Multipartite Entanglement and Combinatorial Designs

Karol Życzkowski Jagiellonian University (Cracow) & Polish Academy of Sciences (Warsaw)

in collaboration with Dardo Goyeneche (Concepcion/ Cracow/ Gdansk) Sara Di Martino & Zahra Raissi (Barcelona, Spain)

Entanglement Days Budapest, September 26, 2018

KŻ (IF UJ/CFT PAN)

Multipartite entanglement & combinatorial de

Open Systems & Information Dynamics Vol. 25, No. 2 (2018) 1857001 (2 pages) DOI:10.1142/S1230161218770012 © World Scientific Publishing Company

Dénes Petz, 8.04.1953–6.02.2018 In Memory of Professor Dénes Petz, Editor of OSID in 1992–2018

10.12.2017 2 / 43

Composed systems & entangled states

bi-partite systems: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

- separable pure states: $|\psi\rangle = |\phi_A\rangle \otimes |\phi_B\rangle$
- entangled pure states: all states not of the above product form.

Two–qubit system: $2 \times 2 = 4$

Maximally entangled **Bell state**
$$|arphi^+
angle:=rac{1}{\sqrt{2}}\Big(|00
angle+|11
angle\Big)$$

Schmidt decomposition & Entanglement measures

Any pure state from $\mathcal{H}_A \otimes \mathcal{H}_B$ can be written as $|\psi\rangle = \sum_{ij} G_{ij} |i\rangle \otimes |j\rangle = \sum_i \sqrt{\lambda_i} |i'\rangle \otimes |i''\rangle$, where $|\psi|^2 = \text{Tr}GG^{\dagger} = 1$. The partial trace, $\sigma = \text{Tr}_B |\psi\rangle \langle \psi| = GG^{\dagger}$, has spectrum given by the Schmidt vector $\{\lambda_i\}$ = squared singular values of *G*. Entanglement entropy of $|\psi\rangle$ is equal to von Neumann entropy of the reduced state σ

$$E(|\psi\rangle) := -\text{Tr } \sigma \ln \sigma = S(\lambda).$$

KŻ (IF UJ/CFT PAN)

Maximally entangled bi-partite quantum states

Bipartite systems $\mathcal{H} = \mathcal{H}^A \otimes \mathcal{H}^B = \mathcal{H}_d \otimes \mathcal{H}_d$

generalized Bell state (for two qudits),

$$|\psi_{d}^{+}
angle = rac{1}{\sqrt{d}}\sum_{i=1}^{d}|i
angle\otimes|i
angle$$

distinguished by the fact that all **singular values** are equal, $\lambda_i = 1/\sqrt{d}$, hence the reduced state is **maximally mixed**,

$$\rho_A = \mathrm{Tr}_B |\psi_d^+\rangle \langle \psi_d^+| = \mathbb{1}_d/d.$$

This property holds for all locally equivalent states, $(U_A \otimes U_B)|\psi_d^+\rangle$.

Observations:

A) State |ψ⟩ is maximally entangled if ρ_A = GG[†] = 1_d/d, which is the case if the matrix U = G/√d of size d is unitary, (and all its singular values are equal to 1).
B) For a bi-partite state the singular values of G characterize entanglement of the state |ψ⟩ = ∑_{i,j} G_{ij}|i, j⟩.

Multipartite pure quantum states: $3 \gg 2$

States on *N* parties are determined by a **tensor** with *N* indices e.g. for N = 3: $|\Psi_{ABC}\rangle = \sum_{i,j,k} T_{i,j,k} |i\rangle_A \otimes |j\rangle_B \otimes |k\rangle_C$.

Mathematical problem: in general for a **tensor** T_{ijk} there is no (unique) **Singular Value Decomposition** and it is not simple to find the **tensor** rank or **tensor norms** (nuclear, spectral).

Open question: Which state of N subsystems with d-levels each is the **most entangled** ?

example for three qubits, $\mathcal{H}^A \otimes \mathcal{H}^B \otimes \mathcal{H}^C = \mathcal{H}_2^{\otimes 3}$ **GHZ** state, $|GHZ\rangle = \frac{1}{\sqrt{2}}(|0,0,0\rangle + |1,1,1\rangle)$ has a similar property: all three one-partite reductions are **maximally mixed** $\rho_A = Tr_{BC}|GHZ\rangle\langle GHZ| = \mathbb{1}_2 = \rho_B = Tr_{AC}|GHZ\rangle\langle GHZ|.$

(what is **not** the case e.g. for $|W\rangle = \frac{1}{\sqrt{3}}(|1,0,0\rangle + |0,1,0\rangle + |0,0,1\rangle)$

A (10) F (10)

Geometry of Quantum States is discussed in a book

published by Cambridge University Press in 2006,

II edition (with new chapters on multipartite entanglement & discrete structures in the Hilbert space), August 2017,

KŻ (IF UJ/CFT PAN)

Multipartite entanglement & combinatorial de

10.12.2017 6 / 43

k-uniform states of *N* qudits

Definition. State $|\psi\rangle \in \mathcal{H}_d^{\otimes N}$ is called *k*-uniform if for all possible splittings of the system into *k* and *N* - *k* parts the reduced states are maximally mixed (**Scott 2001**), (also called **MM**-states (maximally multipartite entangled) **Facchi et al.** (2008,2010), **Arnaud & Cerf** (2012)

Applications: quantum error correction codes, teleportation, etc...

Example: 1-uniform states of *N* qudits

Observation. A generalized, N-qudit GHZ state,

$$|GHZ_N^d
angle := rac{1}{\sqrt{d}} \Big[|1, 1, ..., 1
angle + |2, 2, ..., 2
angle + \dots + |d, d, ..., d
angle \Big]$$

is 1-uniform (but not 2-uniform!)

KŻ (IF UJ/CFT PAN)

・ロン ・日ン ・ヨン・

Examples of *k*-uniform states

Observation: k-uniform states may exist if $N \ge 2k$ (Scott 2001) (traced out ancilla of size (N - k) cannot be smaller than the principal k-partite system).

Hence there are no 2-uniform states of 3 qubits.

However, there exist no 2-uniform state of 4 qubits either!

Higuchi & Sudbery (2000) - frustration like in spin systems – Facchi, Florio, Marzolino, Parisi, Pascazio (2010) – it is not possible to satisfy simultaneously so many constraints...

2-uniform state of 5 and 6 qubits

 $|\Phi_5\rangle~=~|11111\rangle+|01010\rangle+|01100\rangle+|11001\rangle+$

 $+|10000\rangle+|00101\rangle-|00011\rangle-|10110\rangle,$

related to 5-qubit error correction code by Laflamme et al. (1996)

$$\begin{array}{ll} \Phi_6\rangle \ = \ |11111\rangle + |10101\rangle + |001100\rangle + |011001\rangle + \\ + |110000\rangle + |100101\rangle + |000011\rangle + |010110\rangle. \end{array}$$

Combinatorial Designs

 \implies An introduction to "Quantum Combinatorics"

A classical example:

Take 4 aces, 4 kings, 4 queens and 4 jacks and arrange them into an 4×4 array, such that

a) - in every row and column there is only a **single** card of each suit

b) - in every row and column there is only a single card of each rank

 \implies An introduction to "Quantum Combinatorics"

A classical example:

Take 4 aces, 4 kings, 4 queens and 4 jacks and arrange them into an 4×4 array, such that

a) - in every row and column there is only a \boldsymbol{single} card of each \boldsymbol{suit}

b) - in every row and column there is only a $\ensuremath{\textit{single}}$ card of each $\ensuremath{\textit{rank}}$

Two mutually orthogonal Latin squares of size N = 4Graeco-Latin square !

Mutually orthogonal Latin Squares (MOLS)

♣) N = 2. There are no orthogonal Latin Square (for 2 aces and 2 kings the problem has no solution)
♡) N = 3, 4, 5 (and any power of prime) ⇒ there exist (N - 1) MOLS.
♠) N = 6. Only a single Latin Square exists (No OLS!).

Mutually orthogonal Latin Squares (MOLS)

4) N = 2. There are no orthogonal Latin Square

(for **2** aces and **2** kings the problem has no solution)

 \heartsuit) N = 3, 4, 5 (and any **power of prime**) \implies there exist (N - 1) MOLS. (A) N = 6. Only a **single** Latin Square exists (No OLS!).

Euler's problem: **36** officers of six different ranks from six different units come for a **military parade**. Arrange them in a square such that in each row / each column all uniforms are different.

2		5	?	?	?
2	2		<u>~-</u>	?	?
2	2		?	?	?
?	?	?	?	?	?
?	?	?	?	?	?
?	?	?	?	?	?

No solution exists ! (conjectured by Euler), proof by: Gaston Terry "Le Probléme de 36 Officiers". *Compte Rendu* (1901).

KŻ (IF UJ/CFT PAN)

Mutually orthogonal Latin Squares (MOLS)

An apparent solution of the N = 6 Euler's problem of 36 officers.

KŻ (IF UJ/CFT PAN)

Multipartite entanglement & combinatorial de

Wawel castle in Cracow

2 12 / 43 10.12.2017

э.

Orthogonal Arrays

Combinatorial arrangements introduced by **Rao** in 1946 used in statistics and design of experiments, $OA(r, N, d, \mathbf{k})$

	0	0	1	0	0	0	
	1	1	0	1	0	0	
			0	0	1	0	
			0	0	0	1	
C	0	0	0	1	1	1	
C	1	1	1	0	1	1	
L	0	1	1	1	0	1	
L	1	0	1	1	1	0	

Orthogonal arrays OA(2,2,2,1), OA(4,3,2,2) and OA(8,4,2,3):

in each column each symbol occurres the same number of times.

KŻ (IF UJ/CFT PAN)

Definition of an Orthogonal Array

An array A of size $r \times N$ with entries taken from a *d*-element set S is called **Orthogonal array** OA(r, N, d, k) with *r* runs, N factors, *d* levels, **strength** k and index λ **if** every $r \times k$ subarray of A contains each k-tuple of symbols from S exactly λ times as a row.

Example a) Two qubit, 1-uniform state

Orthogonal array

$$OA(2,2,2,1) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

leads to the Bell state $|\Psi_2^+\rangle = |01\rangle + |10\rangle,$ which is 1–uniform

Example b) Three-qubit, 1-uniform state

Orthogonal array

$$OA(4,3,2,2) = \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}$$

leads to a 1–uniform state: $|\Phi_3\rangle = |000\rangle + |011\rangle + |101\rangle + |110\rangle$.

 $1 \ 0$

Orthogonal Arrays & *k***-uniform states**

A link between them

	orthogonal arrays	multipartite quantum state $ \Phi angle$
r	Runs	Number of terms in the state
Ν	Factors	Number of qudits
d	Levels	dimension <i>d</i> of the subsystem
k	Strength	class of entanglement (<i>k</i> –uniform)

holds

provided an **orthogonal array** OA(r, N, d, k)satisfies additional constraints !

(this relation is NOT one-to-one)

Goyeneche, K.Ż. (2014)

k-uniform states and Orthogonal Arrays I

Consider a **pure state** $|\Phi\rangle$ of *N* qudits,

$$|\Phi
angle = \sum_{s_1,\ldots,s_N} a_{s_1,\ldots,s_N} |s_1,\ldots,s_N
angle,$$

where $a_{s_1,\ldots,s_N} \in \mathbb{C}$, $s_1,\ldots,s_N \in S$ and $S = \{0,\ldots,d-1\}$. Vectors $\{|s_1,\ldots,s_N\rangle\}$ form an orthonormal basis.

Density matrix ρ reads

$$\rho_{AB} = |\Phi\rangle\langle\Phi| = \sum_{\substack{s_1,\ldots,s_N\\s'_1,\ldots,s'_N}} a_{s_1,\ldots,s_N} a^*_{s'_1,\ldots,s'_N} |s_1,\ldots,s_N\rangle\langle s'_1,\ldots,s'_N|.$$

We split the system into **two** parts S_A and S_B containing N_A and N_B qudits, $N_A + N_B = N$, remove N_B subsystems to obtain **reduced state** $\rho_A = \operatorname{Tr}_B(\rho_{AB})$ $= \sum_{\substack{s_1 \dots s_N \\ s'_1 \dots s'_N}} a_{s_1 \dots s_N} a^*_{s'_1 \dots s'_N} \langle s'_{N_A+1}, \dots, s'_N | s_{N_A+1} \dots s_N \rangle | s_1 \dots s_{N_A} \rangle \langle s'_1 \dots s'_{N_A} |.$

k-uniform states and Orthogonal Arrays II

A simple, **special case**: coefficients $a_{s_1,...,s_N}$ are zero or one. Then $|\Phi\rangle = |s_1^1, s_2^1, ..., s_N^1\rangle + |s_1^2, s_2^2, ..., s_N^2\rangle + \cdots + |s_1^r, s_2^r, ..., s_N^r\rangle$, upper index *i* on *s* denotes the *i* - *th* term in $|\Phi\rangle$. These coefficients can be arranged in an **array**

$$A = \begin{array}{cccccccc} s_1^1 & s_2^1 & \dots & s_N^1 \\ s_1^2 & s_2^2 & \dots & s_N^2 \\ \vdots & \vdots & \dots & \vdots \\ s_1^r & s_2^r & \dots & s_N^r \end{array}$$

i). If A forms an **orthogonal array** for any partition the diagonal elements of the reduced state ρ_A are equal.

ii). If the sequence of N_B symbols appearing in every row of removed columns is not repeated along the *r* rows (irredundant OA), the reduced density matrix ρ_A becomes diagonal.

Hadamard matrices & Orthogonal Arrays

This **Orthogonal Array** of **strength** k = 2 allows us to construct a 2-uniform state of 7 qubits:

 $\begin{array}{ll} |\Phi_7\rangle & = & |111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle + \\ & & |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle. \end{array}$

- the **simplex** state $|\Phi_7\rangle$.

Hadamard matrices & Orthogonal Arrays

This **Orthogonal Array** of **strength** k = 2 allows us to construct a 2-uniform state of 7 qubits:

$$\begin{split} |\Phi_7\rangle &= & |111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle + \\ & & |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle. \end{split}$$

- the simplex state $|\Phi_7\rangle$. No 3-uniform states of 7 qubits: Huber, Gühne, Siewert (2017)

KŻ (IF UJ/CFT PAN)

Multipartite entanglement & combinatorial de

10.12.2017 18 / 43

Heterogeneous systems (e.g. qubits & qutrits)

generalized OA (with mixed alphabet) allow us to construct highly entangled **heterogeneous** states

Example: four qutrits and one qubit

$$\begin{split} |\Psi_{3^4,2^1}\rangle \ = \ |00000\rangle + |01211\rangle + |11120\rangle + |12001\rangle + |22210\rangle + |20121\rangle.\\ \textbf{Goyeneche, Bielawski, K.Ż (2016)} \end{split}$$

KŻ (IF UJ/CFT PAN)

Multipartite entanglement & combinatorial de

10.12.2017 19 / 43

Absolutely maximally entangled state (AME)

Homogeneous systems (subsystems of the same kind)

Definition. A *k*-uniform state of *N* qu*d* its is called absolutely maximally entangled AME(N,d) if k = [N/2]

Examples:

- a) Bell state 1-uniform state of 2 qubits = AME(2,2)
- b) **GHZ state** 1-uniform state of 3 qubits = AME(3,2)
- x) none no 2-uniform state of 4 qubits Higuchi & Sudbery (2000)
- c) 2-uniform state $|\Psi_3^4\rangle$ of 4 qutrits, AME(4,3)
- d) 3-uniform state $|\Psi_4^6\rangle$ of 6 ququarts, AME(6,4)

e) no 3-uniform states of 7 qubits

Huber, Gühne, Siewert (2017)

Higher dimensions: AME(4,3) state of four qutrits

From OA(9,4,3,2) we get a 2-uniform state of 4 qutrits:

$$egin{array}{rcl} |\Psi_3^4
angle &=& |0000
angle + |0112
angle + |0221
angle + \ && |1011
angle + |1120
angle + |1202
angle + \ && |2022
angle + |2101
angle + |2210
angle. \end{array}$$

This state is also encoded in a pair of orthogonal Latin squares of size 3,

Higher dimensions: AME(4,3) state of four qutrits

From OA(9,4,3,2) we get a 2-uniform state of 4 qutrits:

$$egin{array}{rcl} |\Psi_3^4
angle &=& |0000
angle + |0112
angle + |0221
angle + \ && |1011
angle + |1120
angle + |1202
angle + \ && |2022
angle + |2101
angle + |2210
angle. \end{array}$$

This state is also encoded in a pair of orthogonal Latin squares of size 3,

 $\begin{array}{ll} \text{Corresponding Quantum Code:} & |0\rangle \rightarrow |\tilde{0}\rangle := |000\rangle + |112\rangle + |221\rangle \\ & |1\rangle \rightarrow |\tilde{1}\rangle := |011\rangle + |120\rangle + |202\rangle \\ & |2\rangle \rightarrow |\tilde{2}\rangle := |022\rangle + |101\rangle + |210\rangle \end{array}$

Why do we care about AME states?

Since they can be used for various purposes (e.g. Quantum codes, teleportation,...)

Resources needed for quantum teleportation:

- a) **2-qubit Bell state** allows one to teleport ${\bf 1}$ **qubit** from A to B
- b) 2-qudit generalized Bell state allows one to teleport 1 qudit
- c) 3-qubit GHZ state allows one to teleport $1\ qubit$ between any users
- d) **4-qutrit GHZ state** allows one to teleport **1 qutrit** between any two out of four users
- f) 4-qutrit state AME(4,3) allows one to teleport 2 qutrits between any pair chosen from four users to the other pair!
 - say from the pair (A & C) to (B & D)

Why do we care about AME states?

Since they can be used for various purposes (e.g. Quantum codes, teleportation,...)

Resources needed for quantum teleportation:

- a) **2-qubit Bell state** allows one to teleport ${\bf 1}$ **qubit** from A to B
- b) 2-qudit generalized Bell state allows one to teleport 1 qudit
- c) 3-qubit GHZ state allows one to teleport $1\ qubit$ between any users
- d) **4-qutrit GHZ state** allows one to teleport **1 qutrit** between any two out of four users
- f) 4-qutrit state AME(4,3) allows one to teleport 2 qutrits between any pair chosen from four users to the other pair!
 - say from the pair (A & C) to (B & D)

relations between AME states and multiunitary matrices, perfect tensors and holographic codes

10.12.2017

22 / 43

State AME(6,4) of six ququarts:

KŻ (IF UJ/CFT PAN)

3–uniform state of 6 ququarts: read from three Mutually orthogonal Latin cubes $|\Psi_4^6
angle=$

 $|000000\rangle + |001111\rangle + |002222\rangle + |003333\rangle + |010123\rangle + |011032\rangle +$ $|012301\rangle + |013210\rangle + |020231\rangle + |021320\rangle + |022013\rangle + |023102\rangle +$ $|030312\rangle + |031203\rangle + |032130\rangle + |033021\rangle + |100132\rangle + |101023\rangle +$ $|102310\rangle + |103201\rangle + |110011\rangle + |111100\rangle + |112233\rangle + |113322\rangle +$ $|120303\rangle + |121212\rangle + |122121\rangle + |123030\rangle + |130220\rangle + |131331\rangle +$ $|132002\rangle + |133113\rangle + |200213\rangle + |201302\rangle + |202031\rangle + |203120\rangle +$ $|210330\rangle + |211221\rangle + |212112\rangle + |213003\rangle + |220022\rangle + |221133\rangle +$ $|222200\rangle + |223311\rangle + |230101\rangle + |231010\rangle + |232323\rangle + |233232\rangle +$ $|300321\rangle + |301230\rangle + |302103\rangle + |303012\rangle + |310202\rangle + |311313\rangle +$ $|312020\rangle + |313131\rangle + |320110\rangle + |321001\rangle + |322332\rangle + |323223\rangle +$ $|330033\rangle + |331122\rangle + |332211\rangle + |333300\rangle.$

State $|\Psi_4^6\rangle$ of six ququarts can be generated by three mutually orthogonal Latin cubes of order four!

(three address quarts + three cube quarts = 6 quarts in $4^3 = 64$ terms)

A B < A B </p>

24 / 43

Absolutely maximally entangled state (AME) II

Key issue For what number *N* of qu*d*its the state **AME(N,d)** exist? How to construct them??

```
AME(5,2) [five qubits] and AME(6,2) [six qubits] do exist
```

but

they contain terms with negative signs \Rightarrow cannot be obtained with OA new construction needed...

"every good notion can be quantized"

Absolutely maximally entangled state (AME) II

Key issue For what number *N* of qu*d*its the state **AME(N,d)** exist? How to construct them??

AME(5,2) [five qubits] and AME(6,2) [six qubits] do exist

they contain terms with negative signs \Rightarrow cannot be obtained with OA new construction needed...

"every good notion can be quantized"

The new notion of **Quantum Latin Square** (QLS) by **Musto & Vicary** (2016) (square array of N^2 quantum states from \mathcal{H}_N :

every column and every row forms a basis)

inspired us to introduce

Mutually Orthogonal Quantum Latin Squares (MOQLS) and related

Quantum Orthogonal Array (QOA)

KŻ (IF UJ/CFT PAN)

but

10.12.2017 25 / 43

Quantum orthogonal Latin square

Example of order N = 4 by Vicary, Musto (2016)

where $|\chi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|1\rangle \pm |2\rangle)$ denote **Bell states**, while $|\xi_{+}\rangle = \frac{1}{\sqrt{5}}(i|0\rangle + 2|3\rangle) |\xi_{-}\rangle = \frac{1}{\sqrt{5}}(2|0\rangle + i|3\rangle)$ other **entangled** states. Four states in each row & column form an **orthogonal basis** in \mathcal{H}_{4}

Standard combinatorics: discrete set of symbols, 1, 2, ..., N, + permutation group generalized ("Quantum") combinatorics: continuous family of states $|\psi\rangle \in \mathcal{H}_N$ + unitary group U(N).

KŻ (IF UJ/CFT PAN)

Multipartite entanglement & combinatorial de

10.12.2017 26 / 43

Quantum orthogonal array: (entangled strategies \rightarrow quantum games)

$$QOA(4, 3+2, 2, 2) = \begin{pmatrix} |0\rangle & |0\rangle & |1\rangle & |\phi^+\rangle \\ |0\rangle & |1\rangle & |0\rangle & |\phi^-\rangle \\ |1\rangle & |0\rangle & |0\rangle & |\psi^+\rangle \\ |1\rangle & |1\rangle & |1\rangle & |\psi^-\rangle \end{pmatrix}$$

constructed out of the classical OA(4,3,2,2) and the quantum Bell basis

yields the **five qubit AME** state:

$$\begin{aligned} \mathsf{AME}(5,2) &= \mathsf{OA}(4,3,2,4) \cup \{|\psi_j\rangle\}_{j=1}^4 = \\ &= |001\rangle \otimes |\phi^+\rangle + |010\rangle \otimes |\phi^-\rangle + |100\rangle \otimes |\psi^+\rangle + |111\rangle \otimes |\psi^-\rangle. \end{aligned}$$

Orthogonal Quantum Latin Squares

"every good notion can be quantized" **Definition**. A table of N^2 bipartite states $|\phi_{i,i}\rangle \in \mathcal{H}_N \otimes \mathcal{H}_N$

$$QOLS = \begin{pmatrix} |\phi_{11}\rangle & |\phi_{12}\rangle & \dots & |\phi_{1N}\rangle \\ |\phi_{21}\rangle & |\phi_{22}\rangle & \dots & |\phi_{2N}\rangle \\ \dots & \dots & \dots & \dots \\ |\phi_{N1}\rangle & |\phi_{N2}\rangle & \dots & |\phi_{NN}\rangle \end{pmatrix}$$

forms a pair of two **Orthogonal Quantum Latin Squares** if the 4-partite state: $|\Psi_4\rangle := \sum_{i=1}^{N} \sum_{j=1}^{N} |i,j\rangle \otimes |\phi_{ij}\rangle$ is 2-uniform, so it forms the state $|AME(4, N)\rangle$. This implies that the states are orthogonal, $\langle \phi_{ij} | \phi_{kl} \rangle = \delta_{ik} \delta_{il}$.

Orthogonal Quantum Latin Squares

"every good notion can be quantized" **Definition**. A table of N^2 bipartite states $|\phi_{i,i}\rangle \in \mathcal{H}_N \otimes \mathcal{H}_N$

$$QOLS = \begin{pmatrix} |\phi_{11}\rangle & |\phi_{12}\rangle & \dots & |\phi_{1N}\rangle \\ |\phi_{21}\rangle & |\phi_{22}\rangle & \dots & |\phi_{2N}\rangle \\ \dots & \dots & \dots & \dots \\ |\phi_{N1}\rangle & |\phi_{N2}\rangle & \dots & |\phi_{NN}\rangle \end{pmatrix}$$

forms a pair of two **Orthogonal Quantum Latin Squares** if the 4-partite state: $|\Psi_4\rangle := \sum_{i=1}^{N} \sum_{j=1}^{N} |i,j\rangle \otimes |\phi_{ij}\rangle$ is 2-uniform, so it forms the state $|AME(4, N)\rangle$. This implies that the states are orthogonal, $\langle \phi_{ij} | \phi_{kl} \rangle = \delta_{ik} \delta_{jl}$. However, the **Bell square**: $|\phi^+\rangle |\psi^-\rangle$ $|\psi^+\rangle |\phi^-\rangle$

does not form a OQLS. Furtheremore, there are **no** two OQLS(2), (as there are **no absolutely maximally entangled** states of 4 qubits!)

Mutually Orthogonal Quantum Latin Cubes

"every good notion can be quantized" **Definition.** A cube of N^3 states $|\phi_{ijk}\rangle \in \mathcal{H}_N^{\otimes 3}$ forms a **Mutually Orthogonal Latin Cube** if the 6-party superposition $|\Psi_6\rangle := \sum_{i,j,k=1}^{N} |i,j,j\rangle \otimes |\phi_{ijk}\rangle$ is 3-uniform (so it forms the state $|AME(6, N)\rangle$).

Example. Cube of 8 states forming three-qubit GHZ basis:

leads to QOA(8,3+**3**,2,3) and six-qubit AME state of **Borras** $|AME(6,2)\rangle = \sum_{x=0}^{7} |x\rangle \otimes |GHZ_x\rangle.$ (analogy to state $|\Psi(f)\rangle = \sum_{x} |x\rangle \otimes |f(x)\rangle$ used in the Shor algorithm!)

KŻ (IF UJ/CFT PAN)

10.12.2017 29 / 43

Classical combinatorial designs...

KŻ (IF UJ/CFT PAN)

include: Orthogonal Arrays, Latin Squares, Latin Cubes

Classical combinatorial designs...

include: Orthogonal Arrays, Latin Squares, Latin Cubes

More general quantum combinatorial designs include: Quantum Orthogonal Arrays, Quantum Latin Squares and Cubes Goyeneche, Raissi, Di Martino, K.Ż. Phys. Rev. A (2018)

KŻ (IF UJ/CFT PAN)

k-uniform states and *k*-unitary matrices

Consider a 2-uniform state of four parties A, B, C, D with d levels each, $|\psi\rangle = \sum_{i,j,l,m=1}^{d} \Gamma_{ijlm}|i,j,l,m\rangle$

It is **maximally entangled** with respect to all **three** partitions: AB|CD and AC|BD and AD|BC.

Let $\rho_{ABCD} = |\psi\rangle\langle\psi|$. Hence its three reductions are **maximally mixed**, $\rho_{AB} = \text{Tr}_{CD}\rho_{ABCD} = \rho_{AC} = \text{Tr}_{BD}\rho_{ABCD} = \rho_{AD} = \text{Tr}_{BC}\rho_{ABCD} = \mathbb{1}_{d^2}/d^2$

Thus matrices $U_{\mu,\nu}$ of order d^2 obtained by reshaping the tensor $d\Gamma_{ijkl}$ are **unitary** for three reorderings:

a) $\mu, \nu = ij, Im$, b) $\mu, \nu = im, jl$, c) $\mu, \nu = il, jm$.

Such a tensor Γ is called **perfect**.

Corresponding **unitary matrix** U of order d^2 is called **two–unitary** if reordered matrices U^{R_1} and U^{R_2} remain **unitary**.

Unitary matrix U of order d^k with analogous property is called k-unitary

Exemplary multiunitary matrices

Two–unitary permutation matrix of size $9 = 3^2$ associated to 2 **MOLS(3)** and 2–uniform state $|\Psi_3^4\rangle$ of 4 qutrits

$$U = U_{ij} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ - & - & - & - & - & - & - & - & - \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ - & - & - & - & - & - & - & - & - \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ - & - & - & - & - & - & - & - & - \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0$$

Furthermore, also two reordered matrices (by partial transposition and reshuffling) remain **unitary**:

KŻ (IF UJ/CFT PAN)

KŻ (IF UJ/CFT PAN)

Multipartite entanglement & combinatorial de

10.12.2017 34 / 4

9-sudoku & two orthogonal Latin squares (3)

special sudoku matrix:

- each symbol appears only once in each row, each column and each box
- each location of a given symbol in each box is different !

KŻ (IF UJ/CFT PAN)

10.12.2017 35 / 43

36-sudoku & two orthogonal Latin squares (6)

KŻ (IF UJ/CFT PAN)

Multipartite entanglement & combinatorial de

10.12.2017 36 / 43

36-sudoku & two orthogonal Latin squares (6)

What goes wrong here?

two pairs of boxes contain 1 in the same **locations** !

Euler was right: there are no two OLS(6)

10.12.2017 36 / 43

In search for 36 entangled officers of Euler

Two OLS(6) would correspond to a 2-unitary **permutation** matrix P_{36} such that its partial transpose $P_{36}^{T_2}$ and reshufted matrix P_{36}^R are **unitary**.

Such matrix does not exists (**Euler**) but one can look for two **quantum** OLS(6):

a **unitary** U_{36} such that its partial transpose $U_{36}^{T_2}$ and reshufled matrix U_{36}^R are **unitary**.

the best solution found, $U_{36} =$ is still **not** perfect...

see also poster by W. Bruzda

4 日 2 4 伊 2 4 三 2 4 4

A quick quiz

What quantum state can be associated with this design ?

KŻ (IF UJ/CFT PAN)

Multipartite entanglement & combinatorial de

· 《 Ē ▶ Ē ∽ ९ ୯ 10.12.2017 38 / 43

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Hints

KŻ (IF UJ/CFT PAN)

Two mutually orthogonal Latin squares of size N = 4

(4) (3) (4) (4) (4)

< 67 ▶

Hints

Two mutually orthogonal Latin squares of size N = 4

Three mutually orthogonal Latin squares of size N = 4

KŻ (IF UJ/CFT PAN)

Multipartite entanglement & combinatorial de

< ロト < 同ト < ヨト < ヨト

The answer

Bag shows **three mutually orthogonal Latin squares** of size N = 4 with three attributes A, B, C of each of $4^2 = 16$ squares. Appending two indices, i, j = 0, 1, 2, 3 we obtain a 16×5 table, $A_{00}, B_{00}, C_{00}, 0, 0$ $A_{01}, B_{01}, C_{01}, 0, 1$

 $A_{33}, B_{33}, C_{33}, 3, 3$. It forms an **orthogonal array OA(16,5,4,2)** leading to the 2-uniform state of **5 ququarts**,

$$\begin{split} |\Psi_4^5\rangle = & |00000\rangle + |12301\rangle + |23102\rangle + |31203\rangle \\ & |13210\rangle + |01111\rangle + |30312\rangle + |22013\rangle + \\ & |21320\rangle + |33021\rangle + |02222\rangle + |10123\rangle + \\ & |32130\rangle + |20231\rangle + |11032\rangle + |03333\rangle \end{split}$$

related to the Reed-Solomon code of length 5.

KŻ (IF UJ/CFT PAN)

Concluding Remarks I

- Basing on Orthogonal Arrays (OA) we constructed several strongly entangled multipartite quantum pure states
- Generalized OA with mixed alphabets allow us to extend the construction for heterogeneous systems: e.g qubits and qutrits.
- We introduced the notion of Mutually Orthogonal Quantum Latin Squares (MOQLS), and Mutually Orthogonal Quantum Latin Cubes (MOQLC), which allow us to identify several Absolutely Maximally Entangled states (AME)
- MOQLS and MOQLC form special cases of Quantum Orthogonal Arrays (QOA), which generalize the combinatorial notion of orthogonal arrays and lead to a vast garden of highly entangled multipartite states.

< 回 ト < 三 ト < 三 ト

Open Questions

- For what number N of subsystems with d levels each an Absolutely Maximally Entangled state |AME(N, d)) exists?
- Are all |AME(N, d)> states related to Quantum Orthogonal Arrays ?
- Are there two **Orthogonal Quantum Latin Squares** for N = 6, AME(4,6) = **36 entangled** officers of **Euler**?

KŻ (IF UJ/CFT PAN)

Open Questions

- For what number N of subsystems with d levels each an Absolutely Maximally Entangled state |AME(N, d)) exists?
- Are all |AME(N, d)> states related to Quantum Orthogonal Arrays ?
- Are there two **Orthogonal Quantum Latin Squares** for N = 6, AME(4,6) = **36 entangled** officers of **Euler**?

numerical results \implies **possibly not** (but the question is **open!**)

- Find further applications of Absolutely Maximally Entangled states for quantum error correction codes, quantum protocols, quantum computing and multiuser quantum games.
- A speculation whether

• • = • • = •

Open Questions

- For what number N of subsystems with d levels each an Absolutely Maximally Entangled state |AME(N, d)) exists?
- Are all |AME(N, d)> states related to Quantum Orthogonal Arrays ?
- Are there two **Orthogonal Quantum Latin Squares** for N = 6, AME(4,6) = **36 entangled** officers of **Euler**?

numerical results \implies **possibly not** (but the question is **open!**)

- Find further applications of Absolutely Maximally Entangled states for quantum error correction codes, quantum protocols, quantum computing and multiuser quantum games.
- A speculation whether Quantum Combinatorics will evolve someday into a mature research field for its own?

Kraków - just on the other side of the mountains...

Multipartite entanglement & combinatorial de