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Partially separable states:

More parties  more types of entanglement  more complex



Entanglement depth and k-producibility

[B. Lücke et al. Phys. Rev. Lett. 112 15 (2014)]
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Entanglement Depth Witness

• 2-body PI Bell Operator

• Consider a partition        of 

• Optimize Bell operator over states and measurements
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Finding the bounds: Key points

• In the (n,2,2) scenario, maximal quantum violation can be achieved with:

Pure qubit states

Real observables

[B. Toner & F. Verstraete, arXiv quant-ph/0611001 (2006)]
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• Expectation value involves at most 2-body terms
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2-body terms

Crossed regions

2-body terms

• Rewrite Bell operator as
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2 ways to optimize, from “above” and from “below”, to ensure convergence of

• Method 1: Seesaw optimization, upper bound

Optimize region while fixing all other regions

• Method 2: PPT criteria + SDP, certificate lower bound

Note: satisfies all previous constraints

Hence,



Finding the bounds: Numerical insights

Optimal is achieved when:

All “Alices” set the same measurement input;

All “Bobs” set the same measurement input;

…

The whole system is not PI,

but the regions become PI

Schur-Weyl duality Block-diagonal decomposition

Project each region from a to an

[J. Tura et al. Annals of Physics 352 370 (2015)]

[T. Moroder et al. New J. Phys 14 (2012)]
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Analytical approximation

• Class of states: Gaussian superposition of Dicke states for each region

• polynomial depending on

For large      converges to the 



Analytical approximation: asymptotic behaviour
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Comparison to other criteria and experimental data

[D.J. Wineland et al. Phys. Rev. A 50 67 (1994)]

[R. Schmied et al. Science 352 6284 (2016)]]
[F. Baccari et al. arXiv: 1802.09516 (2018)]



Conclusions

 We present a method to derive DIWEDs from many-body Bell inequalities
- In the (n,2,2) Bell scenario

 When applied to 2-body PI Bell inequalities:
- Obtain DIWEDs that involve at most 2-body correlation functions

- Numerically characterize a hierarchy of bounds that certify amount of entanglement

 Experimentally, the techniques proposed are within reach of current

technology
- For instance they can be applied on systems where the total spin components can

be accessed



Thanks for your attention
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