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Steering



Bell inequalities

Alice and Bob share a state |ψ〉.

Bell inequalities

Alice and Bob measure Ax and By , obtain the results a, b.

Question: Can the probabilities be written as

P(a, b|x , y)
?
=
∑
λ

pλp(a|x , λ)p(b|y , λ)
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Entanglement criterion

Transposition and partial transposition

Transposition: The usual transposition X 7→ XT does not change
the eigenvalues of the matrix X

For a product space one can also consider the partial transposition.
If X = A⊗ B :

XTB = A⊗ BT

Partial transposition and separability

If a state is separable, then its partial transposition has no negative eigen-
values (“the state is PPT” or %TB ≥ 0).

Peres & Horodecki

For small dimensions (2× 2 or 2× 3): % is PPT ⇔ % is separable.

A. Peres, PRL 77, 1413 (1996), Horodecki⊗3, PLA 223, 1 (1996)
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What happens in between?

Alice and Bob share a state |ψ〉.

Mixed Scenario

Consider probabilities of the form

P(a, b|x , y) =
∑

λ
pλp(a|x , λ)Tr(Eb|y%

B
λ ) = Tr(Eb|y%a|x)

What is the physical meaning of such probabilities?
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Steering scenario

Alice makes measurements and claims that she can steer Bob’s
state with that. Bob does not believe it.

Bob has conditional states %a|x depending on Ax and result a.

If they are of the form

%a|x =
∑

λ
pλp(a|x , λ)σB

λ = p(a|x)
∑

λ
p(λ|a, x)σB

λ

then Bob is not convinced: Alice’s results give only information
about existing hidden states σB

λ

Otherwise: Bob has to believe in a spooky action at a distance.

E. Schrödinger, Proc. Camb. Phil. Soc. 31, 555 (1935), H. M. Wiseman et al., PRL 98, 140402 (2007).
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Consequences

Steering is entanglement verification with one untrusted party.

Typical question: Given an ensemble {%a|x} of conditional states, is
it steerable? Or is there a local hidden state model?

Inclusion: Violation of a BI ⇒ Steerability ⇒ Entanglement

Geometry
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Steering helps

Peres Conjecture

Conjecture: PPT states do not violate any Bell inequality.
A. Peres, Found. Phys. 29, 589 (1999).

Some PPT entangled states can be used for steering.
T. Moroder et al., PRL 113, 050404 (2014).

These PPT entangled states violate a Bell inequality.
T. Vertesi, N. Brunner, Nature Comm. 5, 5297 (2014).
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Menu

Steering criteria

For entanglement, positive maps provide a systematic way to derive
entanglement criteria.

Is there a systematic method to derive steering criteria?

Two qubits

The border of separability for two qubits can be computed with the
PPT criterion

How to compute the border of steerable states for two qubits?
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Entropic Uncertainty Relations & Steering
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Entropies

Von Neumann et al.

Entropy for a distribution P = {pk}

S = −
∑
k

pk ln(pk)

Relative entropy D(P‖Q) =
∑

k pk ln(pk/qk) and conditional
entropy

S(B|A) = S(A,B)− S(A)

Tsallis entropy

Sq = −
∑
k

pqk lnq(pk)

with lnq(x) = (x1−q − 1)/(1− q)
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EUR

EUR

Let S(X ) denote the entropy of the probability distribution of a measure-
ment X . Then, e.g.,

S(σx) + S(σz) ≥ ln(2)

First criteria for steering

Consider the measurements X = σA
x ⊗ σB

x and Z = σA
z ⊗ σB

z . Then, for
unsteerable states

S(σB
x |σA

x ) + S(σB
z |σA

z ) ≥ ln(2)

This has a nice interpretation, but can it be generalized?
J. Schneeloch et al., PRA 87, 062103 (2013).
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General criteria

Theorem

Any entropic uncertainty relation (arbitrary measurements and nearly ar-
bitrary entropy) can be converted into a steering inequality.

Example: Tsallis

Let Bk be some observables on Bob’s space with an EUR∑
k

Sq(Bk) ≥ Cq

Then ∑
k

[
Sq(Bk |Ak) + (1− q)Γ(Ak ,Bk)

]
≥ Cq

with Γ = f (pαβ) being a correction term.
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Application

Isotropic states and q = 2
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Other examples: One-way steerable states



Steering: Geometric approach



The map Λ

Reminder: the task

Consider the the conditional states %a|x . Can they be written as

%a|x
?
=
∑

λ
pλp(a|λ, x)σB

λ

The map

Define for a state %AB the map:

Λ(XA) = TrA(%ABXA ⊗ 1B)

For a measurement effect Ea|x one has:

%a|x = TrA(%ABEa|x ⊗ 1B) = Λ(Ea|x)

so Λ describes the steering outcomes.
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Geometry of the map Λ

The effects 0 ≤ Ea|x ≤ 1 form a 4D double cone.

Λ maps it to another double cone:

Wlog: Λ is invertible.



The capacity K

For projective measurements with E+|x + E−|x = 1A on a qubit we
have to solve:

%±|x = Λ(E±|x)
?
=

∫
dµ(σ)G±|s(σ)σ,

with G+|x + G−|x = 1 and %B = Λ(1A) =
∫
dµ(σ)σ.

The set of all reachable %±|x is the capacity of µ

K(µ) =
{
K =

∫
dµ(σ)g(σ)σ : 0 ≤ g(σ) ≤ 1

}
.

For a given µ the set K(µ) is convex and contains 0B and %B .
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Geometry

We want to check the relation between the
image of Λ and K(µ)

This is simplified be geometry: The equator
suffices!

We need to compute the principal radius
r(%AB , µ) in the appropriate norm!

If r(%AB , µ) ≥ 1 then %AB is not steerable.
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Geometry

For qubits, this boils down to a simple optimization problem:

r(%AB , µ) = min
C

1√
2‖TrB [%̄(1A ⊗ C )]‖

∫
dµ(σ)|TrB(Cσ)|,

where %̄ = %AB − (1A ⊗ %B)/2, ‖X‖ =
√
Tr(X †X ), and C denotes

an observable on Bob’s space.

Proof idea: Characterize K(µ) by linear inequalities, apply Λ−1, and
project onto equator.
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Criterion

The critical radius

The critical radius is obtained via optimization over all µ:

R(%AB) = max
µ

r(%AB , µ).

Subtle points under the carpet: R(%AB)
?
=∞, R(%AB) not

continuous, µ∗ exists, ...

Main result for two qubits & projective measurements

%AB is steerable ⇔ R(%AB) < 1

Remaining task: Compute the critical radius ...
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Scaling property of the critical radius

States mixed with separable noise %nα = α%AB + (1− α)1A ⊗ %B/2
obey:

R(%nα) =
1

α
R(%AB).

Consequently, the border of unsteerable states can be computed:
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Symmetry of the critical radius

Given a state %AB , consider the family of states

%̃ =
1

N
(UA ⊗ VB)%AB(U†A ⊗ V †B),

Then, the critical radius stays the same

R(%AB) = R(%̃)

For steerability, this was known.
R. Gallego et al., PRX 2015, M. Tulio Quintino et al., PRA 2015, R. Uola et al., PRL 2014.

Under these transformations, any state can be brought into a
canonical form.



Calculation of the critical radius



Calculation of the critical radius

Idea: Approximate probability distributions on the sphere by
distributions on the vertices of an inner and outer polytope. This
gives upper and lower bounds.

Even better: For an inner polytope with inscribed radius rin:

Rin ≤ R(%AB) ≤ Rin/rin

For a polytope with N vertices, K(µ) has O(N3) facets.

For the principal radius, there are only O(N3) possible C to check.
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Steering for Babies

For a truncated icosahedron with N = 60:

rin =

√
3

109
(17 + 6

√
5) ≈ 0.915

⇒ 60× 59× 58/6 = 34.220 linear programs with 60 variables each deter-
mine the critical radius with 9% error for any state.



Result I: Random cross-sections

252 vertices, 40 min
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Result II: One-way steerable states

%AB = α|θ〉〈θ|+ (1− α)%A ⊗
1

2
with |θ〉 = cos(θ/2)|00〉+ sin(θ/2)|11〉

J. Bowles et al., PRA 2016, M. Fillettaz et al., arXiv:1804.07576.



Conclusion

Steering is an interesting problem.

Entropic uncertainty relations offer a systematic way to derive
steering criteria.

For two-qubits and projective measurements the problem can be
solved with a geometric approach.

Many open problems remain: higher dimensions, POVMs, ....

Other applications: Simulatability of measurements, joint
measureability, entropic uncertainty relations, ...
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Further properties

For pures states:

R(|ψ〉) =

{
1/2 for entangled |ψ〉,
1 for product |ψ〉.

The critical radius is neither concave or convex. The level sets
Qt = {%AB : R(%AB) ≥ t} are convex.

Sometimes one can calculate the gradient for R.
⇒ Optimal steering inequalities

The critical radius can be defined for any operator. It is invariant
under partial transposition.
⇒ Steering 6= Entanglement
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Calculation of the critical radius

For a given polytope

For any µ, the capacity K(µ) is a polytope.

For a polytope with N vertices, K has O(N3)
facets.

This implies that for the pricipal radius, there
are only O(N3) possible C to check.

These C are independent of µ

All in all:
O(N3) linear programs with O(N) variables.
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PVMs vs POVMS

The critical radius can also be defined for higher-dimensional
systems and POVMs.

Scaling properties still hold, but no simple evaluation.

Numerical evidence for qubits: Already the principal radius for
PVMs and POVMs is the same for any µ.
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