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Motivation: Quantum Computational Supremacy

Building a working quantum computer is hard1 because of the noise and
errors inevitably affecting quantum systems.

Error correction and very clean physical qubits are needed. This results in
gigantic overheads (> 1000) and a poses great technological challenges.

An intermediate step: quantum machines of restricted purpose that
(hopefully) can demonstrate quantum computational supremacy2.

Possible advantage: smaller requirements, no error correction needed.

1If not impossible: R. Alicki (2013), G. Kalai (2016)
2A. Harrow and A. Montanaro, Nature 549, 203-209 (2017)
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Boson Sampling (I)

Boson sampling3 is one of the proposals to attain quantum advantage using
photonic linear optical circuit (with Fock states and particle-number detectors).

Task: sample from the distribution pBS
U for typical U ∈ SU(m).

It is unlikely that there exist a classical machine producing a sample from
the distribution p̃U satisfying

TV(p̃U , p
BS
U ) ≤ ε in time T = poly(n,

1

ε
) ,

where TV - total variation distance (∼ distinguishing probability).

3S. Aaronson, A. Arkhipov, Proceedings of STOC’11 (2010)
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Boson Sampling (II)

Arguments for hardness: difficulty of computation of matrix permanent,
non-collapse of Polynomial Hierarchy, other conjectures .

A lot of interest due to development of integrated photonics.

State of the art: classical simulation for up to 50 photons4 and seven
photons5 in experiments.

Is Boson-Sampling scalable?

4A. Neville et al., Nature Physics 13, 1153-1157 (2017)
5Hui Wang et al., Phys. Rev. Lett. 120, 230502 (2018)
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Boson Sampling (II)

Arguments for hardness: difficulty of computation of matrix permanent,
non-collapse of Polynomial Hierarchy, other conjectures .

A lot of interest due to development of integrated photonics.

State of the art: classical simulation for up to 50 photons4 and seven
photons5 in experiments.

Is Boson-Sampling scalable?

THIS WORK: EFFICIENT CLASSICAL SIMULATION OF BOSON
SAMPLING UNDER PHOTON LOSSES (VIA SEPARABLE STATES)

4A. Neville et al., Nature Physics 13, 1153-1157 (2017)
5Hui Wang et al., Phys. Rev. Lett. 120, 230502 (2018)



Outline of the talk

Motivation and introduction to Boson Sampling

Technical tools and the idea of classical simulation

Classical simulation of lossy Boson Sampling for:

(a) Fixed-loss model
(b) Uniform beamsplitter loss model
(c) Lossy linear optical network



First vs. Second Quantisation

Hilbert space H = Fockb(Cm) =
⊕∞

l=0 Syml (Cm).

Typically input state ρ has a fixed number of particles n.

Linear-optical transformation U ∈ SU(m) defines mappings

a†i 7→
∑
j

Ujia
†
j , ρ 7→ U⊗nρ(U†)⊗n .

Inclusion Symn (Cm) ⊂ (Cm)⊗n gives rise to particle entanglement.

Particle entanglement is different than mode entanglement originating
form the decomposition Fockb(Cm) ≈

⊗m
i=1 Fockb(C).
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Particle separable bosonic states

An n particle bosonic state ρ is called particle separable (ρ ∈ Sep) iff

σ =
∑
α

pα|φα〉〈φα|⊗n , where {pα} - prob. dist.

Important features:

Easy update of states |φ〉⊗n under linear optics (acting like U⊗n)

The particle-number statistics of the state (U |φ〉)⊗n is efficiently
classically simulable for any U and |φ〉.
If {pα} - easy to sample from, then sampling from p̃U corresponding to
boson sampling with input state σ is efficiently classically simulable.
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Models of particle losses

Model 1: A fixed number of particles are lost in mode symmetric-manner

ρ 7→ ρl = trn−l(ρ) .

Model 2: Every particle is lost with probability (1− η). Equivalently:
column of beamsplitters with trasmitivity η.

ρ 7→ ρη =

n∑
l=0

ηl(1− η)n−l
(
n
l

)
ρl .

Model 3: Mode- and location-dependant losses of photons (do not
commute with linear optics).
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General Simulation Strategy

If l particles are left form n photon input state |1, . . . , 1〉, we have

ρl,n =
1(
n
l

) ∑
∑

i xi=l, 0≤xi≤1

|x1, . . . , xn〉〈x1, . . . , xn| .

Main idea: Approximate ρl,n by symmetric separable states in trace
distance.

∆l = minσ∈Sepdtr(σ, ρl,n) .

Finding the optimal σ∗ gives the immediate classical simulation of
Boson Sampling to accuracy ∆l in TV (a figure of merit for BS),

TV(p̃U , p
BS
U ) ≤ dtr(σ∗, ρl,n) = ∆l .



General Simulation Strategy

If l particles are left form n photon input state |1, . . . , 1〉, we have

ρl,n =
1(
n
l

) ∑
∑

i xi=l, 0≤xi≤1

|x1, . . . , xn〉〈x1, . . . , xn| .

Main idea: Approximate ρl,n by symmetric separable states in trace
distance.

∆l = minσ∈Sepdtr(σ, ρl,n) .

Finding the optimal σ∗ gives the immediate classical simulation of
Boson Sampling to accuracy ∆l in TV (a figure of merit for BS),

TV(p̃U , p
BS
U ) ≤ dtr(σ∗, ρl,n) = ∆l .



General Simulation Strategy

If l particles are left form n photon input state |1, . . . , 1〉, we have

ρl,n =
1(
n
l

) ∑
∑

i xi=l, 0≤xi≤1

|x1, . . . , xn〉〈x1, . . . , xn| .

Main idea: Approximate ρl,n by symmetric separable states in trace
distance.

∆l = minσ∈Sepdtr(σ, ρl,n) .

Finding the optimal σ∗ gives the immediate classical simulation of
Boson Sampling to accuracy ∆l in TV (a figure of merit for BS),

TV(p̃U , p
BS
U ) ≤ dtr(σ∗, ρl,n) = ∆l .



Classical simulation for n− l particles lost

ρl,n =
1(
n
l

) ∑
∑

i xi=l, 0≤xi≤1

|x1, . . . , xn〉〈x1, . . . , xn|

RESULT (Closest seperable state to a lossy Fock state)

Trace distance of ρl,n to the set of symmetric separable l-particle states is

∆l = 1− n!

nl(n− l)! .

Moreover, an optimal separable state σ∗ attaining ∆l can be chosen to be

σ∗ =
1

(2π)n

∫ 2π

0

dϕ1 . . .

∫ 2π

0

dϕn
(
Vϕ1,...,ϕn |φ0〉〈φ0|V †ϕ1,...,ϕn

)⊗l
,

where |φ0〉 = (1/
√
n)
∑n
i=1 |i〉 and Vϕ1,...,ϕn = exp

(
−i
∑n
i=1 ϕi|i〉〈i|

)
.

Consequence: Lossy Boson-Sampling can be efficiently approximated to
accuracy ∆l in TV-distance. Moreover,

l = o(
√
n)⇒ ∆l ≈

l2

2n
, l = ω(

√
n)⇒ ∆l → 1 .
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Classical simulation for a beamsplitter loss model

The input state for a uniform beamsplitter loss model with transmitivity η,

ρη =

n∑
l=0

ηl(1− η)n−l
(
n
l

)
ρl,n .

We take a probabilistic mixture of optimal separable states with different l,

ση =
n∑
l=0

ηl(1− η)n−l
(
n
l

)
σ(l)
∗ .

We get dtr (ρη, ση) ≈ ∆ηn = η2n
2

, so effectively the same conclusion as

before holds for average number 〈l〉 = ηn of photons left in the network.
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Classical simulation for the realistic loss model

RESULT (Extracting uniform losses from a lossy network)

Let s be a smallest number of times a particle traverses a beamsplitter as
it propagates through the network N . Let ΛN be the channel associated the
network N . Then it is possible to ”pull-out” uniform losses of transmitivity
ηeff = ηs from the channel ΛN :

ΛN = Λ̃N ◦ Ληeff ,

where Ληeff - beamspliter loss model, Λ̃N -still a linear optics channel.

Efficient classical simultion of lossy Boson sampling device to

accuracy ∆ ≈ nη2s

2
in TV- distance.

Typically s ' n. In fact even if s ≈ log(n) we can still have ∆→ 0 (for
fixed η)!
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Example: Quantum Tetris



Conclusions

Linear-optical networks are heavily affected by photon losses.

Consequence for lossy Boson Sampling devices: classical simulation of

output statistics to precision ∆ in TV - distance:

(a) If s number of photons that are left l = o(
√
n), then ∆ ≈ l2

2n .

(b) In a lossy optical network ∆ ≈ η2sn
2 .

Limitation on the construction linear optical networks imposed by losses.
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Open problems and future research directions

Is it possible to obtain a proper ε-simulation of lossy boson sampling6?

Using total variation distance instead of trace distance?

Generalization to non-uniform losses.

de- Finetti theorem for diagonal symmetric states?

Similar techniques to other quantum supremacy proposals?

6S. Rahimi-Keshari et al., Phys. Rev. X 6, 021039 (2016)



Thank you for your attention!

Check out arXiv or NJP for the full paper7

7Also: arXiv:1712.10037 for independent work by R. Garcia-Parton et al.
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