Efficient classical simulation of lossy boson sampling via separable states

Michał Oszmaniec and Daniel Brod

Entanglement Days, Budapest, 26 September 2018

KC

Foundation for Polish Science

Daniel Brod (UFF Niteroi)

- Building a working quantum computer is **hard**¹ because of the noise and errors inevitably affecting quantum systems.
- Error correction and very clean physical qubits are needed. This results in gigantic overheads (> 1000) and a poses great technological challenges.
- An intermediate step: quantum machines of restricted purpose that (hopefully) can demonstrate quantum computational supremacy².
- Possible advantage: smaller requirements, no error correction needed.

¹If not impossible: R. Alicki (2013), G. Kalai (2016)

- Building a working quantum computer is hard¹ because of the noise and errors inevitably affecting quantum systems.
- Error correction and very clean physical qubits are needed. This results in gigantic overheads (> 1000) and a poses great technological challenges.
- An intermediate step: quantum machines of restricted purpose that (hopefully) can demonstrate quantum computational supremacy².
- Possible advantage: smaller requirements, no error correction needed.

¹If not impossible: R. Alicki (2013), G. Kalai (2016)

- Building a working quantum computer is **hard**¹ because of the noise and errors inevitably affecting quantum systems.
- Error correction and very clean physical qubits are needed. This results in gigantic overheads (> 1000) and a poses great technological challenges.
- An intermediate step: quantum machines of **restricted purpose** that (hopefully) can demonstrate **quantum computational supremacy**².
- Possible advantage: smaller requirements, no error correction needed.

¹If not impossible: R. Alicki (2013), G. Kalai (2016)

- Building a working quantum computer is **hard**¹ because of the noise and errors inevitably affecting quantum systems.
- Error correction and very clean physical qubits are needed. This results in gigantic overheads (> 1000) and a poses great technological challenges.
- An intermediate step: quantum machines of restricted purpose that (hopefully) can demonstrate quantum computational supremacy².
- Possible advantage: smaller requirements, no error correction needed.

¹If not impossible: R. Alicki (2013), G. Kalai (2016)

- Building a working quantum computer is **hard**¹ because of the noise and errors inevitably affecting quantum systems.
- Error correction and very clean physical qubits are needed. This results in gigantic overheads (> 1000) and a poses great technological challenges.
- An intermediate step: quantum machines of restricted purpose that (hopefully) can demonstrate quantum computational supremacy².
- Possible advantage: smaller requirements, no error correction needed.

¹If not impossible: R. Alicki (2013), G. Kalai (2016)

²A. Harrow and A. Montanaro, Nature **549**, 203-209 (2017)

Boson sampling³ is one of the proposals to attain **quantum advantage** using photonic linear optical circuit (with Fock states and particle-number detectors).

- Task: sample from the distribution p_U^{BS} for typical $U \in SU(m)$.
- It is **unlikely** that there exist a classical machine producing a sample from the distribution \tilde{p}_U satisfying

$$\operatorname{TV}(\tilde{p}_U, p_U^{\mathrm{BS}}) \leq \epsilon$$
 in time $T = \operatorname{poly}(n, \frac{1}{\epsilon})$,

where TV - total variation distance (\sim distinguishing probability).

³S. Aaronson, A. Arkhipov, Proceedings of STOC'11 (2010)

Boson sampling³ is one of the proposals to attain **quantum advantage** using photonic linear optical circuit (with Fock states and particle-number detectors).

• Task: sample from the distribution p_U^{BS} for typical $U \in SU(m)$.

• It is **unlikely** that there exist a classical machine producing a sample from the distribution \tilde{p}_U satisfying

$$\operatorname{TV}(\tilde{p}_U, p_U^{\mathrm{BS}}) \leq \epsilon$$
 in time $T = \operatorname{poly}(n, \frac{1}{\epsilon})$,

where TV - total variation distance (\sim distinguishing probability).

³S. Aaronson, A. Arkhipov, Proceedings of STOC'11 (2010)

Boson sampling³ is one of the proposals to attain **quantum advantage** using photonic linear optical circuit (with Fock states and particle-number detectors).

- Task: sample from the distribution p_U^{BS} for typical $U \in SU(m)$.
- It is **unlikely** that there exist a classical machine producing a sample from the distribution \tilde{p}_U satisfying

$$\operatorname{TV}(\tilde{p}_U, p_U^{\mathrm{BS}}) \leq \epsilon \text{ in time } T = \operatorname{poly}(n, \frac{1}{\epsilon}) ,$$

where TV - total variation distance (\sim distinguishing probability).

³S. Aaronson, A. Arkhipov, Proceedings of STOC'11 (2010)

- Arguments for hardness: difficulty of computation of matrix permanent, non-collapse of Polynomial Hierarchy, other conjectures.
- A lot of interest due to development of integrated photonics.
- State of the art: classical simulation for **up to 50 photons**⁴ and *seven* photons⁵ in experiments.
- Is Boson-Sampling scalable?

⁴A. Neville *et al.*, Nature Physics **13**, 1153-1157 (2017)
 ⁵Hui Wang *et al.*, Phys. Rev. Lett. **120**, 230502 (2018)

- Arguments for hardness: difficulty of computation of matrix permanent, non-collapse of Polynomial Hierarchy, other conjectures.
- A lot of interest due to development of integrated photonics.
- State of the art: classical simulation for **up to 50 photons**⁴ and *seven* photons⁵ in experiments.
- Is Boson-Sampling scalable?

⁴A. Neville *et al.*, Nature Physics **13**, 1153-1157 (2017) ⁵Hui Wang *et al.*, Phys. Rev. Lett. **120**, 230502 (2018)

- Arguments for hardness: difficulty of computation of matrix permanent, non-collapse of Polynomial Hierarchy, other conjectures.
- A lot of interest due to development of integrated photonics.
- State of the art: classical simulation for **up to 50 photons**⁴ and *seven* photons⁵ in experiments.
- Is Boson-Sampling scalable?

⁴A. Neville *et al.*, Nature Physics **13**, 1153-1157 (2017) ⁵Hui Wang *et al.*, Phys. Rev. Lett. **120**, 230502 (2018)

- Arguments for hardness: difficulty of computation of matrix permanent, non-collapse of Polynomial Hierarchy, other conjectures.
- A lot of interest due to development of integrated photonics.
- State of the art: classical simulation for **up to 50 photons**⁴ and *seven* photons⁵ in experiments.
- Is Boson-Sampling scalable?

THIS WORK: EFFICIENT CLASSICAL SIMULATION OF BOSON SAMPLING UNDER PHOTON LOSSES (VIA SEPARABLE STATES)

⁴A. Neville *et al.*, Nature Physics **13**, 1153-1157 (2017)

⁵Hui Wang et al., Phys. Rev. Lett. **120**, 230502 (2018)

Outline of the talk

- Motivation and introduction to Boson Sampling
- Technical tools and the idea of classical simulation
- Classical simulation of lossy Boson Sampling for:
 - (a) Fixed-loss model
 - (b) Uniform beamsplitter loss model
 - (c) Lossy linear optical network

- Hilbert space $\mathcal{H} = \operatorname{Fock}_b(\mathbb{C}^m) = \bigoplus_{l=0}^{\infty} \operatorname{Sym}^l(\mathbb{C}^m).$
- Typically input state ρ has a fixed number of particles n.
- Linear-optical transformation $U \in SU(m)$ defines mappings

$$a_i^{\dagger} \mapsto \sum_j U_{ji} a_j^{\dagger} \ , \ \rho \mapsto U^{\otimes n} \rho(U^{\dagger})^{\otimes n}$$

- Inclusion $\operatorname{Sym}^{n}(\mathbb{C}^{m}) \subset (\mathbb{C}^{m})^{\otimes n}$ gives rise to particle entanglement.
- Particle entanglement is different than mode entanglement originating form the decomposition Fock_b(C^m) ≈ ⊗^m_{i=1} Fock_b(C).

- Hilbert space $\mathcal{H} = \operatorname{Fock}_b(\mathbb{C}^m) = \bigoplus_{l=0}^{\infty} \operatorname{Sym}^l(\mathbb{C}^m).$
- Typically input state ρ has a fixed number of particles n.
- Linear-optical transformation $U \in SU(m)$ defines mappings

$$a_i^{\dagger} \mapsto \sum_j U_{ji} a_j^{\dagger} \ , \ \rho \mapsto U^{\otimes n} \rho(U^{\dagger})^{\otimes n} \ .$$

- Inclusion $\operatorname{Sym}^{n}(\mathbb{C}^{m}) \subset (\mathbb{C}^{m})^{\otimes n}$ gives rise to particle entanglement.
- Particle entanglement is different than mode entanglement originating form the decomposition Fock_b(C^m) ≈ ⊗^m_{i=1} Fock_b(C).

- Hilbert space $\mathcal{H} = \operatorname{Fock}_b(\mathbb{C}^m) = \bigoplus_{l=0}^{\infty} \operatorname{Sym}^l(\mathbb{C}^m).$
- Typically input state ρ has a fixed number of particles n.
- Linear-optical transformation $U \in SU(m)$ defines mappings

$$a_i^{\dagger} \mapsto \sum_j U_{ji} a_j^{\dagger} \ , \ \rho \mapsto U^{\otimes n} \rho(U^{\dagger})^{\otimes n}$$

- Inclusion $\operatorname{Sym}^n(\mathbb{C}^m) \subset (\mathbb{C}^m)^{\otimes n}$ gives rise to particle entanglement.
- Particle entanglement is different than mode entanglement originating form the decomposition Fock_b(ℂ^m) ≈ ⊗^m_{i=1} Fock_b(ℂ).

- Hilbert space $\mathcal{H} = \operatorname{Fock}_b(\mathbb{C}^m) = \bigoplus_{l=0}^{\infty} \operatorname{Sym}^l(\mathbb{C}^m).$
- Typically input state ρ has a fixed number of particles n.
- Linear-optical transformation $U \in SU(m)$ defines mappings

$$a_i^{\dagger} \mapsto \sum_j U_{ji} a_j^{\dagger} \ , \ \rho \mapsto U^{\otimes n} \rho(U^{\dagger})^{\otimes n}$$

- Inclusion $\operatorname{Sym}^{n}(\mathbb{C}^{m}) \subset (\mathbb{C}^{m})^{\otimes n}$ gives rise to particle entanglement.
- Particle entanglement is different than mode entanglement originating form the decomposition Fock_b(ℂ^m) ≈ ⊗^m_{i=1} Fock_b(ℂ).

An *n* particle bosonic state ρ is called **particle separable** ($\rho \in \text{Sep}$) iff

$$\sigma = \sum_{lpha} p_{lpha} |\phi_{lpha}
angle\! \langle \phi_{lpha} |^{\otimes n}$$
 , where $\{p_{lpha}\}$ - prob. dist.

Important features:

- The particle-number statistics of the state $(U|\phi\rangle)^{\otimes n}$ is efficiently classically simulable for any U and $|\phi\rangle$.
- If {p_α} easy to sample from, then sampling from p̃_U corresponding to boson sampling with input state σ is efficiently classically simulable.

An *n* particle bosonic state ρ is called **particle separable** ($\rho \in \text{Sep}$) iff

$$\sigma = \sum_lpha p_lpha |\phi_lpha
angle \! \langle \phi_lpha |^{\otimes n}$$
 , where $\{p_lpha\}$ - prob. dist.

Important features:

- The particle-number statistics of the state $(U|\phi\rangle)^{\otimes n}$ is efficiently classically simulable for any U and $|\phi\rangle$.
- If {p_α} easy to sample from, then sampling from p̃_U corresponding to boson sampling with input state σ is efficiently classically simulable.

An *n* particle bosonic state ρ is called **particle separable** ($\rho \in \text{Sep}$) iff

$$\sigma = \sum_lpha p_lpha |\phi_lpha
angle \! \langle \phi_lpha |^{\otimes n}$$
 , where $\{p_lpha\}$ - prob. dist.

Important features:

- The particle-number statistics of the state (U|φ))^{⊗n} is efficiently classically simulable for any U and |φ⟩.
- If {p_α} easy to sample from, then sampling from p̃_U corresponding to boson sampling with input state σ is efficiently classically simulable.

An *n* particle bosonic state ρ is called **particle separable** ($\rho \in \text{Sep}$) iff

$$\sigma = \sum_lpha p_lpha |\phi_lpha
angle \! \langle \phi_lpha |^{\otimes n}$$
 , where $\{p_lpha\}$ - prob. dist.

Important features:

- The particle-number statistics of the state (U|φ))^{⊗n} is efficiently classically simulable for any U and |φ⟩.
- If {p_α} easy to sample from, then sampling from p̃_U corresponding to boson sampling with input state σ is efficiently classically simulable.

Models of particle losses

• Model 1: A fixed number of particles are lost in mode symmetric-manner

 $\rho \mapsto \rho_l = \operatorname{tr}_{n-l}(\rho)$.

 Model 2: Every particle is lost with probability (1 – η). Equivalently: column of beamsplitters with trasmitivity η.

$$\rho \mapsto \rho_{\eta} = \sum_{l=0}^{n} \eta^l (1-\eta)^{n-l} {n \choose l} \rho_l .$$

 Model 3: Mode- and location-dependant losses of photons (do not commute with linear optics).

Models of particle losses

• Model 1: A fixed number of particles are lost in mode symmetric-manner

$$\rho \mapsto \rho_l = \operatorname{tr}_{n-l}(\rho) \ .$$

Model 2: Every particle is lost with probability (1 – η). Equivalently: column of beamsplitters with trasmitivity η.

$$\rho \mapsto \rho_{\eta} = \sum_{l=0}^{n} \eta^l (1-\eta)^{n-l} {n \choose l} \rho_l .$$

 Model 3: Mode- and location-dependant losses of photons (do not commute with linear optics).

Models of particle losses

• Model 1: A fixed number of particles are lost in mode symmetric-manner

$$\rho \mapsto \rho_l = \operatorname{tr}_{n-l}(\rho)$$
.

Model 2: Every particle is lost with probability (1 – η). Equivalently: column of beamsplitters with trasmitivity η.

$$\rho \mapsto \rho_{\eta} = \sum_{l=0}^{n} \eta^{l} (1-\eta)^{n-l} {n \choose l} \rho_{l} .$$

 Model 3: Mode- and location-dependant losses of photons (do not commute with linear optics).

General Simulation Strategy

• If l particles are left form n photon input state $|1, \ldots, 1\rangle$, we have

$$\rho_{l,n} = \frac{1}{\binom{n}{l}} \sum_{\sum_{i} x_i = l, \ 0 \le x_i \le 1} |x_1, \dots, x_n\rangle \langle x_1, \dots, x_n|$$

Main idea: Approximate ρ_{l,n} by symmetric separable states in trace distance.

$$\Delta_l = \min_{\sigma \in \text{Sep}} d_{\text{tr}}(\sigma, \rho_{l,n}) \; .$$

 Finding the optimal σ_{*} gives the immediate classical simulation of Boson Sampling to accuracy Δ_l in TV (a figure of merit for BS),

$$\operatorname{TV}(\tilde{p}_U, p_U^{BS}) \leq \operatorname{d}_{\operatorname{tr}}(\sigma_*, \rho_{l,n}) = \Delta_l$$
.

General Simulation Strategy

• If l particles are left form n photon input state $|1, \ldots, 1\rangle$, we have

$$\rho_{l,n} = \frac{1}{\binom{n}{l}} \sum_{\sum_{i} x_i = l, \ 0 \le x_i \le 1} |x_1, \dots, x_n\rangle \langle x_1, \dots, x_n|$$

Main idea: Approximate ρ_{l,n} by symmetric separable states in trace distance.

$$\Delta_l = \min_{\sigma \in \text{Sep}} \mathrm{d}_{\mathrm{tr}}(\sigma, \rho_{l,n}) \; .$$

 Finding the optimal σ_{*} gives the immediate classical simulation of Boson Sampling to accuracy Δ_l in TV (a figure of merit for BS),

$$\operatorname{TV}(\tilde{p}_U, p_U^{\mathrm{BS}}) \leq \operatorname{d}_{\operatorname{tr}}(\sigma_*, \rho_{l,n}) = \Delta_l$$

General Simulation Strategy

• If l particles are left form n photon input state $|1, \ldots, 1\rangle$, we have

$$\rho_{l,n} = \frac{1}{\binom{n}{l}} \sum_{\sum_{i} x_i = l, \ 0 \le x_i \le 1} |x_1, \dots, x_n\rangle \langle x_1, \dots, x_n|$$

Main idea: Approximate ρ_{l,n} by symmetric separable states in trace distance.

$$\Delta_l = \min_{\sigma \in \text{Sep}} \mathrm{d}_{\mathrm{tr}}(\sigma, \rho_{l,n}) \; .$$

 Finding the optimal σ_{*} gives the immediate classical simulation of Boson Sampling to accuracy Δ_l in TV (a figure of merit for BS),

$$\operatorname{TV}(\tilde{p}_U, p_U^{BS}) \leq \operatorname{d}_{\operatorname{tr}}(\sigma_*, \rho_{l,n}) = \Delta_l$$
.

Classical simulation for n-l particles lost

$$\rho_{l,n} = \frac{1}{\binom{n}{l}} \sum_{\sum_{i} x_i = l, \ 0 \le x_i \le 1} |x_1, \dots, x_n\rangle \langle x_1, \dots, x_n|$$

RESULT (Closest seperable state to a lossy Fock state)

Trace distance of $\rho_{l,n}$ to the set of symmetric separable *l*-particle states is

$$\Delta_l = 1 - \frac{n!}{n^l(n-l)!} \; .$$

Moreover, an optimal separable state σ_* attaining Δ_l can be chosen to be

$$\sigma_* = \frac{1}{(2\pi)^n} \int_0^{2\pi} d\varphi_1 \dots \int_0^{2\pi} d\varphi_n \left(V_{\varphi_1,\dots,\varphi_n} |\phi_0\rangle \langle \phi_0 | V_{\varphi_1,\dots,\varphi_n}^{\dagger} \right)^{\otimes l} ,$$

where $|\phi_0\rangle = (1/\sqrt{n}) \sum_{i=1}^n |i\rangle$ and $V_{\varphi_1,\dots,\varphi_n} = \exp\left(-i \sum_{i=1}^n \varphi_i |i\rangle\langle i|\right)$

Consequence: Lossy Boson-Sampling can be **efficiently approximated** to accuracy Δ_l in TV-distance. Moreover,

$$l = o(\sqrt{n}) \Rightarrow \Delta_l \approx \frac{l^2}{2n} , \quad l = \omega(\sqrt{n}) \Rightarrow \Delta_l \to 1 .$$

Classical simulation for n-l particles lost

$$\rho_{l,n} = \frac{1}{\binom{n}{l}} \sum_{\sum_{i} x_i = l, \ 0 \le x_i \le 1} |x_1, \dots, x_n\rangle \langle x_1, \dots, x_n|$$

RESULT (Closest seperable state to a lossy Fock state)

Trace distance of $\rho_{l,n}$ to the set of symmetric separable *l*-particle states is

$$\Delta_l = 1 - \frac{n!}{n^l(n-l)!} \; .$$

Moreover, an optimal separable state σ_* attaining Δ_l can be chosen to be

$$\sigma_* = \frac{1}{(2\pi)^n} \int_0^{2\pi} d\varphi_1 \dots \int_0^{2\pi} d\varphi_n \left(V_{\varphi_1,\dots,\varphi_n} |\phi_0\rangle \langle \phi_0 | V_{\varphi_1,\dots,\varphi_n}^{\dagger} \right)^{\otimes l} ,$$

where $|\phi_0\rangle = (1/\sqrt{n})\sum_{i=1}^n |i\rangle$ and $V_{\varphi_1,\dots,\varphi_n} = \exp\left(-i\sum_{i=1}^n \varphi_i |i\rangle\langle i|\right)$.

Consequence: Lossy Boson-Sampling can be **efficiently approximated** to accuracy Δ_l in TV-distance. Moreover,

$$l = o(\sqrt{n}) \Rightarrow \Delta_l \approx \frac{l^2}{2n}$$
, $l = \omega(\sqrt{n}) \Rightarrow \Delta_l \to 1$.

Classical simulation for n-l particles lost

$$\rho_{l,n} = \frac{1}{\binom{n}{l}} \sum_{\sum_{i} x_i = l, \ 0 \le x_i \le 1} |x_1, \dots, x_n\rangle \langle x_1, \dots, x_n|$$

RESULT (Closest seperable state to a lossy Fock state)

Trace distance of $\rho_{l,n}$ to the set of symmetric separable *l*-particle states is

$$\Delta_l = 1 - \frac{n!}{n^l(n-l)!} \; .$$

Moreover, an optimal separable state σ_* attaining Δ_l can be chosen to be

$$\sigma_* = \frac{1}{(2\pi)^n} \int_0^{2\pi} d\varphi_1 \dots \int_0^{2\pi} d\varphi_n \left(V_{\varphi_1,\dots,\varphi_n} |\phi_0\rangle \langle \phi_0 | V_{\varphi_1,\dots,\varphi_n}^{\dagger} \right)^{\otimes l} ,$$

where $|\phi_0\rangle = (1/\sqrt{n}) \sum_{i=1}^n |i\rangle$ and $V_{\varphi_1,...,\varphi_n} = \exp\left(-i \sum_{i=1}^n \varphi_i |i\rangle \langle i|\right)$.

Consequence: Lossy Boson-Sampling can be efficiently approximated to accuracy Δ_l in TV-distance. Moreover,

$$l = o(\sqrt{n}) \Rightarrow \Delta_l \approx \frac{l^2}{2n} , \ l = \omega(\sqrt{n}) \Rightarrow \Delta_l \to 1 .$$

Classical simulation for a beamsplitter loss model

The input state for a uniform beamsplitter loss model with transmitivity $\eta,$

$$\rho_{\eta} = \sum_{l=0}^{n} \eta^l (1-\eta)^{n-l} {n \choose l} \rho_{l,n} .$$

We take a probabilistic mixture of optimal separable states with different l,

$$\sigma_{\eta} = \sum_{l=0}^{n} \eta^{l} (1-\eta)^{n-l} {n \choose l} \sigma_{*}^{(l)}.$$

We get $d_{tr}(\rho_{\eta}, \sigma_{\eta}) \approx \Delta_{\eta n} = \frac{\eta^2 n}{2}$, so effectively the same conclusion as before holds for average number $\langle l \rangle = \eta n$ of photons left in the network.

Classical simulation for a beamsplitter loss model

The input state for a uniform beamsplitter loss model with transmitivity η ,

$$\rho_{\eta} = \sum_{l=0}^{n} \eta^{l} (1-\eta)^{n-l} {n \choose l} \rho_{l,n} .$$

We take a probabilistic mixture of optimal separable states with different l,

$$\sigma_{\eta} = \sum_{l=0}^{n} \eta^{l} (1-\eta)^{n-l} {n \choose l} \sigma_{*}^{(l)}.$$

We get $d_{tr}(\rho_{\eta}, \sigma_{\eta}) \approx \Delta_{\eta n} = \frac{\eta^2 n}{2}$, so effectively the same conclusion as before holds for average number $\langle l \rangle = \eta n$ of photons left in the network.

Classical simulation for a beamsplitter loss model

The input state for a uniform beamsplitter loss model with transmitivity η ,

$$\rho_{\eta} = \sum_{l=0}^{n} \eta^{l} (1-\eta)^{n-l} {n \choose l} \rho_{l,n} .$$

We take a probabilistic mixture of optimal separable states with different l,

$$\sigma_{\eta} = \sum_{l=0}^{n} \eta^{l} (1-\eta)^{n-l} {n \choose l} \sigma_{*}^{(l)}.$$

We get $d_{tr}(\rho_{\eta}, \sigma_{\eta}) \approx \Delta_{\eta n} = \frac{\eta^2 n}{2}$, so effectively the same conclusion as before holds for average number $\langle l \rangle = \eta n$ of photons left in the network.

Gdańsk in the Autumn

RESULT (Extracting uniform losses from a lossy network)

Let s be a smallest number of times a particle traverses a beamsplitter as it propagates through the network \mathcal{N} . Let $\Lambda_{\mathcal{N}}$ be the channel associated the network \mathcal{N} . Then it is possible to "pull-out" uniform losses of transmitivity $\eta_{\text{eff}} = \eta^s$ from the channel $\Lambda_{\mathcal{N}}$:

$$\Lambda_{\mathcal{N}} = \tilde{\Lambda}_{\mathcal{N}} \circ \Lambda_{\eta_{\mathrm{eff}}} \, ,$$

where $\Lambda_{\eta_{\mathrm{eff}}}$ - beamspliter loss model, $\Lambda_{\mathcal{N}}$ -still a linear optics channel.

- Efficient classical simultion of lossy Boson sampling device to accuracy $\Delta \approx \frac{n\eta^{2s}}{2}$ in TV- distance.
- Typically s ≥ n. In fact even if s ≈ log(n) we can still have Δ → 0 (for fixed η)!

RESULT (Extracting uniform losses from a lossy network)

Let s be a smallest number of times a particle traverses a beamsplitter as it propagates through the network \mathcal{N} . Let $\Lambda_{\mathcal{N}}$ be the channel associated the network \mathcal{N} . Then it is possible to "pull-out" uniform losses of transmitivity $\eta_{\text{eff}} = \eta^s$ from the channel $\Lambda_{\mathcal{N}}$:

$$\Lambda_{\mathcal{N}} = \tilde{\Lambda}_{\mathcal{N}} \circ \Lambda_{\eta_{\mathrm{eff}}} \; ,$$

where $\Lambda_{\eta_{\mathrm{eff}}}$ - beamspliter loss model, $\Lambda_{\mathcal{N}}$ -still a linear optics channel.

- Efficient classical simultion of lossy Boson sampling device to accuracy $\Delta \approx \frac{n\eta^{2s}}{2}$ in TV- distance.
- Typically s ≥ n. In fact even if s ≈ log(n) we can still have Δ → 0 (for fixed η)!

RESULT (Extracting uniform losses from a lossy network)

Let s be a smallest number of times a particle traverses a beamsplitter as it propagates through the network \mathcal{N} . Let $\Lambda_{\mathcal{N}}$ be the channel associated the network \mathcal{N} . Then it is possible to "pull-out" uniform losses of transmittivity $\eta_{\text{eff}} = \eta^s$ from the channel $\Lambda_{\mathcal{N}}$:

$$\Lambda_{\mathcal{N}} = \tilde{\Lambda}_{\mathcal{N}} \circ \Lambda_{\eta_{\mathrm{eff}}} \; ,$$

where $\Lambda_{\eta_{ ext{eff}}}$ - beamspliter loss model, $\Lambda_{\mathcal{N}}$ -still a linear optics channel.

- Efficient classical simultion of lossy Boson sampling device to accuracy $\Delta \approx \frac{n\eta^{2s}}{2}$ in TV- distance.
- Typically s ≥ n. In fact even if s ≈ log(n) we can still have Δ → 0 (for fixed η)!

RESULT (Extracting uniform losses from a lossy network)

Let s be a smallest number of times a particle traverses a beamsplitter as it propagates through the network \mathcal{N} . Let $\Lambda_{\mathcal{N}}$ be the channel associated the network \mathcal{N} . Then it is possible to "pull-out" uniform losses of transmitivity $\eta_{\text{eff}} = \eta^s$ from the channel $\Lambda_{\mathcal{N}}$:

$$\Lambda_{\mathcal{N}} = \tilde{\Lambda}_{\mathcal{N}} \circ \Lambda_{\eta_{\mathrm{eff}}} ,$$

where $\Lambda_{\eta_{eff}}$ - beamspliter loss model, $\tilde{\Lambda}_{\mathcal{N}}$ -still a linear optics channel.

- Efficient classical simultion of lossy Boson sampling device to accuracy $\Delta \approx \frac{n\eta^{2s}}{2}$ in TV- distance.
- Typically $s \gtrsim n$. In fact even if $s \approx \log(n)$ we can still have $\Delta \to 0$ (for fixed η)!

RESULT (Extracting uniform losses from a lossy network)

Let s be a smallest number of times a particle traverses a beamsplitter as it propagates through the network \mathcal{N} . Let $\Lambda_{\mathcal{N}}$ be the channel associated the network \mathcal{N} . Then it is possible to "pull-out" uniform losses of transmitivity $\eta_{\text{eff}} = \eta^s$ from the channel $\Lambda_{\mathcal{N}}$:

$$\Lambda_{\mathcal{N}} = \tilde{\Lambda}_{\mathcal{N}} \circ \Lambda_{\eta_{\mathrm{eff}}}$$

where $\Lambda_{\eta_{eff}}$ - beamspliter loss model, $\tilde{\Lambda}_{\mathcal{N}}$ -still a linear optics channel.

- Efficient classical simultion of lossy Boson sampling device to accuracy $\Delta \approx \frac{n\eta^{2s}}{2}$ in TV- distance.
- Typically $s \gtrsim n$. In fact even if $s \approx \log(n)$ we can still have $\Delta \to 0$ (for fixed η)!

RESULT (Extracting uniform losses from a lossy network)

Let s be a smallest number of times a particle traverses a beamsplitter as it propagates through the network \mathcal{N} . Let $\Lambda_{\mathcal{N}}$ be the channel associated the network \mathcal{N} . Then it is possible to "pull-out" uniform losses of transmitivity $\eta_{\text{eff}} = \eta^s$ from the channel $\Lambda_{\mathcal{N}}$:

$$\Lambda_{\mathcal{N}} = \tilde{\Lambda}_{\mathcal{N}} \circ \Lambda_{\eta_{\mathrm{eff}}} \, ,$$

where $\Lambda_{\eta_{eff}}$ - beamspliter loss model, $\tilde{\Lambda}_{\mathcal{N}}$ -still a linear optics channel.

- Efficient classical simultion of lossy Boson sampling device to accuracy $\Delta \approx \frac{n\eta^{2s}}{2}$ in TV- distance.
- Typically s ≥ n. In fact even if s ≈ log(n) we can still have Δ → 0 (for fixed η)!

Example: Quantum Tetris

Conclusions

• Linear-optical networks are heavily affected by photon losses.

 Consequence for lossy Boson Sampling devices: classical simulation of output statistics to precision Δ in TV - distance:

(a) If s number of photons that are left $l = o(\sqrt{n})$, then $\Delta \approx \frac{l^2}{2n}$.

(b) In a lossy optical network
$$\Delta pprox rac{\eta^{2s}n}{2}.$$

Limitation on the construction linear optical networks imposed by losses.

Conclusions

- Linear-optical networks are heavily affected by photon losses.
- Consequence for lossy Boson Sampling devices: classical simulation of output statistics to precision Δ in TV distance:

(a) If s number of photons that are left $l = o(\sqrt{n})$, then $\Delta \approx \frac{l^2}{2n}$.

(b) In a lossy optical network $\Delta \approx \frac{\eta^{2s}n}{2}$.

Limitation on the construction linear optical networks imposed by losses.

Conclusions

- Linear-optical networks are heavily affected by photon losses.
- Consequence for lossy Boson Sampling devices: classical simulation of output statistics to precision Δ in TV distance:

(a) If s number of photons that are left $l = o(\sqrt{n})$, then $\Delta \approx \frac{l^2}{2n}$.

(b) In a lossy optical network $\Delta \approx \frac{\eta^{2s}n}{2}$.

Limitation on the construction linear optical networks imposed by losses.

Open problems and future research directions

- Is it possible to obtain a proper ε-simulation of lossy boson sampling⁶?
- Using total variation distance instead of trace distance?
- Generalization to non-uniform losses.
- de- Finetti theorem for diagonal symmetric states?
- Similar techniques to other quantum supremacy proposals?

⁶S. Rahimi-Keshari et al., Phys. Rev. X 6, 021039 (2016)

Thank you for your attention!

Check out arXiv or NJP for the full paper⁷

⁷Also: arXiv:1712.10037 for independent work by R. Garcia-Parton *et al.*