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Abstract  
• Bound entanglement is a curious form of quantum correlation. 
  
• Many tasks in quantum information require pure state entanglement. 

However, bound entangled states are so weakly entangled that no pure 
state entanglement can be distilled from them. 
 

• It became an open problem for which tasks bound entanglement can be a 
useful quantum resource. In this talk we show two such applications: 
quantum metrology and Bell nonlocality. 

  
• In particular, it is shown that bound entangled states can outperform 

separable states in linear interferometers, and they can give rise to Bell 
nonlocality from which true randomness can be certified.  
 

• Powerful iterative methods are presented to find such bound entangled 
states. 
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Motivation  
The (bipartite) state is separable: 
 
 
 
 
 
The state is entangled iff it cannot be written in the above 
form. 
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Motivation  
The singlet state is a pure state, and it is a maximally 
entangled state of two quantum bits (qubits): 
 
 
 
 
 
The above singlet state is a key resource for many quantum 
applications (e.g. teleportation, entanglement based 
cryptography).   
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Motivation 

However, in the real world noise is unavoidable: we have 
entangled mixed states instead of entangled pure states.  
 
How to solve this problem? Is it possible to find applications 
which use entangled mixed states as a resource?   
  
Especially: Can very weakly entangled mixed states be useful for 
applications? 
 
We focus on two application areas: 
Quantum metrology and Bell nonlocality. 
  



Bound entanglement 

A mysteries family of weakly entangled mixed states is the so-
called bound entangled states. These states require some 
initial amount of entanglement for their preparation. 
However, they contain this useful resource in such a noisy 
form that it is not possible to extract pure state entanglement 
out of them.  

 
We introduce so-called PPT bound entangled states, and then 

show that some of them are useful in metrology and Bell 
nonlocality.   

  



Bound entanglement  
Suppose that Alice and Bob share k copies of a mixed 
entangled state          :        
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Bound entanglement  
To extract singlet pairs, they run a distillation protocol (local 
quantum operations and classical communication -- LOCC):      
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Bound entanglement  
As a result they end up with m<k copies of a singlet state, 
which can be used for quantum information purposes. 
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Bound entanglement  
Every two-qubit entangled state           can be used to distill 
singlets with the above distillation protocol (Horodecki et al, 
1997).  
 
Is it also true for systems of higher dimension? 
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Bound entanglement  
It turns out not to be the case: in higher dimensions there 
exist noisy entangled states that cannot be distilled by LOCC 
into the singlet state (Horodeckis, 1998). 
 
These states that are entangled yet not distillable are called 
bound entangled.  
 
The smallest example is a 3x3 dimensional state.     
                      



Bound entanglement  
Multipartite bound entangled states have been 
experimentally realized. 
 
The 4-qubit Smolin state was encoded in the polarization of 
4 photons: 
 
 
 
 
 
 
 
 
                              Lavoire et al. 2010, PRL 
                      



Bound entanglement  
Given a state           . How to decide if it is undistillable?  
 
It is a difficult question in general, since there is no 
restriction on the specific type of LOCC operations or on the 
number of copies used in the distillation protocol.  
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Bound entanglement  
Still there is a sufficient condition to undistillability: 
 
If a state is positive under the partial transposition (PT) 
map:  
 
then the state is undistillable. In this case we say that the 
state is PPT. 
 
E.g. The following states are PPT: 
 
 
 
Hence, these states are undistillable. 
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Bound entanglement  
 
Such PPT states, provided they are entangled, are called PPT 
bound entangled states. We will construct such states, and 
show that some of them are useful in Bell nonlocality and in 
metrology as well.   
 



Metrology 
 

Basic task in metrology:                                            M 
 
 
 
 
 
 
Estimate the parameter      in the dynamics. In order to do it      
we prepare a probe state     , let it evolve, and finally 
measure the evolved state        with an operator M.  
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Metrology 
 

Basic task in metrology:                                            M 
 
 
 
 
 
 
     is said to be useful if it gives better precision for     than 
any separable state. 
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Metrology 
 
The precision of the estimation of     is given by the formula:  
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Metrology 
 
The precision of the estimation of     is given by the formula:  
 
 
 
 
Accordingly, it depends on two things: 
 
o The sensitivity of <M> to the change of 
o The variance of M  
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Metrology 
The precision of parameter     is limited by the Cramér-Rao 
bound as 
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Metrology 
The precision of parameter     is limited by the Cramér-Rao 
bound as 
 
 
Above                is the quantum Fisher information:   
 
 
 
 
where                         . In linear interferometers A are 
collective operators:   
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Metrology 
Metrology is linked to the entanglement of     : 
 
Shot noise limit: 
 
The above inequality holds for N-qubit separable states. A 
quantum state is useful in metrology if it violates the above 
inequality. 
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Metrology 
Metrology is linked to the entanglement of     : 
 
Shot noise limit: 
 
The above inequality holds for N-qubit separable states. A 
quantum state is useful in metrology if it violates the above 
inequality. 
 
Heisenberg limit: 
 
The maximum attainable limit, where the N2 bound can be 
saturated with certain multipartite states (e.g. with GHZ or 
Dicke states).  
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Metrologically useful bound 
entangled states  

 
Is it possible to find multipartite fully bound entangled 
states which beat the shot noise limit? These states are PPT 
for all bipartitions.  
This question was raised by Czekaj et al. in [Phys. Rev. A 92, 
062303 (2015)]. 
 
The answer is yes. Results presented:  
 
G. Tóth & T. Vértesi (2018). Quantum states with a positive 
partial transpose are useful for metrology. Physical Review 
Letters 120, 020506. 
 
  
 



Metrologically useful bound 
entangled states  

 
  FQ  > FQsep for the following fully bound entangled states: 
 
 
 
 
   
 
 

System A FQ FQ_sep p_white 

four qubits Jz 4.0088 4 0.0011 

three qubits jz(1) + jz(2) 2.0021 2 0.0005 

2 x 4 jz(1) + jz(2) 2.0033 2 0.0008 



Metrologically useful bound 
entangled states  

 
     FQ  > FQsep for the following bipartite bound entangled states: 
 
 
 
 
 
 
 
 
 
     Here A is not the usual JZ operator. It has the form: 
 
                                     ,    with 
                                             

System FQ FQ_sep p_white 

3 x 3 8.0085 8 0.0003 

4 x 4 9.3726 8 0.0382 

12 x 12 11.3618 8 0.0808 

HIIHA ⊗+⊗= ( ),-1,-1,1,1,diag=H



Metrologically useful bound 
entangled states  

 
In the case of the 4x4 system, the bound entangled state is 
 
 
 
 
 
where the states           are rank-2 and rank-3 respectively in 
tha above sum.  
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Metrologically useful bound 
entangled states  

 
How did we find the bound entangled states above? 
 
Basically, there are two different approaches (and we used 
the second one). 
 
 
 
 
 
 
 
                                             



Metrologically useful bound 
entangled states  

 
 
1) „Brute force” approach. Let us recall the definition for the 
quantum Fisher information: 
 
 
 
 
 
where                             and let A be some fixed collective 
operator. 
 
Let us optimize      over               states.  
However, it is extremely hard to maximize a convex function 
over a convex set.                                      
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Metrologically useful bound 
entangled states  

 
 
2) Iterative approach. Note that the maximum for PPT 
bound entangled states can alternatively be written as a 
double optimization: 
 
 
 
 
 
   This can be optimized in a see-saw manner for a fixed A. 
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Metrologically useful bound 
entangled states  

  Goal: 
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Metrologically useful bound 
entangled states  

step 0: pick random operators M 

  Goal: 
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Metrologically useful bound 
entangled states  

step 0: pick random operators M 

  Goal: 
 
 
 
 
 
                                                                                                                                                                          
      
 
 
 
 

step 1: maximize over PPT states 
ρ_PPT for a given M 
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Metrologically useful bound 
entangled states  

step 0: pick random operators M 

  Goal: 
 
 
 
 
 
                                                                                                                                                                          
      
 
 
 
 

step 1: maximize over PPT states 
ρ_PPT for a given M 

step 2: maximize over M for a 
given PPT state   
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M is given by the SLD  
(e.g. M.G.A. Paris, 2009) 



Metrologically useful bound 
entangled states  

step 0: pick random operators M 

  Goal: 
 
 
 
 
 
                                                                                                                                                                          
      
 
 
 
 

step 1: maximize over PPT states 
ρ_PPT for a given M 

step 2: maximize over M for a 
given PPT state  

step 3: back to step 1 until 
convergence is achieved 
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M is given by the SLD  
(e.g. M.G.A. Paris, 2009) 



Metrologically useful bound 
entangled states  

step 0: pick random operators M 

  Goal: 
 
 
 
 
 
                                                                                                                                                                          
      
 
 
 
 
The FQ value cannot get worse with the number of iterations! 

step 1: maximize over PPT states 
ρ_PPT for a given M 

step 2: maximize over M for a 
given PPT state  

step 3: back to step 1 until 
convergence is achieved 
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M is given by the SLD  
(e.g. M.G.A. Paris, 2009) 



Metrologically useful bound 
entangled states  

   
 
 
 
 
 
                                                                                                                                                                          
      
 
 
 
 
Plot: convergence to the optimal FQ value during the generation of 
the 4x4 bound entangled state. Dashed line stands for FQsep . 



Open problem 
 
   
 
 
 
 
 
 

   
 
  
 
 
 
 
 

Are there fully bound entangled states which can be used to 
attain the Heisenberg scaling                          ?  
 

( ) 2~, NJF zQ ρ



Open problem 
 
   
 
 
 
 
 
 

   
 
  
 
 
 
 
 

Only partial results in the literature.  
 
Bound entangled states with PPT and some non-PPT partitions: 
  
o Violates an entanglement criterion with three quantum Fisher 
information terms [P. Hyllus, W. Laskowski, R. Krischek, C. 
Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezze, and A. 
Smerzi, PRA 85, 022321 (2012).] 
 
o Violates an entanglement criterion with a single quantum 
Fisher information term better than shot-noise limit [Ł. Czekaj, A. 
Przysiezna, M. Horodecki, P. Horodecki, Phys. Rev. A 92, 062303 
(2015).] 



Bell nonlocality 

x=0,…,m-1 y=0,…,m-1 

Alice Bob 

Bell scenario: distant parties (Alice and Bob) choose between m 
different measurements of r outcomes. 

a=0,…,r-1 b=0,…,r-1 

P(a,b|x,y) 

ABρ

Experimental data: 
 
 
 
 
 
J.S. Bell: On the einstein-podolsky-rosen paradox, 1964 



Bell nonlocality 

x=0,…,m-1 y=0,…,m-1 

Alice Bob 

The simplest Bell scenario involves m=2 measurements with r=2 
outcomes (CHSH scenario). However there exist implementations 
beyond this simple case. 
 

a=0,…,r-1 b=0,…,r-1 

P(a,b|x,y) 

ABρ

Experimental data: 
 
 
 
 
 
J.S. Bell: On the einstein-podolsky-rosen paradox, 1964 



Bell nonlocality 
 

A photonic Bell setup (r=3 outcomes, two-qutrit systems): 
 
 
 
 
 
 
 
 
 
 
 

X.M. Hu, B.H. Liu, Y. Guo, G.Y. Xiang, Y.F. Huang, C.F. Li, G.C. Guo, M. 
Kleinmann, T. Vértesi, A. Cabello: Observation of stronger-than-
binary correlations with entangled photonic qutrits, PRL, 2018  



Bell nonlocality 

x=0,…,m-1 y=0,…,m-1 

Alice Bob 

Local correlations:     defines a classical, random source.  

a=0,…,r-1 b=0,…,r-1 

P(a,b|x,y) 

The set of local correlations is defined by  

Λ 

( ) ( )λλ
λ

λ ,|,|),|,( ybPxaPpyxbaP ∑=

Λ 



Bell nonlocality 
If the distribution P(a,b|x,y) cannot be written in the local 
form  
 
 
 
 
then it is said to be nonlocal.  
 
Gisin’s theorem: 
Every pure entangled state (with some suitably chosen  
measurements) give rise to nonlocal correlation. 

( ) ( )λλ
λ

λ ,|,|),|,( ybPxaPpyxbaP ∑=



Bell nonlocality 
Example: Let us consider the following game. The task is to 
fill a 3x3 table with the numbers +1 and -1 such that each 
row has an even number of negative entries and each 
column has an odd number of negative entries. Is such a 
filling possible? 



Bell nonlocality 
 

Let’s turn it into a nonlocality game (so-called Peres-Mermin 
game): Alice’s random input labels the row. Bob’s random 
input labels the column.  
 
                                   Bob’s side:               y = 3  
 
 
 
Alice’s side: 
                x=2 
 



Bell nonlocality 
 

Alice is asked to fill in her assigned row with ± signs (with 
even parity). Bob is asked to fill his column with ± signs 
(with odd parity).  
They win the game if the two players always put the same 
sign in the common cell . 
                                                                     y = 3  
 
 
 
 
                x=2 
 



Bell nonlocality 
 

It turns out that with classical strategies the best success 
probability is 8/9. This number corresponds to the local 
bound of the game.  
  
                                                                     y = 3  
 
 
 
 
                x=2 
 



Bell nonlocality 
 

However, quantumly the players can win the game in 100% 
of the time (9/9). To this end, the players share two singlet 
pairs, and they perform special quantum measurements on 
their share of the state.  
                                                                     y = 3  
 
 
 
 
                x=2 
 



Bell nonlocality 
 

In the above Bell nonlocality game the singlet state clearly 
gives advantage over local resources; it allows us to violate 
a Bell inequality associated with the game. Hence, we say 
that the singlet state is nonlocal.  
 
Can a bound entangled state, a very weakly entangled state, 
be nonlocal as well? This is the question asked by Peres in 
1999. He conjectured that such states always have a local 
model, so they cannot violate any Bell inequality. More 
formally he stated:  
                                     
 
                 



Nonlocal bound entangled states 
 
Peres conjecture: Undistillable states admit a local model 
(A. Peres, Foundations of Physics 29, 589-614 (1999)):  
 
”Note that there exist inseparable quantum states that 
cannot be distilled into singlets. In particular, quantum 
states whose partial transpose has no negative eigenvalue 
have that property. Thus, if the preceding conjectures are 
correct, it follows that these peculiar inseparable quantum 
states violate no Bell inequality, and therefore, owing to 
Farkas’s lemma, their statistical properties are compatible 
with the existence of local objective variables.” 
 



Nonlocal bound entangled states   

Until 2014 most of the works were in favour of Peres, e.g.:  
 
o Violation of the CHSH inequality certifies that the 

underlying state can be distilled (Acin 2001, Masanes 
2006). Hence it cannot be violated with PPT bound 
entangled states. 
 



Nonlocal bound entangled states   

Until 2014 most of the works are in favour of Peres, e.g.:  
 
o A numerical method for upperbounding possible 

violation of a given Bell inequality for PPT bound 
entangled states was presented by Moroder et al. (PRL, 
2013). This study presented more than 100 bipartite 
Bell inequalities, which cannot be violated using PPT 
bound entangled states (up to numerical precision). 
 



Nonlocal bound entangled states   
Hint that Peres conjecture maybe wrong: 
 
o A PPT bound entangled state was presented by 

Moroder-Gittsovich-Huber-Gühne (PRL, 2014) which 
violates an EPR steering inequality. In this scenario Alice 
is an untrusted and Bob is a trusted party (Bob’s 
measurements are fully characterized).  

 
  



Nonlocal bound entangled states    
Then a counterexample to Peres conjecture appeared in 2014: 
 
T. Vértesi & N. Brunner (2014). Disproving the Peres conjecture by 
showing Bell nonlocality from bound entanglement. Nature 
communications 5, 5297. 
 
We presented a 3x3 bipartite state, which is PPT bound entangled, 
and it violates a Bell inequality. So the state is Bell nonlocal.   



Nonlocal bound entangled states    
The state is of rank-4: 
 
 
and it fulfills PT invariance:  
 
This ensures that the state is PPT and therefore undistillable. This 
3x3 state has minimal possible rank, and it is the smallest in terms of 
dimensions, since no PPT entangled state exists in smaller 
dimensional space. 
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Nonlocal bound entangled states  

x=0,1,2 y=0 

Alice Bob 

The Bell scenario (S. Pironio, J. Phys. A, 2014) is one of the 
simplest one beyond the CHSH (m=r=2) scenario: 

a=0,1 b=0,1,2 

P(a,b|x,y) 

ABρ



Nonlocal bound entangled states  

x=0,1,2 y=1 

Alice Bob 

The Bell scenario (S. Pironio, J. Phys. A, 2014) is one of the 
simplest one beyond the CHSH (m=r=2) scenario: 

a=0,1 b=0,1 

P(a,b|x,y) 

ABρ



Nonlocal bound entangled states  

x=0,1,2 y=1 

Alice Bob 

Bell inequality (S. Pironio, 2014): 

a=0,1 b=0,1 

P(a,b|x,y) 

ABρ

I <= 0 holds for all local P(a,b|x,y) distributions 
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Bell expression: 



Nonlocal bound entangled states  

x=0,1,2 y=1 

Alice Bob 

Bell inequality (S. Pironio, 2014): 

a=0,1 b=0,1 

P(a,b|x,y) 

ABρ

I <= 0 holds for all local P(a,b|x,y) distributions: 

Bell expression: 
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Nonlocal bound entangled states  

x=0,1,2 y=1 

Alice Bob 

Bell inequality (S. Pironio, 2014): 
 
 
 
 
 
 
 

 
Quantumly:  
 
 

a=0,1 b=0,1 

P(a,b|x,y) 

ABρ
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Nonlocal bound entangled states  

x=0,1,2 y=1 

Alice Bob 

Bell inequality (S. Pironio, 2014): 
 
 
 
 
 
 
 

 
Quantumly: with the use of the PPT state mentioned above 
 
 
we get a Bell value larger than zero: 

a=0,1 b=0,1 

P(a,b|x,y) 

ABρ

( )ybxa MM ||PPTtr ⊗= ρ
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Nonlocal bound entangled states  

x=0,1,2 y=1 

Alice Bob 

Bell inequality (S. Pironio, 2014): 
 
 
 
 
 
 
 

 
Quantumly: with the use of the PPT state mentioned above 
 
 
we get a Bell value larger than zero. 
To this end, we used an iterative method, similar in spirit to 
the one used to optimize FQ. 

a=0,1 b=0,1 

P(a,b|x,y) 

ABρ

( )ybxa MM ||PPTtr ⊗= ρ



Nonlocal bound entangled states 
 
   
 
 
 
 
 
 

   
 
  
 
 
 
 
 

An open problem: Do there exist PPT bound entangled 
states (possibly in high dimensions) which give rise to large 
violation of certain Bell inequalities? Possibly unbounded 
violation?  
 



Nonlocal bound entangled states 
 
   
 
 
 
 
 
 

   
 
  
 
 
 
 
 

Results so far: 
 
o Bipartite d x d PPT states which violate families of Bell 
inequalities for any finite d.  

 
    Drawback: The Bell violation goes to zero as we increase  
                         the dimension d.  
 
(i) S. Yu and C.H. Oh: A family of nonlocal bound entangled 

states, Phys. Rev. A 95, 032111 (2017). 
(ii) K.F. Pál and T. Vértesi: Family of Bell inequalities 

violated by higher-dimensional bound entangled states, 
Phys. Rev. A 96, 022123 (2017). 



Summary 
 
   
 
 
 
 
 
 

   
 
  
 
 
 
 
 

We have shown that PPT bound entangled states are useful 
in overcoming the classical (shot noise) limit in quantum 
metrology and they can also be used to create Bell nonlocal 
correlations (thereby refuting Peres conjecture). 
 
These results are based on the papers:  
 
G. Tóth & T. Vértesi (2018). Quantum states with a positive 
partial transpose are useful for metrology. Physical Review 
Letters 120, 020506. 
 
T. Vértesi & N. Brunner (2014). Disproving the Peres 
conjecture by showing Bell nonlocality from bound 
entanglement. Nature communications 5, 5297. 
 



Thank you! 
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