The geometry of EPR correlations

Otfried Gühne Ana C.S. Costa, H. Chau Nguyen, H. Viet Nguyen, Roope Uola

Department Physik, Universität Siegen

- Motivation: Entanglement and steering
- Steering criteria from entropic uncertainty relations
- **③** Two-qubit steering: Geometric approach
- Two-qubit steering: Practical calculation
- Onclusion

Steering

Bell inequalities

Bell inequalities

Bell inequalities

- Alice and Bob measure A_x and B_y , obtain the results *a*, *b*.
- Question: Can the probabilities be written as

$$P(a,b|x,y) \stackrel{?}{=} \sum_{\lambda} p_{\lambda} p(a|x,\lambda) p(b|y,\lambda)$$

Entanglement

Entanglement

Entanglement vs. Separability

• A separable state can be written as

$$\varrho = \sum\nolimits_{\lambda} \boldsymbol{p}_{\lambda} \varrho_{\lambda}^{\boldsymbol{A}} \otimes \varrho_{\lambda}^{\boldsymbol{B}}$$

- Otherwise, the state is entangled.
- For the probabilities, this means that

$$P(a,b|x,y) = \sum_{\lambda} p_{\lambda} \operatorname{tr}(E_{a|x} \varrho_{\lambda}^{A}) \operatorname{tr}(E_{b|y} \varrho_{\lambda}^{B})$$

Entanglement criterion

Transposition and partial transposition

- Transposition: The usual transposition X → X^T does not change the eigenvalues of the matrix X
- For a product space one can also consider the partial transposition.
 If X = A ⊗ B :

 $X^{T_B} = A \otimes B^T$

Entanglement criterion

Transposition and partial transposition

- Transposition: The usual transposition X → X^T does not change the eigenvalues of the matrix X
- For a product space one can also consider the partial transposition.
 If X = A ⊗ B :

 $X^{T_B} = A \otimes B^T$

Partial transposition and separability

If a state is separable, then its partial transposition has no negative eigenvalues ("the state is PPT" or $\varrho^{T_B} \ge 0$).

Entanglement criterion

Transposition and partial transposition

- Transposition: The usual transposition X → X^T does not change the eigenvalues of the matrix X
- For a product space one can also consider the partial transposition.
 If X = A ⊗ B :

 $X^{T_B} = A \otimes B^T$

Partial transposition and separability

If a state is separable, then its partial transposition has no negative eigenvalues ("the state is PPT" or $\varrho^{T_B} \ge 0$).

Peres & Horodecki

For small dimensions $(2 \times 2 \text{ or } 2 \times 3)$: ϱ is PPT $\Leftrightarrow \varrho$ is separable.

A. Peres, PRL 77, 1413 (1996), Horodecki^{⊗3}, PLA 223, 1 (1996)

What happens in between?

What happens in between?

Mixed Scenario

• Consider probabilities of the form

 $P(a, b|x, y) = \sum_{\lambda} p_{\lambda} p(a|x, \lambda) \operatorname{Tr}(E_{b|y} \varrho_{\lambda}^{B}) = \operatorname{Tr}(E_{b|y} \varrho_{a|x})$

• What is the physical meaning of such probabilities?

Steering scenario

Steering scenario

- Alice makes measurements and claims that she can steer Bob's state with that. Bob does not believe it.
- Bob has conditional states $\varrho_{a|x}$ depending on A_x and result a.

Steering scenario

- Alice makes measurements and claims that she can steer Bob's state with that. Bob does not believe it.
- Bob has conditional states $\varrho_{a|x}$ depending on A_x and result a.
- If they are of the form

$$\varrho_{a|x} = \sum_{\lambda} p_{\lambda} p(a|x,\lambda) \sigma_{\lambda}^{B} = p(a|x) \sum_{\lambda} p(\lambda|a,x) \sigma_{\lambda}^{B}$$

then Bob is not convinced: Alice's results give only information about existing hidden states σ^B_λ

• Otherwise: Bob has to believe in a spooky action at a distance.

E. Schrödinger, Proc. Camb. Phil. Soc. 31, 555 (1935), H. M. Wiseman et al., PRL 98, 140402 (2007).

Consequences

- Steering is entanglement verification with one untrusted party.
- Typical question: Given an ensemble $\{\varrho_{a|x}\}$ of conditional states, is it steerable? Or is there a local hidden state model?
- $\bullet~$ Inclusion: Violation of a BI \Rightarrow Steerability $\Rightarrow~$ Entanglement

Consequences

- Steering is entanglement verification with one untrusted party.
- Typical question: Given an ensemble $\{\varrho_{a|x}\}$ of conditional states, is it steerable? Or is there a local hidden state model?
- Inclusion: Violation of a BI \Rightarrow Steerability \Rightarrow Entanglement

Steering helps

Peres Conjecture

- Conjecture: PPT states do not violate any Bell inequality.
 - A. Peres, Found. Phys. 29, 589 (1999).

Steering helps

Peres Conjecture

- Conjecture: PPT states do not violate any Bell inequality. A. Peres, Found. Phys. 29, 589 (1999).
- Some PPT entangled states can be used for steering. T. Moroder et al., PRL 113, 050404 (2014).

Steering helps

Peres Conjecture

- Conjecture: PPT states do not violate any Bell inequality. A. Peres, Found. Phys. 29, 589 (1999).
- Some PPT entangled states can be used for steering. T. Moroder et al., PRL 113, 050404 (2014).

• These PPT entangled states violate a Bell inequality. T. Vertesi, N. Brunner, Nature Comm. 5, 5297 (2014).

Menu

Steering criteria

- For entanglement, positive maps provide a systematic way to derive entanglement criteria.
- Is there a systematic method to derive steering criteria?

Menu

Steering criteria

- For entanglement, positive maps provide a systematic way to derive entanglement criteria.
- Is there a systematic method to derive steering criteria?

Two qubits

• The border of separability for two qubits can be computed with the PPT criterion

• How to compute the border of steerable states for two qubits?

Entropic Uncertainty Relations & Steering

Photo: A. Jaffe

Entropies

Von Neumann et al.

• Entropy for a distribution $\mathcal{P} = \{p_k\}$

$$S = -\sum_k p_k \ln(p_k)$$

• Relative entropy $D(\mathcal{P} \| Q) = \sum_k p_k \ln(p_k/q_k)$ and conditional entropy

S(B|A) = S(A,B) - S(A)

Entropies

Von Neumann et al.

• Entropy for a distribution $\mathcal{P} = \{p_k\}$

$$S = -\sum_k p_k \ln(p_k)$$

• Relative entropy $D(\mathcal{P} \| Q) = \sum_k p_k \ln(p_k/q_k)$ and conditional entropy

$$S(B|A) = S(A,B) - S(A)$$

• Tsallis entropy

$$S_q = -\sum_k p_k^q \ln_q(p_k)$$

with $\ln_q(x) = (x^{1-q} - 1)/(1-q)$

EUR

EUR

Let S(X) denote the entropy of the probability distribution of a measurement X. Then, e.g.,

 $S(\sigma_x) + S(\sigma_z) \ge \ln(2)$

EUR

EUR

Let S(X) denote the entropy of the probability distribution of a measurement X. Then, e.g.,

 $S(\sigma_x) + S(\sigma_z) \ge \ln(2)$

First criteria for steering

Consider the measurements $X = \sigma_x^A \otimes \sigma_x^B$ and $Z = \sigma_z^A \otimes \sigma_z^B$. Then, for unsteerable states

$$S(\sigma_x^B | \sigma_x^A) + S(\sigma_z^B | \sigma_z^A) \ge \ln(2)$$

This has a nice interpretation, but can it be generalized?

J. Schneeloch et al., PRA 87, 062103 (2013).

General criteria

Theorem

Any entropic uncertainty relation (arbitrary measurements and nearly arbitrary entropy) can be converted into a steering inequality.

Theorem

Any entropic uncertainty relation (arbitrary measurements and nearly arbitrary entropy) can be converted into a steering inequality.

Example: Tsallis

Let B_k be some observables on Bob's space with an EUR

 $\sum_k S_q(B_k) \ge C_q$

Then

$$\sum_{k} \left[S_q(B_k|A_k) + (1-q) \Gamma(A_k, B_k) \right] \geq C_q$$

with $\Gamma = f(p_{\alpha\beta})$ being a correction term.

Application

Isotropic states and q = 2

$$\varrho = \alpha |\Phi^+\rangle \langle \Phi^+| + (1-\alpha) \frac{\mathbb{I}}{d^2}$$

Other examples: One-way steerable states

Steering: Geometric approach

The map Λ

Reminder: the task

Consider the the conditional states $\varrho_{a|x}$. Can they be written as

$$\varrho_{\boldsymbol{a}|\boldsymbol{x}} \stackrel{?}{=} \sum_{\lambda} p_{\lambda} p(\boldsymbol{a}|\lambda, \boldsymbol{x}) \sigma_{\lambda}^{B}$$

The map Λ

Reminder: the task

Consider the the conditional states $\varrho_{a|x}$. Can they be written as

$$\varrho_{\boldsymbol{a}|\boldsymbol{x}} \stackrel{?}{=} \sum_{\lambda} p_{\lambda} p(\boldsymbol{a}|\lambda, \boldsymbol{x}) \sigma_{\lambda}^{B}$$

The map

Define for a state ρ_{AB} the map:

$$\Lambda(X_A) = Tr_A(\varrho_{AB}X_A \otimes \mathbb{1}_B)$$

For a measurement effect $E_{a|x}$ one has:

$$\varrho_{\mathsf{a}|\mathsf{x}} = \mathit{Tr}_{\mathsf{A}}(\varrho_{\mathsf{A}\mathsf{B}}\mathsf{E}_{\mathsf{a}|\mathsf{x}}\otimes\mathbb{1}_{\mathsf{B}}) = \mathsf{A}(\mathsf{E}_{\mathsf{a}|\mathsf{x}})$$

so Λ describes the steering outcomes.

Geometry of the map Λ

- The effects $0 \le E_{a|x} \le 1$ form a 4D double cone.
- A maps it to another double cone:

The capacity \mathcal{K}

• For projective measurements with $E_{+|x} + E_{-|x} = \mathbb{1}_A$ on a qubit we have to solve:

$$\varrho_{\pm|x} = \Lambda(E_{\pm|x}) \stackrel{?}{=} \int d\mu(\sigma) G_{\pm|s}(\sigma) \sigma,$$

with $G_{+|x} + G_{-|x} = 1$ and $\varrho_B = \Lambda(\mathbb{1}_A) = \int d\mu(\sigma)\sigma$.

The capacity ${\cal K}$

For projective measurements with E_{+|x} + E_{-|x} = 1_A on a qubit we have to solve:

$$\varrho_{\pm|x} = \Lambda(E_{\pm|x}) \stackrel{?}{=} \int d\mu(\sigma) G_{\pm|s}(\sigma) \sigma,$$

with $G_{+|x} + G_{-|x} = 1$ and $\varrho_B = \Lambda(\mathbb{1}_A) = \int d\mu(\sigma)\sigma$.

• The set of all reachable $\varrho_{\pm|x}$ is the capacity of μ

$$\mathcal{K}(\mu) = \Big\{ \mathcal{K} = \int d\mu(\sigma) g(\sigma) \sigma : 0 \leq g(\sigma) \leq 1 \Big\}.$$

• For a given μ the set $\mathcal{K}(\mu)$ is convex and contains 0_B and ϱ_B .

 We want to check the relation between the image of Λ and K(μ)

- We want to check the relation between the image of Λ and K(μ)
- This is simplified be geometry: The equator suffices!

- We want to check the relation between the image of Λ and K(μ)
- This is simplified be geometry: The equator suffices!
- We need to compute the principal radius $r(\rho_{AB}, \mu)$ in the appropriate norm!
- If $r(\rho_{AB}, \mu) \ge 1$ then ρ_{AB} is not steerable.

• For qubits, this boils down to a simple optimization problem:

$$r(\varrho_{AB},\mu) = \min_{C} \frac{1}{\sqrt{2} \| \operatorname{Tr}_{B}[\bar{\varrho}(\mathbb{1}_{A} \otimes C)] \|} \int d\mu(\sigma) | \operatorname{Tr}_{B}(C\sigma)|,$$

where $\bar{\varrho} = \varrho_{AB} - (\mathbb{1}_A \otimes \varrho_B)/2$, $||X|| = \sqrt{Tr(X^{\dagger}X)}$, and *C* denotes an observable on Bob's space.

• For qubits, this boils down to a simple optimization problem:

$$r(\varrho_{AB},\mu) = \min_{C} \frac{1}{\sqrt{2} \| \operatorname{Tr}_{B}[\bar{\varrho}(\mathbb{1}_{A} \otimes C)] \|} \int d\mu(\sigma) | \operatorname{Tr}_{B}(C\sigma)|,$$

where $\bar{\varrho} = \varrho_{AB} - (\mathbb{1}_A \otimes \varrho_B)/2$, $||X|| = \sqrt{Tr(X^{\dagger}X)}$, and *C* denotes an observable on Bob's space.

• Proof idea: Characterize $\mathcal{K}(\mu)$ by linear inequalities, apply Λ^{-1} , and project onto equator.

Criterion

The critical radius

• The critical radius is obtained via optimization over all μ :

$$R(\varrho_{AB}) = \max_{\mu} r(\varrho_{AB}, \mu).$$

Subtle points under the carpet: R(ϱ_{AB}) [?] = ∞, R(ϱ_{AB}) not continuous, μ^{*} exists, ...

Criterion

The critical radius

• The critical radius is obtained via optimization over all μ :

$$R(\varrho_{AB}) = \max_{\mu} r(\varrho_{AB}, \mu).$$

Subtle points under the carpet: R(ϱ_{AB}) [?] = ∞, R(ϱ_{AB}) not continuous, μ^{*} exists, ...

Main result for two qubits & projective measurements

 ϱ_{AB} is steerable $\Leftrightarrow R(\varrho_{AB}) < 1$

Remaining task: Compute the critical radius ...

Scaling property of the critical radius

• States mixed with separable noise $\varrho_{\alpha}^{n} = \alpha \varrho_{AB} + (1 - \alpha) \mathbb{1}_{A} \otimes \varrho_{B}/2$ obey:

$$R(\varrho^{\mathrm{n}}_{\alpha}) = rac{1}{lpha} R(\varrho_{AB}).$$

Scaling property of the critical radius

States mixed with separable noise ρⁿ_α = αρ_{AB} + (1 − α) 𝔅_A ⊗ ρ_B/2 obey:

$$R(arrho_{lpha}^{\mathrm{n}})=rac{1}{lpha}R(arrho_{AB}).$$

• Consequently, the border of unsteerable states can be computed:

Symmetry of the critical radius

• Given a state ρ_{AB} , consider the family of states

$$ilde{arrho} = rac{1}{\mathcal{N}} (U_A \otimes V_B) arrho_{AB} (U_A^\dagger \otimes V_B^\dagger),$$

• Then, the critical radius stays the same

 $R(\varrho_{AB}) = R(\tilde{\varrho})$

- For steerability, this was known. R. Gallego et al., PRX 2015, M. Tulio Quintino et al., PRA 2015, R. Uola et al., PRL 2014.
- Under these transformations, any state can be brought into a canonical form.

• Idea: Approximate probability distributions on the sphere by distributions on the vertices of an inner and outer polytope. This gives upper and lower bounds.

• Idea: Approximate probability distributions on the sphere by distributions on the vertices of an inner and outer polytope. This gives upper and lower bounds.

• Even better: For an inner polytope with inscribed radius r_{in}:

 $R_{
m in} \leq R(\varrho_{AB}) \leq R_{
m in}/r_{
m in}$

• Idea: Approximate probability distributions on the sphere by distributions on the vertices of an inner and outer polytope. This gives upper and lower bounds.

• Even better: For an inner polytope with inscribed radius r_{in}:

 $R_{
m in} \leq R(\varrho_{AB}) \leq R_{
m in}/r_{
m in}$

- For a polytope with N vertices, $\mathcal{K}(\mu)$ has $O(N^3)$ facets.
- For the principal radius, there are only $O(N^3)$ possible C to check.

Steering for Babies

For a truncated icosahedron with N = 60:

$$r_{
m in} = \sqrt{rac{3}{109}(17+6\sqrt{5})} pprox 0.915$$

 \Rightarrow 60 \times 59 \times 58/6 = 34.220 linear programs with 60 variables each determine the critical radius with 9% error for *any* state.

Result I: Random cross-sections

Result I: Random cross-sections

252 vertices, 40 min

Result II: One-way steerable states

J. Bowles et al., PRA 2016, M. Fillettaz et al., arXiv:1804.07576.

Conclusion

- Steering is an interesting problem.
- Entropic uncertainty relations offer a systematic way to derive steering criteria.
- For two-qubits and projective measurements the problem can be solved with a geometric approach.
- Many open problems remain: higher dimensions, POVMs,
- Other applications: Simulatability of measurements, joint measureability, entropic uncertainty relations, ...

Literature

- A. C.S. Costa, R. Uola, and O. Gühne, arXiv:1710.04541
- H.C. Nguyen, H.-V. Nguyen, and O. Gühne, arXiv:1808.09349

Acknowledgements

Further properties

• For pures states:

$${\cal R}(|\psi
angle) = \left\{egin{array}{ll} 1/2 & {
m for entangled} \ |\psi
angle, \ 1 & {
m for product} \ |\psi
angle. \end{array}
ight.$$

Further properties

• For pures states:

$$\mathcal{R}(|\psi\rangle) = \left\{ egin{array}{ll} 1/2 & ext{for entangled } |\psi
angle, \ 1 & ext{for product } |\psi
angle. \end{array}
ight.$$

- The critical radius is neither concave or convex. The level sets $Q_t = \{\varrho_{AB} : R(\varrho_{AB}) \ge t\}$ are convex.
- Sometimes one can calculate the gradient for *R*.
 - \Rightarrow Optimal steering inequalities

Further properties

• For pures states:

$$\mathcal{R}(|\psi\rangle) = \left\{ egin{array}{ll} 1/2 & ext{for entangled } |\psi
angle, \ 1 & ext{for product } |\psi
angle. \end{array}
ight.$$

- The critical radius is neither concave or convex. The level sets $Q_t = \{\varrho_{AB} : R(\varrho_{AB}) \ge t\}$ are convex.
- Sometimes one can calculate the gradient for *R*.
 ⇒ Optimal steering inequalities
- The critical radius can be defined for any operator. It is invariant under partial transposition.

 $\Rightarrow \mathsf{Steering} \neq \mathsf{Entanglement}$

For a given polytope

- For any μ , the capacity $\mathcal{K}(\mu)$ is a polytope.
- For a polytope with N vertices, \mathcal{K} has $O(N^3)$ facets.

For a given polytope

- For any μ , the capacity $\mathcal{K}(\mu)$ is a polytope.
- For a polytope with N vertices, K has $O(N^3)$ facets.
- This implies that for the pricipal radius, there are only $O(N^3)$ possible C to check.
- These C are independent of μ

All in all: $O(N^3)$ linear programs with O(N) variables.

PVMs vs POVMS

- The critical radius can also be defined for higher-dimensional systems and POVMs.
- Scaling properties still hold, but no simple evaluation.
- Numerical evidence for qubits: Already the principal radius for PVMs and POVMs is the same for any μ.

