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Motivation: Quantum Computational Supremacy

@ Building a working quantum computer is hard® because of the noise and
errors inevitably affecting quantum systems.

@ Error correction and very clean physical qubits are needed. This results in
gigantic overheads (> 1000) and a poses great technological challenges.

@ An intermediate step: quantum machines of restricted purpose that
(hopefully) can demonstrate quantum computational supremacy?.

@ Possible advantage: smaller requirements, no error correction needed.

LIf not impossible: R. Alicki (2013), G. Kalai (2016)
2A. Harrow and A. Montanaro, Nature 549, 203-209 (2017)
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Boson Sampling (1)

Boson sampling® is one of the proposals to attain quantum advantage using
photonic linear optical circuit (with Fock states and particle-number detectors).

@ Task: sample from the distribution pE° for typical U € SU(m).

@ It is unlikely that there exist a classical machine producing a sample from
the distribution py satisfying

TV(ﬁU,pgs) <€ intime T = poly(n, 1) ,
€

where TV - total variation distance (~ distinguishing probability).
3S. Aaronson, A. Arkhipov, Proceedings of STOC'11 (2010)
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Boson Sampling (I1)

@ Arguments for hardness: difficulty of computation of matrix permanent,
non-collapse of Polynomial Hierarchy, other conjectures .

@ A lot of interest due to development of integrated photonics.

@ State of the art: classical simulation for up to 50 photons* and seven
photons® in experiments.

@ Is Boson-Sampling scalable?

THIS WORK: EFFICIENT CLASSICAL SIMULATION OF BOSON
SAMPLING UNDER PHOTON LOSSES (VIA SEPARABLE STATES)

*A. Neville et al., Nature Physics 13, 1153-1157 (2017)
®Hui Wang et al., Phys. Rev. Lett. 120, 230502 (2018)
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Outline of the talk
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@ Motivation and introduction to Boson Sampling
@ Technical tools and the idea of classical simulation

o Classical simulation of lossy Boson Sampling for:

(a) Fixed-loss model
(b) Uniform beamsplitter loss model
(c) Lossy linear optical network
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@ Hilbert space H# = Fock,(C™) = @;°, Sym' (C™).
@ Typically input state p has a fixed number of particles n.

@ Linear-optical transformation U € SU(m) defines mappings

al — ZUﬁa; . p= U p(Uh®™ .
J

@ Inclusion Sym™ (C™) C (C™)®" gives rise to particle entanglement.

@ Particle entanglement is different than mode entanglement originating
form the decomposition Fock,(C™) =~ @)~ , Focky(C).



Particle separable bosonic states

An n particle bosonic state p is called particle separable (p € Sep) iff

o= Zpa|¢a><¢a|®" , where {p,} - prob. dist.

Important features:



Particle separable bosonic states

An n particle bosonic state p is called particle separable (p € Sep) iff

o= Zpa|¢a><¢a|®" , where {p,} - prob. dist.

Important features:

@ Easy update of states |¢)®" under linear optics (acting like U®™)

16)
" )
) U]
1)



Particle separable bosonic states

An n particle bosonic state p is called particle separable (p € Sep) iff

o= Zpa|¢a><¢a|®n , where {p,} - prob. dist.

Important features:

@ Easy update of states |¢)®" under linear optics (acting like U®™)

16)
|6)
)

1)

© The particle-number statistics of the state (U|¢))®" is efficiently
classically simulable for any U and |¢).




Particle separable bosonic states

An n particle bosonic state p is called particle separable (p € Sep) iff

o= Zpa|¢a><¢a|®n , where {p,} - prob. dist.

Important features:

@ Easy update of states |¢)®" under linear optics (acting like U®™)
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© The particle-number statistics of the state (U|¢))®" is efficiently
classically simulable for any U and |¢).

@ If {pa} - easy to sample from, then sampling from py corresponding to
boson sampling with input state o is efficiently classically simulable.
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Models of particle losses

@ Model 1: A fixed number of particles are lost in mode symmetric-manner
prpr=trni(p) -

@ Model 2: Every particle is lost with probability (1 — n). Equivalently:
column of beamsplitters with trasmitivity 7.

n
prrpn =y 0 (1=n)"" (Do .
=0

@ Model 3: Mode- and location-dependant losses of photons (do not

commute with linear optics).
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General Simulation Strategy

@ If [ particles are left form n photon input state |1,...,1), we have

1
pz,n:@ > |Z1, .. @a ) (@1, ]

U s, a=l, 0<z;<1

@ Main idea: Approximate p;,, by symmetric separable states in trace
distance.

Pin

A= minaESepdtr(Ua pl,n) .

@ Finding the optimal o, gives the immediate classical simulation of
Boson Sampling to accuracy A; in TV (a figure of merit for BS),

TV, p0°) < dulow, prn) = A



Classical simulation for n — [ particles lost

1
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Classical simulation for n — [ particles lost

1
Pl,n:T) Z [T1, .y ) {T1y e, T
1

> xi=l, 0<z; <1

RESULT (Closest seperable state to a lossy Fock state)

Trace distance of p; , to the set of symmetric separable /-particle states is

n!
Al=1———+.
! nt(n —1)!

Moreover, an optimal separable state o, attaining A; can be chosen to be

1 2m

~ enr Jo
where |¢o) = (1/v/m) 27, i) and Vip, ..o = exp (=1 S0, @ild) (i)

Consequence: Lossy Boson-Sampling can be efficiently approximated to
accuracy 4A; in TV-distance. Moreover,

2
l:o(\/ﬁ):Al%;—n Cl=w(Vn) = A 1.
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Classical simulation for a beamsplitter loss model

The input state for a uniform beamsplitter loss model with transmitivity n,

pn=> n'(L=n)""(Npin -
=0

We take a probabilistic mixture of optimal separable states with different [,

n

7= 01— ()l

1=0

We get der (pn, 00) = Ay = ’727" so effectively the same conclusion as
before holds for average number (I) = nn of photons left in the network.
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Classical simulation for the realistic loss model

AN Aneff AN’
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RESULT (Extracting uniform losses from a lossy network)

Let s be a smallest number of times a particle traverses a beamsplitter as
it propagates through the network . Let A be the channel associated the
network N. Then it is possible to ”pull-out” uniform losses of transmitivity
Nest = 1° from the channel Ax:

An = AN oMy g,

where A,,_,, - beamspliter loss model, A -still a linear optics channel.

@ Efficient classical simultion of lossy Boson sampling device to
accuracy A = %23 in TV- distance.

@ Typically s 2 n. In fact even if s ~ log(n) we can still have A — 0 (for
fixed n)!
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@ Linear-optical networks are heavily affected by photon losses.

@ Consequence for lossy Boson Sampling devices: classical simulation of
output statistics to precision A in TV - distance:

(a) If s number of photons that are left [ = o(y/n), then A ~

2s
; ~ 100
(b) In a lossy optical network A ~ 15",

12
2n"

@ Limitation on the construction linear optical networks imposed by losses.



Open problems and future research directions
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Is it possible to obtain a proper e-simulation of lossy boson sampling®?
Using total variation distance instead of trace distance?
Generalization to non-uniform losses.

de- Finetti theorem for diagonal symmetric states?

e 6 6 o6 o

Similar techniques to other quantum supremacy proposals?

6S. Rahimi-Keshari et al., Phys. Rev. X 6, 021039 (2016)



Thank you for your attention!

Check out arXiv or NJP for the full paper’

"Also: arXiv:1712.10037 for independent work by R. Garcia-Parton et al.
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