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Overview

@ Motivation: Entanglement and steering

@ Steering criteria from entropic uncertainty relations
© Two-qubit steering: Geometric approach

@ Two-qubit steering: Practical calculation

© Conclusion
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Bell inequalities
@ Alice and Bob measure A, and B, obtain the results a, b.
@ Question: Can the probabilities be written as

P(a, blx,y) = pap(alx, \)p(bly, A)
A
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Alice and Bob share a state [1)).

Entanglement vs. Separability
@ A separable state can be written as
_ A B
0= PA®ak

@ Otherwise, the state is entangled.

@ For the probabilities, this means that

P(a, blx,y) = Z)\ pAtr(Ea‘Xgﬁ\‘)tr(Ebwgf)




Entanglement criterion

Transposition and partial transposition

@ Transposition: The usual transposition X — X' does not change
the eigenvalues of the matrix X

@ For a product space one can also consider the partial transposition.
fX=A®B:

X8 =Ag BT
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Entanglement criterion

Transposition and partial transposition

@ Transposition: The usual transposition X — X' does not change
the eigenvalues of the matrix X

@ For a product space one can also consider the partial transposition.
fX=A®B:
X8 =A@ BT

Partial transposition and separability

If a state is separable, then its partial transposition has no negative eigen-
values (“the state is PPT" or o’8 > 0).

Peres & Horodecki
For small dimensions (2 x 2 or 2 x 3): g is PPT < o is separable.

A. Peres, PRL 77, 1413 (1996), Horodecki®3, PLA 223, 1 (1996)
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NPT states




What happens in between?

Alice and Bob share a state [9)).




What happens in between?

Alice and Bob share a state [9)).
i‘\

A5

At

Lo -l

Mixed Scenario

@ Consider probabilities of the form
'D(37 b|XaY) = Z)\ p/\p(a|X, >‘) Tr(Eb\yQE) = Tr(Eb|y9a|x)

@ What is the physical meaning of such probabilities?
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@ Alice makes measurements and claims that she can steer Bob's
state with that. Bob does not believe it.

@ Bob has conditional states g, depending on A, and result a.
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@ Alice makes measurements and claims that she can steer Bob's
state with that. Bob does not believe it.

@ Bob has conditional states g, depending on A, and result a.

@ If they are of the form

Qalx = Z)\ p,\p(a|x, /\)Uf = p(a|X) ZA p(/\|av X)Uf

then Bob is not convinced: Alice’s results give only information

about existing hidden states o

@ Otherwise: Bob has to believe in a spooky action at a distance.

E. Schrédinger, Proc. Camb. Phil. Soc. 31, 555 (1935), H. M. Wiseman et al., PRL 98, 140402 (2007).




Consequences

@ Steering is entanglement verification with one untrusted party.

@ Typical question: Given an ensemble {0, } of conditional states, is
it steerable? Or is there a local hidden state model?

@ Inclusion: Violation of a Bl = Steerability = Entanglement
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all states
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Peres Conjecture

@ Conjecture: PPT states do not violate any Bell inequality.
A. Peres, Found. Phys. 29, 589 (1999).
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Steering helps

Peres Conjecture

@ Conjecture: PPT states do not violate any Bell inequality.
A. Peres, Found. Phys. 29, 589 (1999).

@ Some PPT entangled states can be used for steering.
T. Moroder et al., PRL 113, 050404 (2014).

bound entangled
steerable states

@ These PPT entangled states violate a Bell inequality.
T. Vertesi, N. Brunner, Nature Comm. 5, 5297 (2014).
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@ For entanglement, positive maps provide a systematic way to derive
entanglement criteria.
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Steering criteria

@ For entanglement, positive maps provide a systematic way to derive
entanglement criteria.

@ Is there a systematic method to derive steering criteria?

Two qubits

@ The border of separability for two qubits can be computed with the
PPT criterion

@ How to compute the border of steerable states for two qubits?




Entropic Uncertainty Relations & Steering |
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Entropies

Von Neumann et al.

@ Entropy for a distribution P = {px}
S==> piIn(py)
K

@ Relative entropy D(P||Q) = >, P« In(px/qx) and conditional

ntr
e S(BJA) = S(A, B) — S(A)




Entropies

Von Neumann et al.

@ Entropy for a distribution P = {px}
S==> piIn(py)
K

@ Relative entropy D(P||Q) = >, P« In(px/qx) and conditional

ntr
e S(BJA) = S(A, B) — S(A)

@ Tsallis entropy

Sq =~ ZPZ Ing(px)
k

with Ing(x) = (x}79 - 1)/(1 — q)
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Let S(X) denote the entropy of the probability distribution of a measure-
ment X. Then, e.g.,
S(ox) + S(o2) > In(2)
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EUR

Let S(X) denote the entropy of the probability distribution of a measure-

ment X. Then, e.g.,
S(ox) + S(o,) > In(2)

First criteria for steering

Consider the measurements X = 04 ® 08 and Z = 02 @ ¢B. Then, for
unsteerable states

S(o¢|o%) + S(o7|0f) = In(2)

This has a nice interpretation, but can it be generalized?
J. Schneeloch et al., PRA 87, 062103 (2013).




General criteria

Theorem

Any entropic uncertainty relation (arbitrary measurements and nearly ar-
bitrary entropy) can be converted into a steering inequality.
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Theorem

Any entropic uncertainty relation (arbitrary measurements and nearly ar-
bitrary entropy) can be converted into a steering inequality.

y

Example: Tsallis

Let Bk be some observables on Bob's space with an EUR
qu(Bk) 2 Cq
k

Then

> [Sa(BrlA) + (1 — @) (A, Bi)] >

with I = f(pag) being a correction term.




Application

Isotropic states and g = 2
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Other examples: One-way steerable states




Steering: Geometric approach




The map A

Reminder: the task
Consider the the conditional states g,.. Can they be written as

?
Qalx = ZA PAP(ap\a X)Uf




The map A

Reminder: the task

Consider the the conditional states g,.. Can they be written as

?
Qalx = Z)\ PAP(3|)\a X)Uf

The map

Define for a state pag the map:

A(Xa) = Tra(oasXa @ 1g)

For a measurement effect E,|, one has:

Oaix = Tra(0aBEax ® 18) = N(Ej)x)

so A\ describes the steering outcomes.




Geometry of the map A

@ The effects 0 < E,|, < 1 form a 4D double cone.

@ A maps it to another double cone:

L]

@ Wilog: A is invertible.




The capacity K

@ For projective measurements with E |, + E_|, = 14 on a qubit we
have to solve:

?

0xx = NExx) = /dM(U)Gﬂs(U)O’,

with G|+ G_ |y, =1 and gg = A(14) = [ du(o)o.
+ \




The capacity K

@ For projective measurements with E |, + E_|, = 14 on a qubit we
have to solve:

?

0xx = NExx) = /dN(U)Gi\s(U)O’,

with G|, + G_|x =1 and gp = A(1La) = [ du(o)o.

@ The set of all reachable g, is the capacity of u

() = {K = / d(o)e(e)o -0 < (o) <1}.

@ For a given u the set K(u) is convex and contains Og and gg.
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@ We want to check the relation between the
image of A and K(u)
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Geometry

We want to check the relation between the
image of A and K(u)

This is simplified be geometry: The equator
suffices!

We need to compute the principal radius
r(oaB, 1) in the appropriate norm!

If r(oas, t) > 1 then gap is not steerable.




Geometry

@ For qubits, this boils down to a simple optimization problem:

s = d T C
r{oas, 1) fTrB[gnA®c1||/ ulo)l Trs(Co)l

where g = pag — (14 ® 08)/2, | X| = v/ Tr(XTX), and C denotes
an observable on Bob's space.




Geometry

@ For qubits, this boils down to a simple optimization problem:

r(oag, 1) = min \/_||TFB[Q(]1A® N /du(a | Trg(Co)|,

where g = oag — (14 ® 08)/2, || X|| = v/ Tr(X7X), and C denotes
an observable on Bob's space.

@ Proof idea: Characterize k(1) by linear inequalities, apply A=, and
project onto equator.




Criterion

The critical radius

@ The critical radius is obtained via optimization over all pu:

R(QAB) = mle f(QAB,M)-

@ Subtle points under the carpet: R(0ag) Z 00, R(0aB) not
continuous, u* exists, ...




Criterion

The critical radius

@ The critical radius is obtained via optimization over all pu:

R(QAB) = mle f(QAB, M)-

@ Subtle points under the carpet: R(0ag) Z 00, R(0aB) not
continuous, u* exists, ...

Main result for two qubits & projective measurements

04g is steerable < R(pag) < 1

Remaining task: Compute the critical radius ...



Scaling property of the critical radius

@ States mixed with separable noise ¢ = aoag + (1 — a)la ® 05/2
obey:

R(Qg) = éR(QAB)'




Scaling property of the critical radius

@ States mixed with separable noise o5 = apag + (1 — a)la ® 05/2
obey:

R(Qg) = éR(QAB)'

@ Consequently, the border of unsteerable states can be computed:




Symmetry of the critical radius

@ Given a state pag, consider the family of states

N 1
0= N(UA ® VB)QAB(UI\ & Vg)v

@ Then, the critical radius stays the same

R(eag) = R(3)
@ For steerability, this was known.

R. Gallego et al., PRX 2015, M. Tulio Quintino et al., PRA 2015, R. Uola et al., PRL 2014.

@ Under these transformations, any state can be brought into a
canonical form.




Calculation of the critical radius




Calculation of the critical radius

@ ldea: Approximate probability distributions on the sphere by
distributions on the vertices of an inner and outer polytope. This
gives upper and lower bounds.
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Calculation of the critical radius

@ ldea: Approximate probability distributions on the sphere by
distributions on the vertices of an inner and outer polytope. This
gives upper and lower bounds.

OB

0
@ Even better: For an inner polytope with inscribed radius ry,:

Rin < R(QAB) S Rin/rin

@ For a polytope with N vertices, k(1) has O(N?) facets.

@ For the principal radius, there are only O(N3) possible C to check.

4




Steering for Babies

For a truncated icosahedron with N = 60:

[3
fin =/ 15517+ 6v/5) ~ 0.915

= 60 x 59 x 58/6 = 34.220 linear programs with 60 variables each deter-
mine the critical radius with 9% error for any state.




Result I: Random cross-sections

[] separable [l entangled but two-way unsteerable
[l one-way steerable [ two-way steerable [J] numerical uncertainty

252 vertices, 40 min



Result |I: Random cross-sections

252 vertices, 40 min



Result |I: One-way steerable states

1.0

— steering AtoB

— steering Bto A

0.8k upper/lower bounds

\ SDP upper/lower bounds

0.6r

0.4t . . . . :
00 01 02 03 04 0.5

sin? 6
ons = o) (6] + (1~ a)oa @ 3 with 16) = cos(8/2)]00) + sin(9/2)/11)

J. Bowles et al., PRA 2016, M. Fillettaz et al., arXiv:1804.07576.



Conclusion

@ Steering is an interesting problem.

@ Entropic uncertainty relations offer a systematic way to derive
steering criteria.

@ For two-qubits and projective measurements the problem can be
solved with a geometric approach.

@ Many open problems remain: higher dimensions, POVMs, ....

@ Other applications: Simulatability of measurements, joint
measureability, entropic uncertainty relations, ...
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Further properties

@ For pures states:

[ 1/2 for entangled |4},
R(|4)) = { 1 for product [¢)).

@ The critical radius is neither concave or convex. The level sets
Q: = {0aB : R(0ag) > t} are convex.

@ Sometimes one can calculate the gradient for R.
= Optimal steering inequalities

@ The critical radius can be defined for any operator. It is invariant
under partial transposition.
= Steering # Entanglement
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@ For any p, the capacity K(u) is a polytope.




Calculation of the critical radius

oB

For a given polytope

@ For any p, the capacity K(u) is a polytope.

\ @ For a polytope with N vertices, K has O(N3)
/4' facets.




Calculation of the critical radius

oB

For a given polytope

@ For any p, the capacity K(u) is a polytope.

i @ For a polytope with N vertices, K has O(N3)
=2 facets.

@ This implies that for the pricipal radius, there
are only O(N?®) possible C to check.

/ @ These C are independent of u

4 Allin all:
' O(N3) linear programs with O(N) variables.




PVMs vs POVMS

@ The critical radius can also be defined for higher-dimensional
systems and POVMs.

@ Scaling properties still hold, but no simple evaluation.

@ Numerical evidence for qubits: Already the principal radius for
PVMs and POVMs is the same for any u.
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