform state: |Φ3〉 = |000〉+ |011〉+ |101〉+ |110〉.
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Orthogonal Arrays & k-uniform states

A link between them

orthogonal arrays multipartite quantum state |Φ〉
r Runs Number of terms in the state
N Factors Number of qudits
d Levels dimension d of the subsystem
k Strength class of entanglement (k–uniform)

holds
provided an orthogonal array OA(r ,N, d , k)

satisfies additional constraints !

(this relation is NOT one–to–one)

Goyeneche, K.Ż. (2014)
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k–uniform states and Orthogonal Arrays I

Consider a pure state |Φ〉 of N qudits,

|Φ〉 =
∑

s1,...,sN

as1,...,sN |s1, . . . , sN〉,

where as1,...,sN ∈ C, s1, . . . , sN ∈ S and S = {0, . . . , d − 1}.
Vectors {|s1, . . . , sN〉} form an orthonormal basis.

Density matrix ρ reads

ρAB = |Φ〉〈Φ| =
∑

s1,...,sN
s′
1
,...,s′

N

as1,...,sNa
∗
s′1,...,s

′
N
|s1, . . . , sN〉〈s ′1, . . . , s ′N |.

We split the system into two parts SA and SB containing NA and NB

qudits, NA + NB = N, remove NB subsystems to obtain reduced state
ρA = TrB(ρAB)
=
∑

s1...sN
s′
1
...s′

N

as1...sNa
∗
s′1...s

′
N
〈s ′NA+1, . . . , s

′
N |sNA+1 . . . sN〉 |s1 . . . sNA

〉〈s ′1 . . . s ′NA
|.
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k–uniform states and Orthogonal Arrays II

A simple, special case: coefficients as1,...,sN are zero or one. Then

|Φ〉 = |s11 , s12 , . . . , s1N〉+ |s21 , s22 , . . . , s2N〉+ · · ·+ |sr1, sr2, . . . , srN〉,

upper index i on s denotes the i − th term in |Φ〉. These coefficients can
be arranged in an array

A =

s11 s12 . . . s1N
s21 s22 . . . s2N
...

... . . .
...

sr1 sr2 . . . srN

.

i). If A forms an orthogonal array for any partition the diagonal elements
of the reduced state ρA are equal.

ii). If the sequence of NB symbols appearing in every row of removed
columns is not repeated along the r rows (irredundant OA),
the reduced density matrix ρA becomes diagonal.
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Hadamard matrices & Orthogonal Arrays

A Hadamard matrix H8 = H⊗32 of order N = 8 implies OA(8,7,2,2)

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


→

1 1 1 1 1 1 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0

This Orthogonal Array of strength k = 2 allows us to construct
a 2–uniform state of 7 qubits:

|Φ7〉 = |1111111〉+ |0101010〉+ |1001100〉+ |0011001〉+

|1110000〉+ |0100101〉+ |1000011〉+ |0010110〉.

– the simplex state |Φ7〉.

No 3-uniform states of 7 qubits: Huber, Gühne, Siewert (2017)
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Heterogeneous systems (e.g. qubits & qutrits)

generalized OA (with mixed alphabet) allow us to construct highly
entangled heterogeneous states

Example: four qutrits and one qubit

|Ψ34,21〉 = |00000〉+ |01211〉+ |11120〉+ |12001〉+ |22210〉+ |20121〉.
Goyeneche, Bielawski, K.Ż (2016)
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Absolutely maximally entangled state (AME)

Homogeneous systems (subsystems of the same kind)

Definition. A k–uniform state of N qud its is called
absolutely maximally entangled AME(N,d) if k = [N/2]

Examples:

a) Bell state - 1-uniform state of 2 qubits = AME(2,2)

b) GHZ state - 1-uniform state of 3 qubits = AME(3,2)

x) none - no 2-uniform state of 4 qubits
Higuchi & Sudbery (2000)

c) 2-uniform state |Ψ4
3〉 of 4 qutrits, AME(4,3)

d) 3-uniform state |Ψ6
4〉 of 6 ququarts, AME(6,4)

e) no 3-uniform states of 7 qubits
Huber, Gühne, Siewert (2017)
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Higher dimensions: AME(4,3) state of four qutrits

From OA(9,4,3,2) we get a 2–uniform state of 4 qutrits:

|Ψ4
3〉 = |0000〉+ |0112〉+ |0221〉+

|1011〉+ |1120〉+ |1202〉+

|2022〉+ |2101〉+ |2210〉.

This state is also encoded in a pair of orthogonal Latin squares of size 3,

0α 1β 2γ

1γ 2α 0β

2β 0γ 1α

=

A♠ K♣ Q♦
K♦ Q♠ A♣
Q♣ A♦ K♠

.

Corresponding Quantum Code: |0〉 → |0̃〉 := |000〉+ |112〉+ |221〉
|1〉 → |1̃〉 := |011〉+ |120〉+ |202〉
|2〉 → |2̃〉 := |022〉+ |101〉+ |210〉
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Why do we care about AME states?

Since they can be used for various purposes
(e.g. Quantum codes, teleportation,...)

Resources needed for quantum teleportation:

a) 2-qubit Bell state allows one to teleport 1 qubit from A to B

b) 2-qudit generalized Bell state allows one to teleport 1 qudit

c) 3-qubit GHZ state allows one to teleport 1 qubit between any users

d) 4-qutrit GHZ state allows one to teleport 1 qutrit
between any two out of four users

f) 4-qutrit state AME(4,3) allows one to teleport 2 qutrits between
any pair chosen from four users to the other pair!

- say from the pair (A & C) to (B & D)

relations between AME states and multiunitary matrices,
perfect tensors and holographic codes
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State AME(6,4) of six ququarts:

3–uniform state of 6 ququarts: read from
three Mutually orthogonal Latin cubes

|Ψ6
4〉 =

|000000〉+ |001111〉+ |002222〉+ |003333〉+ |010123〉+ |011032〉+

|012301〉+ |013210〉+ |020231〉+ |021320〉+ |022013〉+ |023102〉+

|030312〉+ |031203〉+ |032130〉+ |033021〉+ |100132〉+ |101023〉+

|102310〉+ |103201〉+ |110011〉+ |111100〉+ |112233〉+ |113322〉+

|120303〉+ |121212〉+ |122121〉+ |123030〉+ |130220〉+ |131331〉+

|132002〉+ |133113〉+ |200213〉+ |201302〉+ |202031〉+ |203120〉+

|210330〉+ |211221〉+ |212112〉+ |213003〉+ |220022〉+ |221133〉+

|222200〉+ |223311〉+ |230101〉+ |231010〉+ |232323〉+ |233232〉+

|300321〉+ |301230〉+ |302103〉+ |303012〉+ |310202〉+ |311313〉+

|312020〉+ |313131〉+ |320110〉+ |321001〉+ |322332〉+ |323223〉+

|330033〉+ |331122〉+ |332211〉+ |333300〉.
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State |Ψ6
4〉 of six ququarts can be generated by three
mutually orthogonal Latin cubes of order four!

(three address quarts + three cube quarts = 6 quarts in 43 = 64 terms)
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Absolutely maximally entangled state (AME) II

Key issue For what number N of qud its the state AME(N,d) exist?

How to construct them??

AME(5,2) [five qubits] and AME(6,2) [six qubits] do exist
but
they contain terms with negative signs ⇒ cannot be obtained with OA

new construction needed...
”every good notion can be quantized”

The new notion of
Quantum Latin Square (QLS) by Musto & Vicary (2016)
(square array of N2 quantum states from HN :

every column and every row forms a basis)

inspired us to introduce
Mutually Orthogonal Quantum Latin Squares (MOQLS)

and related
Quantum Orthogonal Array (QOA)
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Superpositions, entangled states and ”quantum designs”

Quantum orthogonal Latin square

Example of order N = 4 by Vicary, Musto (2016)

|0〉 |1〉 |2〉 |3〉
|3〉 |2〉 |1〉 |0〉
|χ−〉 |ξ−〉 |ξ+〉 |χ+〉
|χ+〉 |ξ+〉 |ξ−〉 |χ−〉

where |χ±〉 = 1√
2

(|1〉 ± |2〉) denote Bell states, while

|ξ+〉 = 1√
5

(i |0〉+ 2 |3〉) |ξ−〉 = 1√
5

(2 |0〉+ i |3〉) other entangled states.

Four states in each row & column form an orthogonal basis in H4

Standard combinatorics: discrete set of symbols, 1, 2, . . . ,N,
+ permutation group

generalized (”Quantum”) combinatorics: continuous family
of states |ψ〉 ∈ HN + unitary group U(N).
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Quantum Orthogonal arrays and AME states

Quantum orthogonal array: (entangled strategies → quantum games)

QOA(4, 3 + 2, 2, 2) =


|0〉 |0〉 |1〉 |φ+〉
|0〉 |1〉 |0〉 |φ−〉
|1〉 |0〉 |0〉 |ψ+〉
|1〉 |1〉 |1〉 |ψ−〉

 .

constructed out of the classical OA(4,3,2,2) and the quantum Bell basis

yields the five qubit AME state:

AME (5, 2) = OA(4, 3, 2, 4) ∪ {|ψj〉}4j=1 =

= |001〉 ⊗ |φ+〉+ |010〉 ⊗ |φ−〉+ |100〉 ⊗ |ψ+〉+ |111〉 ⊗ |ψ−〉.
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Orthogonal Quantum Latin Squares

”every good notion can be quantized”
Definition. A table of N2 bipartite states |φi ,j〉 ∈ HN ⊗HN

QOLS =


|φ11〉 |φ12〉 . . . |φ1N〉
|φ21〉 |φ22〉 . . . |φ2N〉
. . . . . . . . . . . .
|φN1〉 |φN2〉 . . . |φNN〉


forms a pair of two Orthogonal Quantum Latin Squares
if the 4-partite state: |Ψ4〉 :=

∑N
i=1

∑N
j=1 |i , j〉 ⊗ |φij〉

is 2–uniform, so it forms the state |AME (4,N)〉.
This implies that the states are orthogonal, 〈φij |φkl〉 = δikδjl .

However, the Bell square: |φ+〉 |ψ−〉
|ψ+〉 |φ−〉

does not form a OQLS. Furtheremore, there are no two OQLS(2),
(as there are no absolutely maximally entangled states of 4 qubits!)
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forms a pair of two Orthogonal Quantum Latin Squares
if the 4-partite state: |Ψ4〉 :=

∑N
i=1

∑N
j=1 |i , j〉 ⊗ |φij〉

is 2–uniform, so it forms the state |AME (4,N)〉.
This implies that the states are orthogonal, 〈φij |φkl〉 = δikδjl .

However, the Bell square: |φ+〉 |ψ−〉
|ψ+〉 |φ−〉

does not form a OQLS. Furtheremore, there are no two OQLS(2),
(as there are no absolutely maximally entangled states of 4 qubits!)
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Mutually Orthogonal Quantum Latin Cubes

”every good notion can be quantized”
Definition. A cube of N3 states |φijk〉 ∈ H⊗3N forms a

Mutually Orthogonal Latin Cube if the 6-party superposition
|Ψ6〉 :=

∑N
i ,j ,k=1 |i , j , j〉 ⊗ |φijk〉 is 3–uniform

(so it forms the state |AME (6,N)〉).

Example. Cube of 8 states forming three-qubit GHZ basis:

leads to QOA(8,3+3,2,3) and six-qubit AME state of Borras
|AME (6, 2)〉 =

∑7
x=0 |x〉 ⊗ |GHZx〉.

(analogy to state |Ψ(f )〉 =
∑

x |x〉 ⊗ |f (x)〉 used in the Shor algorithm!)
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Classical combinatorial designs...
include: Orthogonal Arrays, Latin Squares, Latin Cubes
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Classical combinatorial designs...
include: Orthogonal Arrays, Latin Squares, Latin Cubes

More general quantum combinatorial designs

include: Quantum Orthogonal Arrays, Quantum Latin Squares and Cubes

Goyeneche, Raissi, Di Martino, K.Ż. Phys. Rev. A (2018)
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k–uniform states and k–unitary matrices

Consider a 2–uniform state of four parties A,B,C ,D with d levels each,
|ψ〉 =

∑d
i ,j ,l ,m=1 Γijlm|i , j , l ,m〉

It is maximally entangled with respect to all three partitions:
AB|CD and AC |BD and AD|BC .

Let ρABCD = |ψ〉〈ψ|. Hence its three reductions are maximally mixed,
ρAB = TrCDρABCD = ρAC = TrBDρABCD = ρAD = TrBCρABCD = 1d2/d2

Thus matrices Uµ,ν of order d2 obtained by reshaping the tensor dΓijkl are
unitary for three reorderings:

a) µ, ν = ij , lm, b) µ, ν = im, jl , c) µ, ν = il , jm.

Such a tensor Γ is called perfect.

Corresponding unitary matrix U of order d2 is called two–unitary
if reordered matrices UR1 and UR2 remain unitary.

Unitary matrix U of order dk with analogous property is called k–unitary
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Exemplary multiunitary matrices

Two–unitary permutation matrix of size 9 = 32

associated to 2 MOLS(3) and 2–uniform state |Ψ4
3〉 of 4 qutrits

U = U ij
ml

=



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
− − − − − − − − −
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
− − − − − − − − −
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0



∈ U(9)

Furthermore, also two reordered matrices
(by partial transposition and reshuffling) remain unitary:
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UT1 = U il
mj

=



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0


∈ U(9)

UR = U im
jl

=



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0


∈ U(9)
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9-sudoku & two orthogonal Latin squares (3)

special sudoku matrix:
- each symbol appears only once in each row, each column and each box
- each location of a given symbol in each box is different !
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36-sudoku & two orthogonal Latin squares (6)

What goes wrong here?

two pairs of boxes contain
1 in the same locations !

Euler was right:
there are no two OLS(6)
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In search for 36 entangled officers of Euler

Two OLS(6) would correspond to
a 2-unitary permutation matrix
P36 such that its partial transpose
PT2
36 and reshufled matrix PR

36 are
unitary.

Such matrix does not exists
(Euler) but one can look for two
quantum OLS(6):
a unitary U36 such that its partial
transpose UT2

36 and reshufled
matrix UR

36 are unitary.

the best solution found, U36 =
is still not perfect...

see also poster by W. Bruzda
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A quick quiz

What quantum state can be associated with this design ?
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Hints

Two mutually orthogonal Latin squares of size N = 4

Three mutually orthogonal Latin squares of size N = 4
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The answer

Bag shows three mutually orthogonal Latin squares of size N = 4
with three attributes A,B,C of each of 42 = 16 squares.
Appending two indices, i , j = 0, 1, 2, 3 we obtain a 16× 5 table,
A00,B00,C00, 0, 0
A01,B01,C01, 0, 1
.........................
A33,B33,C33, 3, 3.
It forms an orthogonal array OA(16,5,4,2)
leading to the 2–uniform state of 5 ququarts,

|Ψ5
4〉 = |00000〉+ |12301〉+ |23102〉+ |31203〉

|13210〉+ |01111〉+ |30312〉+ |22013〉+

|21320〉+ |33021〉+ |02222〉+ |10123〉+

|32130〉+ |20231〉+ |11032〉+ |03333〉

related to the Reed–Solomon code of length 5.
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Concluding Remarks I

1 Basing on Orthogonal Arrays (OA) we constructed several
strongly entangled multipartite quantum pure states

2 Generalized OA with mixed alphabets allow us to extend the
construction for heterogeneous systems: e.g qubits and qutrits.

3 We introduced the notion of Mutually Orthogonal Quantum Latin
Squares (MOQLS), and Mutually Orthogonal Quantum Latin
Cubes (MOQLC), which allow us to identify several Absolutely
Maximally Entangled states (AME)

4 MOQLS and MOQLC form special cases of Quantum Orthogonal
Arrays (QOA), which generalize the combinatorial notion of
orthogonal arrays and lead to a vast garden of highly entangled
multipartite states.
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Open Questions

1 For what number N of subsystems with d levels each
an Absolutely Maximally Entangled state |AME (N, d)〉 exists?

2 Are all |AME (N, d)〉 states related to Quantum Orthogonal Arrays
?

3 Are there two Orthogonal Quantum Latin Squares for N = 6,
AME(4,6) = 36 entangled officers of Euler?

numerical results =⇒ possibly not (but the question is open!)

4 Find further applications of Absolutely Maximally Entangled states
for quantum error correction codes, quantum protocols, quantum
computing and multiuser quantum games.

5 A speculation whether Quantum Combinatorics
will evolve someday into a mature research field for its own?
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Kraków -
just on the other side of the mountains...
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