Momentum-space entanglement and Loschmidt echo in Luttinger liquids after a quantum quench

Balázs Dóra¹, Rex Lundgren², Frank Pollmann³

¹ Department of Theoretical Physics, Budapest University of Technology and Economics, Budapest, Hungary

² Department of Physics, The University of Texas at Austin, Austin, USA ³ Technical University of München, München, Germany

Outline: • Entanglement: why in momentum space?

- Loschmidt echo
- Momentum space entanglement in LLs
- Exact diagonalization of spinless fermions (XXZ chain)

Entanglement

Wavefunction: $|\Psi\rangle \longrightarrow$ density matrix: $\rho = |\Psi\rangle\langle\Psi|$.

Tracing out B: reduced density matrix $\rho_A = \text{Tr}_B \rho \sim \exp(-H_E)$ entanglement Hamiltonian

entangled state: reduced density matrix does not follow from wavefunction

Universal quantities: entanglement entropy $S = -\text{Tr}\rho_A \ln(\rho_A)$, diagnoses critical points

Entanglement spectrum from H_E : probably not universal

1D critical systems, spatial partitioning: $S = \frac{c}{3} \ln(L)$ in equilibrium (area law) and $\sim t$ after a quench

Momentum space entanglement

Many instabilities occur in momentum space rather than in real space:

• Cooper pairs: particles with opposite momentum, superconductivity

- Superfluid Bose systems: particles with opposite momentum, sound
- Density waves: electron-hole pairs with a finite wavevector difference
- Luttinger liquids: coupling right- and left-moving fermions together

A momentum-space partition offers a unique perspective on the structure of many-particle wavefunctions!

Disentangles quantumness and correlations.

Luttinger liquid in equilibrium

Interacting 1D electron gas: metallic or gapped, Fermi liquid picture breaks down.

Loschmidt echo

 $\mathcal{L}(t) \equiv \left| \langle \Psi_0(t) | \Psi(t) \rangle \right|^2 = \left| \langle \Psi_0 | U_2^+(t) U_1(t) | \Psi_0 \rangle \right|^2$

• measures the "distance" between two quantum states, characterizes non-equilibrium time evolution,

- contains all higher moments of energy, work statistics, P(W),
- measures how small changes during a time evolution cause decoherence and are detrimental for quantum information processing and storage, NMR.

Momentum space entanglement spectrum

The largest eigenvalue of ρ_A (single copy (or $n = \infty$ Rényi) entropy):

 $P_{max} = |\langle \Psi_0 | \Psi(t) \rangle|^2,$

identical to Loschmidt echo and related to work statistics!

Numerics (PBC, N = 10, 14...26):

Momentum space entanglement entropy and gap

ίω

g(q)

6

Summary

- Other than real space partitioning is useful for entanglement.
- MSE: disentangles correlations from pure quantumness.
- For a LL: entanglement ground state = Loschmidt echo.
- The EG is universal for LL and stays *finite* at BKT: advantagous for numerics
- Volume law for the EE.
- Measuring ES is difficult, maybe overlaps?